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Abstract: In this study, a multivariate analysis combined with near-infrared (NIR) spectroscopy was
employed to classify intact grape berries based on the rootstock x cover crops combination. NIR
spectra were collected in diffuse reflection mode using a TANGO FT-NIR spectrometer (Bruker,
Germany) with 8 cm−1 resolution and 64 scans in the wave number range of 4000–10,000 cm−1.
The chemometric analyses were performed with the statistical software R version 4.2.0 (2022-04-22).
Elimination of uninformative variables was accomplished with a PCA and a genetic algorithm (GA).
The discrimination performance of a linear discriminant analysis (LDA) model was not enhanced
with either a PCA- or a GA-based selection. A multiclass classification model was built with an
artificial neural network (ANN). The best fit multiclass classification model on test data was obtained
with the GA-ANN model that gave a classification accuracy of close to 80% for samples belonging to
the four classes. These results demonstrate that NIR spectroscopy could be used as a rapid method
for the classification of berries based on their rootstock x cover-crops combination.
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1. Introduction

Near-infrared (NIR) spectroscopy is successfully applied for the authentication and
traceability of food and beverages [1–3]. In this study, we tested the ability of this technique
to discriminate among Vitis vinifera berries of the same variety, grown in the same vineyard
and subjected to the same environmental conditions, which differ only for rootstock and
cover crop combinations. Since the arrival of phylloxera in Europe, all V. vinifera varieties
have been grafted onto resistant rootstocks (Vitis spp.). The rootstocks provide not only
resistance but also strongly influence scion growth, development, productivity, and phenol-
ogy in a specific terroir [4]. Rootstock has been shown to affect berry quality traits such
as weight at harvest and the secondary metabolism leading to the production of sugars
and polyphenolic compounds [5,6]. Among sustainable soil management practices, cover
crops are widely used in vineyards. Several studies have been carried out to evaluate the
influence of different cover crops on grapevines’ vegetative growth, yield, berry, and wine
quality [7,8]. Weeds and cover crops compete with grapevines for water and nutrients
during the growing season, resulting in a decrease in vegetative growth (vigor) and yield
in the short period or after several years, especially for vines growing in semi-arid con-
ditions [9]. This competition is beneficial for the producer since it allows for a reduction
of excessive grape vigor and crop yield while improving grape quality [10]. The impact
of this technique on the yield and quality parameters of grapes strongly depends on the
selection and management of the plants used as cover crops [11]. The choice of rootstock
and the cover crop species is crucial since it influences the adaptability of grapevines to
the increasing environmental challenges, such as climate change [12]. This study aimed
to investigate the extent to which two different rootstocks (Vitis berlandieri × Vitis riparia
140 Ruggeri and 1103 Paulsen) in two grassing conditions (legumes or grass mixtures)
modified the metabolic response of the Autumn Pearl table grape variety. The samples
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were separated into four classes based on the rootstock (140Ruggeri or 1103Paulsen) x
cover crop (only grass or grass–legume mixture) combination. In this work, we labeled
“A” the 140Ruggeri x only grass, “B” 1103Paulsen x only grass, “C” 140Ruggeri x grass
plus legumes, and “D” 1103Paulsen x grass plus legumes samples. In this article, NIR
spectroscopy was employed in combination with chemometric techniques to classify the
samples into four classes defined by the rootstock x cover crop combination. In this work,
both supervised and unsupervised recognition procedures were applied. Linear discrim-
inant analysis (LDA) and artificial neural networks (ANNs) were used to classify the
samples. To achieve significant differentiations among the berries, a selection of the most
significant wavelengths was made with a PCA and a genetic algorithm (GA). This allowed
the elimination of unnecessary information and amplified relevant variations in the spectra.
The use of intact berries poses some analytical issues due to the lack of homogeneity of
this type of sample. That results in high coefficients of variation in the NIR spectra when
samples are scanned at different points relative to the source [13]. Despite the analytical
difficulties, there is a great advantage in having an intact sample after the NIR analysis.
A NIR-based analysis of intact berries can be used for real-time monitoring of the berries
in vivo on the vine. This could be particularly useful in the context of precision agriculture,
which requires real-time data acquisition to make the best decision for digital farming
management [14].

