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Abstract: The pathogens such as fungi and bacteria can lead to rice diseases that can drastically impair
crop production. Because the illness is difficult to control on a broad scale, crop field monitoring
is one of the most effective methods of control. It allows for early detection of the disease and
the implementation of preventative measures. Disease severity estimation based on digital picture
analysis, where the pictures are obtained from the rice field using mobile devices, is one of the most
effective control strategies. This paper offers a method for quantifying the severity of three rice crop
diseases (brown spot, blast, and bacterial blight) that can determine the stage of plant disease. A
total of 1200 images of rice illnesses and healthy images make up the input dataset. With the help
of agricultural experts, the diseased zone was labeled according to the disease type using the Make
Sense tool. More than 75% of the images in the dataset correspond to one disease label, healthy
plants represent more than 15%, and multiple diseases represent 5% of the images labeled. This
paper proposes a novel artificial intelligence rice grade model that uses an optimized faster-region-
based convolutional neural network (FRCNN) approach to calculate the area of leaf instances and
the infected regions. EfficientNet-B0 architecture was used as a backbone as the network shows
the best accuracy (96.43%). The performance was compared with the CNN architectures: VGG16,
ResNet101, and MobileNet. The model evaluation parameters used to measure the accuracy are
positive predictive value, sensitivity, and intersection over union. This severity estimation method
can be further deployed as a tool that allows farmers to obtain perfect predictions of the disease
severity level based on lesions in the field conditions and produce crops more organically.

Keywords: rice diseases; severity estimation; rice grade; EfficientNet-B0; optimized faster RCNN;
artificial intelligence

1. Introduction

Rice grains are prone to disease. It is a staple food in human consumption. Rice
has the second-largest planting area, and its production determines the food security of
the population in most of the world’s countries. There are various agro-meteorological
factors that cause diseases in rice. The diseases can be predicted and diagnosed based on
the environmental parameters [1,2]. If the leaves are infected and are not treated initially,
the entire plantation can be infected and eventually lead to enormous economic loss to
the farmers [3,4]. The damage caused to the crop due to diseases can be measured by
disease severity estimation [5]. As a result, the infected plants are identified, and further, it
can be used to forecast yield and make treatment recommendations [6]. The treatment to
plant disease is applying pesticides; however, excess usage of pesticides increases the toxic
level in agricultural products. Chemical pesticides are used to treat diseases. Pesticides
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are compounds or compositions of substances used to prevent, destroy, repel, or mitigate
pests. Chemicals are becoming an increasingly complex part of modern society as they
have negatively impacted both humans and agriculture. The usage of pesticides increases
the production cost of crops. Pesticides should be used cautiously by evaluating the
severity of the disease and targeting the diseased locations with the appropriate pesticide
concentration [7]. If the diseases and their infectious level are identified at the initial stage,
it can help reduce the usage of hazardous chemicals [8]. The ability to diagnose illness
severity quickly and accurately will aid in reducing yield losses.

Although the naked eye inspection method is commonly employed in the production
of crops, the results are subjective, and it is impossible to assess the disease precisely. Plant
pathologists currently grade disease using a disease scoring scale. At present, disease
severity estimation in plants is calculated in percentage using graph paper analysis. The
grid counting method can be used to improve accuracy. This technique is laborious,
time-consuming, involves redundant activities, and has a complicated operation process.
The method is more prone to errors involving human intervention [9]. As a result, there
is a need to address all these concerns related to manual disease severity grading. In
agricultural research, image processing expertise has advanced significantly. The concerns
with manual disease grading can be accomplished by incorporating machine vision into
agriculture to determine the exact grade of the disease [10,11]. The current paper proposes
an automatic and accurate disease grading system for rice crops to address the above
concerns, which will be extremely useful to agronomists. Rice leaves are being considered
for experimentation.

To supplement the traditional method of quantifying disease severity levels, various
imaging techniques, such as hyperspectral and thermal UAV imaging, have been used [12].
Plant disease phenotyping enables understanding the progression of diseases; when the
imaging techniques are combined with phenotyping, it enables accurate, automatic, and
robust disease quantification. In recent years, many researchers have focused on pheno-
typing based on RGB images compared to other imaging variants, such as hyperspectral,
thermal, etc. There are two categories of phenotyping methods based on RGB images: the
first is disease detection, which means whether the diseased region is present or not in an
image; the second is disease quantification, which refers to the severity of the disease that
has impacted the leaf [13].

Computer vision techniques are routinely used to detect plant diseases. The scientists
employed algorithms such as support vector machine (SVM), K-nearest neighbor (KNN),
random forest (RF), and artificial neural network (ANN) to detect diseases such as early
powdery mildew disease, blight, and mosaic virus on a variety of crops [14,15]. Recent
research has used convolutional neural networks (CNN) for plant disease diagnosis as deep
learning contributes to computer vision applications [16]. The LeNet model in [17] detects
banana leaf illnesses, whereas the GoogleNet model was utilized in [18] to detect various
biotic stress disorders. The methods outlined before classify an image based on whether a
disease is present or not. However, information on the exact location of the infection and its
severity is lacking. As a result, the paper focuses on the domain of disease quantification.

Many of the previous research associated with the grading of diseases have used
leaf images to obtain the disease-infected area. The authors in [19] have used the Otsu
segmentation algorithm to extract the diseased part from the leaf image, captured in a con-
trolled environment. Deep learning models such as VGG-16 and UNet are used to perform
tasks such as segmenting the diseased area and classifying severity stages, respectively.
The leaves were brought to the laboratory, and the images were captured in a controlled
environment. The results obtained from these experiments were of low accuracy [20].
Unmanned aerial vehicles (UAVs) are used to acquire field images that can deliver results
with high throughput to overcome the constraints of controlled environment images.

UAV images are captured on the fields. Therefore, they have complex backgrounds,
such as illumination issues and multiple leaves overlapping. CNN works best to achieve
higher accuracy in object detection and segmentation [21]. So, to address the challenges
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mentioned above, a novel rice grade framework is proposed. Rice grade calculates the
phenotype attributes such as length of leaf area and diseased area from the rice leaf images
from the field that are affected with three types of diseases, rice blast, bacterial blight, and a
brown spot, for disease severity quantification. The publicly available datasets do not have
annotations for leaf and diseased regions. Hence, an annotated dataset was created with an
annotation for leaf instances and disease areas on the image in the proposed system. The
proposals are generated for each image, and a normalized feature map and a multi-task loss
function are used to generate boundary boxes around leaf and disease regions. Later the
percentage of diseases area against the leaf is calculated as disease severity quantification
percentage, and this percentage is mapped to diseased severity level, which is required for
quantitative evaluation.

The novelty of the proposed work can be outlined as follows:

• The accuracy of disease instances identification directly impacts the accuracy of sever-
ity estimation of rice leaf disease as it is the basis for severity quantification of rice leaf
disease. As a result, estimation accuracy should be the key indicator when choosing
the target detection algorithm. Four mainstream backbone architectures for detecting
deep learning targets are VGG16, ResNet101, MobileNet, and EfficientNet-B0. Among
them, EfficientNet-B0 architecture is exact in targeting the disease position. Addition-
ally, EfficientNet-B0 is more accurate at detecting patterns. As a result of its efficacy
in identifying disease spots reliably, EfficientNet-B0 was used as the key research
architecture.

• A fast and accurate disease severity estimation framework is developed using ad-
vanced deep learning methodologies. The architecture identifies leaf instances and
diseased regions, making it helpful in automated disease inspection tasks. With the
proposed deep learning method, the image’s discriminatory features of leaf and dis-
eased areas will automatically quantify the disease into five severity levels of rice
diseases with higher accuracy.

• A novel real-time rice leaf annotated data set comprises rice leaf instances and diseased
areas for estimating the severity levels of rice diseases. The dataset is best suited to
avoid overfitting problems in the training phase.