2. Materials and Methods
2.1. Grape Samples

The research was carried out in an organic vineyard located in Southern Italy (Apulia
region, Ginosa, Taranto, 40◦27′41.0′ ′ N; 16◦50′27.8′ ′ E) in the 2021 season. The vineyard
consisted of two blocks of the same variety with a surface of 1.2 hectares each. The two-
year-old grapevines were spaced at 3.0 × 2.20 m apart (1515 vines ha−1). Vines were
trained to a “tendone system” (Apulia type) and drip irrigated. Each vineyards block
was divided into four blocks of 12 rows of 36 vines, alternately sown with the two cover
crop mixtures according to randomized blocks. The table grape variety analyzed was
Autumn Pearl, a new medium-ripening (from September to October) red seedless cultivar
characterized by high productivity, large, round, and crunchy berries with a sweet and
slightly fruity taste. The two different rootstocks were 140 Ruggeri and 1130 Paulsen. The
two commercially available cover crops were called San Martino (Festuca arundinacea cv
Sitka 50%, Festuca rubra cv Maxima 1 40%, and Poa pratense cv Sunbeam 10%) and Elena,
a mixture of grass and legume cover crops (Lolium perennial cv Mathilde 50%, Festuca
rubra cv Maxima 1 47%, and Trifolium repens cv Rivendell 3%). Figure 1 shows the fresh
samples upon arrival in the laboratory and the berries prepared for the analyses. Each
berry was shortly washed with distilled water and gently tapped with paper before the
NIR measurement. The 360 berry samples were measured over several days. Therefore, to
ensure the reproducibility of the results, each day, the spectra of a few randomly chosen
berries among those already analyzed were collected again. Maturity parameters were
measured on the berries. Total soluble solids content (TSS, ◦Brix) and total acidity (TA,
g/L as tartaric acid) were measured in triplicate using an Atago PR1 digital refractometer
(Atago Co., Tokyo, Japan). Total polyphenolic content (TP, mg/Kg of grape) was measured
following the Folin–Ciocalteu method in triplicate for each berry [15].
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TANGO FT-NIR spectrometer (Bruker, Germany). NIR spectra were collected by data ac-
quisition software OPUS/QUANT software version 2.0 (Bruker Optik GmbH, Ettlingen, 
Germany) between 12,000–4000 cm−1 (833–2500 nm), with 8 cm−1 resolution and 64 scans. 
The spectrum of each sample was the average of three successive scans on three different 
berry faces. A background spectrum was automatically recorded, before each sample. 
Both temperature and relative humidity of the room were kept constant with an air con-
ditioning system. 

2.3. Statistical Analysis 
The statistical procedures described in detail in the following paragraphs, including 

pre-treatments of the original spectra, GA algorithm, PCA, calibration, cross-validation, 
and external validation of classification models built with LDA and multilayer perceptron 
artificial ANN, were performed using R Statistical Software (v4.2.0; R Core Team 2022) 
[16]. The R packages used are listed in alphabetical order: caret [17], funModeling [18], 
GA [19], genalg [20], ggplot2 [21], keras [22], MASS [23], and mdatools [24]. A process 
flow block diagram is reported in Figure 2. 

Figure 1. Grapes belonging to A and C (a), D and B classes (b) upon arrival in the laboratory; (c) slot
of samples prepared for NIR analysis (from bottom to top: A, B, C, and D).

2.2. NIR Spectroscopy

NIR absorption measurements were carried on in diffuse reflection mode using a
TANGO FT-NIR spectrometer (Bruker, Germany). NIR spectra were collected by data
acquisition software OPUS/QUANT software version 2.0 (Bruker Optik GmbH, Ettlingen,
Germany) between 12,000–4000 cm−1 (833–2500 nm), with 8 cm−1 resolution and 64 scans.
The spectrum of each sample was the average of three successive scans on three different
berry faces. A background spectrum was automatically recorded, before each sample. Both
temperature and relative humidity of the room were kept constant with an air conditioning
system.