This research paper is further formulated into different segments: Section 3 presents
the available literature on plant disease severity estimation and object detection in plant
diseases. Section 4 gives a brief review of the proposed rice grade model for rice disease
severity quantification deployed on the basis of AI. Section 5 delves into the details of
the experimental results; Section 4 concludes the paper along with future prospects in the
precision agriculture domain.

2. Related Work

This section provides an overview of deep learning approaches in the disease severity
quantification area and object detection that is a key concept to develop the proposed rice
grade model.

2.1. Artificial Intelligence for Disease Severity Quantification

The authors in [22] achieved an 80% accuracy in distinguishing cotton leaf infections.
An artificial neural network was used to segment cotton leaves (ANN). According to au-
thors in [23], it is a drawback to use ANNs for training as they require large amounts of
data and can be computationally expensive. The researchers in [24] used morphological
algorithms and iterative thresholding to identify disease spots on corn leaves. With 30 im-
ages of corn leaves, 80% detection accuracy was obtained. However, there is a flaw in the
morphological method as it does not work well if there are too many edges [25]. Apart from
this, in [26], an edge detection segmentation algorithm is used to extract disease spots from
cotton leaves. The downside is that this algorithm does not work with imperfectly defined
edges, and it is more vulnerable to noise. The severity of leaf disease should therefore be
estimated using more effective algorithms.
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The researchers in [27] makes use of K-means along with back propagation neural
network (BPNN) to detect illness on the leaves of Camellia sinensis and Phaseolus vulgaris.
A conversion from RGB to HIS was performed in their study. However, because of its
nonlinear transformation, HIS is numerically unstable at low saturation [28]. A few scien-
tists were also investigating the relationship between the performance of different color
spaces in recognizing objects. The researchers in [29] have worked with various image
color spaces such as HSV, RGB, HIS, etc., for automatic rice disease detection. It is stated
in [30] that RGB is ineffective for determining items and recognizing colors.

The authors in [31] make use of K-means algorithm to identify the Cercospora disease
severity level in sugar beet and later aligns these results with an expert visual assessment
which is based on a severity scale of disease. Despite the similar results of K-means analysis
and expert observation, only 12 images of leaves were collected in this study. Moreover,
in [32], the severity of olive leaf spot disease are detected and rated using fuzzy C-means,
which is used along with auto-cropping segmentation of polygonal patterns. When com-
pared to manual scoring and image analysis, the precision rate was 86 percent. The outcome
was less satisfying due to the small database, which only contained 100 images of olive
leaves. The limitation of data size, according to authors in [33], will result in insignifi-
cant results. As a result, the larger the dataset, the better the results. The authors [34,35]
have used the attention approach for detecting and classifying the rice diseases. Further,
optimization techniques have been used by [36] for identifying rice diseases.

2.2. Object Detection for Plant Diseases

Due to the meteoric development of the deep learning technique, which could elimi-
nate the disadvantages of machine learning, the convolutional neural network architecture
has been efficiently applied in agricultural research. The CNN model outperforms other
models in the automatic detection of pest diseases. The convolutional and pooling lay-
ers are the two main operators in the CNN model. The convolutional layer can extract
more complex and significant image features automatically. The pooling layer reduces
the quantity of data parameters due to the convolutional network’s extensive processing
capacity. The majority of current research focuses on employing CNN models to classify
pest images. Pest classification is less significant than detecting and localizing each pest in
photographs of the natural environment. The CNN model’s feature extractors, combined
with meta-architecture, could handle computer vision tasks such as object detection [37].
Faster region convolutional networks (Faster RCNN) [38], single shot multi-box detec-
tors (SSD), region convolutional neural networks (RCNN) [39], and you only look once
(YOLO) [20] are all object detection methods. Several researchers have recently investigated
plant disease classification using object detection techniques [40]. To recognize nine differ-
ent types of tomato diseases, the authors in [41] combined R-CNN, faster R-CNN, and SSD
deep learning meta-learning with the residual network and VGG net. The authors in [42]
proposes a real-time rice blast disease segmentation method based on a feature fusion and
attention mechanism. The authors in [43] proposed a fast R-CNN model with no anchors to
classify 24 different types of pests. The experiments exhibit 56.4% mAP and 85.1% mRecall
accuracy on a pest dataset of 24 classes, and is higher than that of YOLO detector and faster
R-CNN. In [16], the authors have built a real-time video detection system based on faster
R-CNN. The results demonstrated that the suggested approach was capable of detecting the
untrained rice sickness in the video. Several studies have looked into deep-learning-based
object detection systems for agricultural disease identification, but none have focused on
disease grading levels.

It can be summarized from the above existing literature related to crop disease severity
estimation that many of the researchers have focused on diagnosing the diseases using deep
learning approaches such as YOLO, SSD, RCNN. Very few researchers have concentrated
on the severity estimation of the diseases. The existing severity estimation techniques are
based on image processing techniques which can be further improvised using deep learning
techniques. It is the main gap identified in the literature. It becomes the need to deploy a
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model that can precisely quantify the severity of the plant disease and help the farmers
take appropriate actions against the disease at the right time. If quantification is performed
precisely, then appropriate recommendations of the pesticides can be prescribed, which
will not excessively harm the crop and keep the quality of the crop more organic. It became
the motivation to explore the domain of crop disease grading in precision agriculture.

3. Materials and Methodology

Rice grade: A model to estimate severity of the rice diseases
The grading system for rice disease severity is represented in Figure 1. The algorithmic

steps of the proposed rice grade model for rice disease severity quantification are as follows:

Step 1: Primary and secondary dataset collection.
Step 2: Rice image annotations.
Step 3: Hyper-tuned optimized faster RCNN architecture for identifying the type of dis-

ease and location of the disease affected area.
Step 4: Testing.
Step 5: Rice leaf instances and diseased area calculation.
Step 6: Rice disease severity quantification and determine disease grade level.

Figure 1. Process to estimate the rice disease severity using rice grade model.

Figure 2 shows the diagrammatic representation of the proposed rice grade architec-
ture used to identify the disease severity level on rice crops. Initially, the real-time rice
diseases image dataset is collected. Then the selection of an optimized CNN backbone
architecture was carried out. After carrying out performance evaluation, the EfficientNet-B0
architecture was considered an optimal backbone for building the rice grade model. It was
hyper-tuned using optimal values for configuration parameters. Lastly, the severity scale
of the disease is identified.

3.1. Primary and Secondary Dataset Collection

The rice leaf diseased image database utilized in the proposed model includes healthy
leaves and images of three diseases: brown spot, blight, and blast. Our own obtained
rice leaf image is coupled with a publicly available web database (Kaggle) to improve the
robustness of the suggested method. The rice leaf images were recorded for all four rice
health categories from the rice fields using colored charge coupled device (CCD). They
were collected for approximately two years. While collating images, a fixed distance to
acquire an image, illumination, and angle were not considered to make the dataset more
heterogeneous. The image acquisition distance was approximately 150 to 250 mm without
zoom. In total, 300 brown spot images, 300 bacterial blight images, 300 blast images, and
300 healthy rice leaf images were culled from the dataset. There was a total of 1200 images
captured. Table 1 summarizes the total number of rice images used for the proposed study.
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Figure 2. Rice grade architecture to quantify the rice disease severity level.

Table 1. Total number of rice images used for the proposed study.