2.3. Statistical Analysis

The statistical procedures described in detail in the following paragraphs, including
pre-treatments of the original spectra, GA algorithm, PCA, calibration, cross-validation,
and external validation of classification models built with LDA and multilayer perceptron
artificial ANN, were performed using R Statistical Software (v4.2.0; R Core Team 2022) [16].
The R packages used are listed in alphabetical order: caret [17], funModeling [18], GA [19],
genalg [20], ggplot2 [21], keras [22], MASS [23], and mdatools [24]. A process flow block
diagram is reported in Figure 2.
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3. Results
3.1. Maturity Parameters and Data Preparation

The samples were labeled as “A” 140Ruggeri x grass, “B” 1103Paulsen x grass, “C”
140Ruggeri x legumes, and “D” 1103Paulsen x legumes. In terms of plant behavior, higher
rates of photosynthetic assimilation, transpiration, and increased water use efficiency
(WUE)were measured for grapevines growing on grass cover crops (A and B) while the
plant vigor, expressed by the weight of the pruned wood of the year, did not show any
difference [25]. WUE is especially important in semiarid regions where water availability is
limited. Grape grows and matures during the driest months, making irrigation scheduling
and timing critical. This situation is worsened by climate change predictions that indicate
increases in temperatures and more frequent episodes of climatic anomalies, such as
droughts and heat waves [26]. In our case, a grass cover crop was able to increase WUE
in the vineyard without increasing the vigor of the plant, even if both the 1103P and
140R rootstocks usually confer a high vigor to the scion. These results are consistent
with previous findings, which show a containment of vigor due to plant-cover crops
competition toward nutrients [10]. Increasing the WUE for a crop such as table grape, which
usually requires frequent irrigation, especially during the summer months, is important
to ensure the environmental sustainability of food production. Table 1 shows the basic
parameters measured on the berries after NIR analysis. The polyphenolic content is
significantly different between samples grown on different rootstock. The TSS values
were not significantly different among the classes while the acidity content shows a small
difference only between two groups which are characterized by different rootstock but the
same grass cover crop. The evaluation of grape composition indicates a significantly higher
amount of polyphenolic compounds in 140R over 1103P, despite the cover crop type. In
terms of maturity parameters, no difference was found for sugars while a lower acidy was
found for 140R compared to 1130, but only when vines were grown on grass. Previous
findings show that grasses promoted higher content of sugars and phenols in berries [9].
Instead, we did not find significant differences in sugar content, and the differences in
polyphenolics were linked to the rootstock more than to the cover crop.

Table 1. Basic maturity parameters.

Class Berry Weight
(g)

TP (mg/Kg, as
Catechin) TSS (◦Brix) TA (g/L, as

Tartaric Acid)

A 6.59 ± 1.70 bc 399.0 ± 91.6 a 18.6 ± 4.0 60.1 ± 27.7 b
B 8.46 ± 1.86 a 310.0 ± 110.0 b 20.1 ± 1.9 81.0 ± 16.9 a
C 7.31 ± 1.77 b 413.0 ± 95.5 a 19.0 ± 1.0 60.1 ± 7.5 b
D 6.09 ± 1.24 c 305.0 ± 60.2 b 18.2 ± 1.7 59.5 ± 6.0 b

p value *** *** n.s. *
All values are reported as mean ± standard deviation. For each variety, values in the same column bearing
different letters are significantly different. n.s. = not significant; * p < 0.05; *** p < 0.001. Data have been analyzed
with an ANOVA test followed by a Duncan post-hoc test.