Rice Infection Type Publicly Available Dataset On Field Dataset

Healthy 200 100
Brown spot 200 100

Bacterial Blight 200 100
Rice Blast 200 100

Total 800 400

Grand Total 1200

3.2. Annotation of Rice Images

The annotations of leaf and disease regions are crucial in disease severity quantification.
The annotation is to specify the precise location of the disease spot and the leaf part in the
image so that accurate quantification can be calculated. Agricultural experts have carefully
screened every crop disease image to ensure the accuracy and authority of annotations.
Annotation is handled by five agriculture experts. For professional and accurate labeling,
at least three experts were involved in an image’s labeling process, and a vote was taken
to determine the final label. The graphical tool named Make Sense is used to annotate the
images. Once the images are imported and annotated, the annotations are exported in a
single COCO JSON file format. The JSON file includes information such as coordinates
of the bounding boxes and the category number of the classes. There were challenges
experienced in the process as many of the disease spots are tiny; even then, the proposed
model exhibits high performance. A red polygon marks the leaf instances, and a pink
polygon marks the diseased region. Polygons are used for annotation over rectangle, line,
and dot as the polygon is more precise in detecting the complex structure of diseases
and calculating the affected area. The area tag gives the area of the bounding box. This
area is further used for calculating the severity percentage. Figure 3 represents the image
annotation performed in Make Sense tool.
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Figure 3. Rice leaf and diseased area image annotation performed using Make Sense tool.

3.3. EfficientNet-B0: CNN Backbone Architecture

Improving the image resolution, deepening the network depth, and widening the
network channel size are characteristics of creating a robust and efficient network. These
characteristics enhance the model’s accuracy; however, it requires high tuning, and the
computational cost of gradient explosion parameters is expensive [44]. ResNet helps avoid
gradient explosion limitation by skipping a connection. MobileNet [45,46] uses pointwise
and depthwise convolution to minimize the configuration of a network and enhance
efficiency. The EfficientNet-B0 architecture is selected in this paper as the most basic and
fastest of the EfficientNet family of architectures. The architecture uniformly scales the three
dimensions such as the number of channels (width), number of layers (depth), and image
size (resolution) and improves system performance by maintaining fewer parameters. The
appropriate values of each dimension: resolution, depth, and width, must be set to achieve
better model performance. The optimal values for these dimensions are calculated using the
GridSearchCV function in python. Table 2 describes the layers in detail of EfficientNet-B0
architecture. The model architecture consists of seven sequential blocks based on Mobile
Inverted Convolution (MBCnvl) and convolutional layers. The inverted residual block [47]
uses a narrow-to-wide and vice versa architectural approach. ‘Cnvl’ is the convolutional
layer with filter size 3 × 3. ‘MBCnvl’ is a reverse form of the conventional CNN—it initially
expands using a 3 × 3 Convolution, then a 5 × 5 depth-wise convolution, significantly
reducing the parameters. The final steps, the pooling and classification layers, are not
considered as the purpose is not to classify the diseases but to use the architecture as
the base for identifying foreground and background classes. Thus, this architecture has
in-depth separable convolutions that minimize calculation. The PyTorch v1.7.1 and catalyst
v20.10.1 frameworks are used to create the EfficientNet-B0 network structure. The network
weights are set to none as weights related to the proposed model are unavailable. The
weights related to the proposed model will be generated after training the dataset.

Table 2. EfficientNet-B0 parameters used in proposed work.

Stage Operator Image Resolution;
No. of Channels Number of Layers

1 Cnvl3 × 3 512 × 512; 32 1
2 MBCnvl1, k3 × 3 256 × 256; 16 1
3 MBCnvl6, k3 × 3 256 × 256; 24 2
4 MBCnvl6, k5 × 5 128 × 128; 40 2
5 MBCnvl6, k3 × 3 64 × 64; 80 3
6 MBCnvl6, k5 × 5 32 × 32; 112 3
7 MBCnvl6, k5 × 5 32 × 32; 192 4
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3.4. Hyper-Tuned Optimized Faster RCNN Architecture

The fundamental concept to develop this model is object detection. In deep learning,
object detection means the target object is present in the image [48]. In the proposed model,
object detection is applied to find out the rice leaf instances. Further, the area where the exact
infection is present on the leaf is detected. The infected area can be quantified using object
detection. Various object detectors are available in deep learning, such as YOLO, faster
RCNN, single shot detectors, etc. The proposed approach to quantify the disease severity
uses the faster RCNN approach. The architecture of faster RCNN comprises 3 layers:
(i) region proposal network (RPN); (ii) region of interest (RoI) pooling; (iii) region-based
convolutional neural network (Classifier and Regressor).