The spectra are dominated by the intense absorption bands of water from various
overtones and combinations of water’s three fundamental vibrational transitions: sym-
metric stretching, bending, and asymmetric stretching. The water absorption signals are
found around 1950 nm (5128 cm−1), 1450 nm (6896 cm−1), and two minor centered near
1200 nm (8333 cm−1) and 970 nm (10,300 cm−1) [27]. The preprocessing step is of great
importance to properly remove noise and perform background and baseline correction of
NIR spectra. Among the methods conventionally applied to spectroscopic data, we applied
multiplicative scatter correction (MSC), standard normal variate (SNV), smoothing (e.g.,
Savitsky–Goley), derivatives, and a combination of them [28]. A PCA was performed on
each pre-treated spectral dataset. Unfortunately, none of the PCAs showed a clear separa-
tion of the samples by classes. Therefore, we could not base our pretreatment choice on the
higher amount of cumulative variance explained by the first two PCs and the better ability
to cluster the samples based on the classes. Since the selection of the optimal preprocessing
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method follows a trial-and-error approach and depends to a large extent on the nature
of the data, the search for the optimal preprocesses for our data started from previous
findings [29]. The SNV pretreatment was selected, and the spectra are shown in Figure 3.
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Figure 3. SNV pre-treated spectra of the four classes.

For a proportional distribution of the four classes (81 A, 87 B, 90 C, and 102 D samples)
in both test and training sets, a class-balanced random 80/20 split of the dataset was
performed. The validation of the training set was performed with a 5-fold cross-validation
repeated 10 times. The test set was employed for the external validation to ensure the
robustness of the model. The selection of characteristic wavelengths (holding sample-
specific or component-specific information) can improve the performance of prediction or
classification algorithms since it eliminates the uninformative variables and improves the
performance of the models. Several methods have been developed and can be found in the
literature [30]. The two selection procedures performed for the selection of the independent
variables on our data were a PCA and a GA.

3.2. GA-Based Feature SelectionDone

A GA procedure is based on Darwin’s theory of biological evolution. In a natural
selection, starting from a random population of individuals the ones who are “most fit”
for the environment have a greater chance to survive and reproduce to generate a better
offspring [31]. In a GA the individuals are called chromosomes. A chromosome is a bit
vector of binary values where every gene (bit) represents one of the independent variables
(i.e., the NIR wavelengths). The binary values represent the inclusion (1) or exclusion (0) of
that gene (variable). The set of genes of each chromosome represents a possible solution.
The process starts with a random population evaluated based on a “fitness” function. The
fittest chromosomes are selected for reproduction and generate offspring by crossovers of
two parents’ chromosomes and mutations of individual chromosomes. The population has
a fixed size, therefore, the least fit individuals must “die” to be replaced by the new “fittest”
offspring. The algorithm is performed iteratively over several generations. It terminates if
the population has converged (does not produce offspring which are significantly different
from the previous generation) [32].

3.3. Development of Supervised Classification Models

Highly correlated variables (overfitting issues) or complex or non-linear class bound-
aries (underfitting issues) could affect LDA discrimination performance [33]. Correlation-
reducing methods such as PCA are employed to improve the classification process [34].
After the PCA, only wave numbers with loadings >0.03 on the first seven PCs (cumulative
variance explained 89.71%) were retained for a total amount of 2167 selected predictors.
However, for our dataset the removal of correlated variables only affected the accuracy of
the outcome to a small extent (LDA models in Table 2).
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Table 2. Accuracy and kappa values for the LDA and ANN classification models.

Algorithm Dataset Accuracy K

LDAwhole
Train 0.64 0.52
Test 0.66 0.55

PCA-LDA
Train 0.61 0.48
Test 0.61 0.47

GA-LDA
Train 0.61 0.48
Test 0.58 0.44

ANN 0.76 0.68

The genetic algorithms (GAs) are efficient optimization techniques for interrogating
a large search space in which many combinations of wavelengths are possible. GAs
have already been used in variable selection problems and seem to be a solution to the
multivariate selection of variables [35]. In our case, each chromosome contained 1899 genes.
The binary values of the genes indicated if the corresponding wave number was included in
the classification (value 1) or not (value 0). The GA was performed on an initial randomly
set population, with a 0.03 probability mutation rate, a number of best individuals to
pass to the next iteration (elitism) of 3, and a uniform crossover over 100 generations. A
maximum number of iterations without improvement (stopping criteria) was set at seven
and a maximum number of runs (generations) was set at 50. For the fitness calculation, we
applied a custom fitness function for multi-class classification returning Cohen’s kappa
statistic as the fitness function value. We chose kappa in place of accuracy to measure the
classifier performance since this coefficient evaluates the difference between the accuracy
and the null error rate, thus accounting for the possibility of a correct classification occurring
by chance [36]. The script employed to select the best variables for classification using
genetic algorithms based on the “GA” library with a custom fitness function was based
on the structure reported in the following public GitHub repository: https://github.com/
pablo14/genetic-algorithm-feature-selection (accessed on 1 March 2022) and adapted
for multi-class classification. The “best” subset of variables based on genetic algorithm
selection (958 predictors) was used as input to build both an LDA and an ANN model.
The discrimination performance of the LDA was not enhanced with a GA-based selection
(GA-LDA model in Table 2).

3.4. ANN Structure

ANNs are a powerful method for the extraction of quantitative information from large
spectroscopic databases. Their pattern recognition abilities are important for datasets which
show inherent non-linearity due to complex biological, environmental, and instrumental
variations. However, the ANN network implementation, method setup, training, and esti-
mation of parameters are relatively complex compared to linear regression methods [29,37].
A dimension reduction of the dataset performed with a variable selection method is nec-
essary to increase the predictive efficiency of the final ANN model [38]. Min–max data
normalization was applied prior to the training of the neural network since it generally in-
creases the learning rate and leads to faster convergence. The input variables were scaled in
the interval. The structure of our feed-forward fully connected neural network consisted of
three layers. We found that increasing the number of hidden layers resulted in a worsening
of the prediction. The number of neurons in each layer was: number of predictors for the
input, half of the input data for the hidden, and four neurons for the output layer since we
were performing a multiclass classification analysis. In summary, the ANN configuration
was input:hidden:output, n:(n + 1)/2:4, where n is the numeric vector representing the
selected wave numbers for each NIR spectrum. Two activation functions were used: the
rectified linear activation (ReLU) function was used in the input and hidden layers, while
for the output layer we used the Softmax function, which is commonly used for multiclass
classification problems. Following the choice of the ReLU activation function in the input
layer of our neural network, we used a He normal weight initialization (samples from a

https://github.com/pablo14/genetic-algorithm-feature-selection
https://github.com/pablo14/genetic-algorithm-feature-selection
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truncated normal distribution centered on 0 with stddev = sqrt(2/fan_in) where fan_in is
the number of input units in the weight tensor) [39]. In the training procedure of the ANN
model, we used the Adam optimizer, the categorical cross entropy as a loss function (the
function to minimize during optimization), and the accuracy to monitor the training. The
training was structured into 1000 epochs, with a batch size of 32 and a validation split of
0.2 (80% of the data was used to train and 20% to validate the model). The ANN model
structure used is available in the Supplementary Material.

4. Discussion

The evaluation of accuracy and kappa statistics of these machine-learning classifiers
on our dataset using the predicted classes for the whole and the selected spectral ranges is
reported in Table 2. The LDA models built using the whole wavelength spectrum were not
improved by using the PCA or GA selected values. For both the LDA models the accuracy
and Cohen’s kappa values indicate a 60% of overall accuracy and a moderate agreement
between the model predictions and the actual class values non-happening by chance. For
the ANN model with GA selection, both accuracy and K values are higher than all the
other models. K is close to 0.70, that indicates a substantial agreement [35]. The predicted
classes for the LDA models on the test set are reported in Tables 3–6.

Table 3. Confusion matrix for LDA using all the wave numbers.

Prediction Reference

A B C D
A 10 1 2 1
B 2 11 2 2
C 1 3 9 0
D 3 2 5 17

Table 4. Confusion matrix for LDA with the GA selected wave numbers.

Prediction Reference

A B C D
A 9 2 1 3
B 3 11 4 4
C 1 4 9 1
D 3 0 4 12

Table 5. Confusion matrix for LDA with the PCA selected wave numbers.

Prediction Reference

A B C D
A 8 0 1 3
B 2 13 3 6
C 1 2 11 0
D 5 2 3 11

Table 6. Confusion matrix for ANN with the GA selected wave numbers.

Prediction Reference

A B C D
A 13 0 3 5
B 0 15 0 2
C 2 2 15 2
D 1 0 0 11
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Each column of the matrix represents the actual class while each row represents the
class predicted by the model. The number of correctly classified samples (true positives) in
the confusion matrix for LDA whole and GA-LDA models is higher than the misclassified
(false negatives) for each class, except for class C, which shows a 50% of samples correctly
classified (Tables 3 and 4). Instead, in the PCA-LDA samples belonging to class A show
the worst classification (50% correctly classified) (Table 5). The percentage of correct
classification improves drastically with the ANN algorithm. The ANN model built with
GA selected wavelengths lead to a better classification of samples compared to all the
LDA models (correct classification: 81% A, 88% B, 83%C of the test sets), with still some
misclassifications for the D group (55% D correctly classified) as shown in Table 6.

For our samples, linear regression models were not able to effectively predict the
classes. The use of a non-linear model built with an artificial neural network created an
efficient multi-classification model. Some conventional parameters have been measured on
samples belonging to the four classes but not analyzed with the NIR spectrometer. Among
the parameters analyzed, significant differences were found concerning berry weight,
sugar content, number of clusters per vine, and texture parameters. Both sugar content
and berry weight were higher for samples A and B, followed by C and D. The texture
parameters showed the same trend of berry weight and sugar content. Moreover, A and C
samples had a higher number of clusters per vine, followed by B and D [26]. Even if these
results are mean values of parameters measured on berries different from those employed
in the NIR analysis, they allowed us to understand that generally the samples A and D
or B and C have a different chemical composition. If the attribution to a different class
could be understandable for berries sharing the same rootstock or cover crop system, the
misclassification of A as D or B as C poses some doubts since those classes have in common
neither the rootstock nor the cover crop. The GA-selected wavenumbers are spread on the
whole wave number dataset therefore, it is not possible to attribute the differentiation to a
specific spectral region. Figure 4 shows a spectrum with only the wavelengths selected by
the GA in blue.
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Concerning the misclassified samples in the ANN model, due to the inherent differ-
ences found with primary methods, we hypothesize that for those samples, sugar and
water content (the latter linked to the berry weight) could have played a role; however, it is
necessary to perform further analysis to confirm this hypothesis. Further studies involving
a larger number of samples with a chemical characterization are ongoing to improve the
classification model. Moreover, since the composition of grape, in addition to being strongly
dependent on the nature of the cultivar, is also influenced by several other factors such
as climate, agricultural practices and technological factors, the study will be repeated in
several years with climate data detection. Striking differences could appear in several years
of analysis, smoothing out the discrepancies found here. However, to our knowledge, it is
the first time that NIR spectroscopy is applied for the classification of grape berries based
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on the rootstock–cover crop combination. This discrimination ability indicates another
potentiality of the NIR technique that could be further exploited.

5. Conclusions

For more sustainable viticulture oriented towards high-quality production, an appro-
priate combination of cover crop and rootstock represents a strategy to optimize yield,
improve grape quality, and preserve the environment. Choosing the best combination of
cover crops and rootstock requires costly untargeted metabolomic screenings. As an alterna-
tive to conventional techniques, which require large investments in terms of both time and
money, we applied an economical and fast procedure, based on an open-source software for
the chemometric analysis. In this work, NIR spectroscopy with machine learning methods
was used to investigate the differences in the metabolic composition of the samples. A
genetic algorithm-based method for selecting wavelengths as independent variables for an
ANN classification model was applied. A model able to discern the influence of rootstock
and cover crop combinations on the same variety sharing the geographical origin could be
useful for a NIR-based characterization of grapes. Even if these results are limited to one
harvest year on a limited number of samples, the good ability of the model to differentiate
NIR spectra of berries matrix samples by rootstock and grassing indicates the presence of a
correlation that is captured by the NIR analysis. The same procedure could be followed
by others on their spectra, even recorded on a different spectrometer in different field
conditions to obtain a classification of four or even more classes.
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