3.4.1. Step 1. Region Proposal Network

The task of RPN is to find out those areas in the image where there is the possibility of
leaf instances and diseased regions to be found. Wherever the rice leaf and infectious area
are found in the image, that area is labeled as foreground class, while the area where rice
leaf and the infectious area are not present is labeled as background class. The foreground
classes will be forwarded to the next step of the algorithm. RPN uses anchor boxes to
determine where the object is exactly located. RPN accepts input as a feature map produced
by the EfficientNet-B0 backbone layer and outputs the anchors generated by sliding window
convolution applied on the input feature map.

Step 1.1. Generate Anchor boxes

To quantify the severity of the disease, it is necessary to accurately identify the leaf and
diseased region on plant image. The disease affected areas appear in a variety of sizes and
aspect ratios. To accurately determine the sick part, the proposed bounding boxes must be
evaluated at each place in the image using a variety of box shapes. These bounding boxes
are known as anchor boxes. Anchor boxes are a group of pre-defined bounding boxes with
a specific height and breadth. The anchor boxes come in a variety of sizes. The images
consist of small disease spots, and the leaf size is big. So, the bounding box for the diseased
part is very small, and the bounding box for the leaf is bigger anchor boxes. Therefore,
different anchor boxes are used to capture or detect every size of the affected parts. In total,
16 anchor boxes for each siding window are generated in the proposed model with areas of
of 322, 642, 1282, and 2562 in size.

Four different aspect ratios, 1:1, 1:2, 2:1, and 2:2, are used along with four different
scaling factors. The same is depicted in Figure 4.

Figure 4. Sixteen anchor boxes with different scales generated for each sliding window position in
the feature map.
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The output generated from this layer is passed into two layers of 1 × 1 convolution, the
classification layer, and the regression layer. The regression layer has 4 × 16 (W × H × (4 × k))
output parameters (denoting the coordinates of bounding boxes), and the classification
layer has 2 × 16 (W × H × (2 × k)) output parameters (indicating the probability of object
or not object). The objects in the dataset are both small and large, so it is most important to
select the size and scale of anchor boxes as per the objects in the dataset. Many diseased
regions are on the scale of 24 × 24 pixels. Hence an anchor box with size 16 × 16 pixels is
chosen as the smallest anchor box. Adjusting the size of anchor boxes can detect smaller
defected regions and more significant leaf instances with improved accuracy.

Step 1.2. Calculation of Intersection over Union

After anchor boxes are generated, these anchor boxes are tiled over the input image.
This will compute intersection over union (IoU). It is the area between the original bound-
ing box and the expected bounding box that overlaps. Figure 5 shows the geometrical
representation of the ground truth box, predicted box, and anchor box. A threshold value
is set as per the requirement. Suppose the overlapping area is above the set threshold
value. In that case, that object is detected by the box and labeled as foreground class, and
if the threshold is less than the set threshold value, the algorithm will not learn from the
example and will be labeled as background class. The foreground class will be assigned to
the anchor box with the highest IoU.

Figure 5. Geometrical representation of ground truth box, predicted box, and an anchor box.

The responsibility of RPN is to determine the location of the object and identify it as
foreground class. The main task of RPN is to predict foreground and background anchor
boxes. Anchor boxes labeled as foreground class are input to the next stage. The output
from RPN network is a feature map of those anchor boxes which are labeled as foreground
classes. The classification of foreground class and background class is mathematically
represented in Equation (1)

class(IoU) =

{
Foregroundclass =⇒ IoU > thresholdvalue
Backgroundclass =⇒ IoU ≤ thresholdvalue

(1)

3.4.2. Step 2. Region of Interest (RoI) Pooling

The output of RPN is anchor boxes where objects are captured and labeled as fore-
ground class and are given as input to RoI pooling [49]. The anchor boxes used are of
different sizes. Therefore, output anchor boxes of RPN will be feature maps of different
sizes. The input to the RoI is different size of feature maps. The task of ROI pooling layer
is to normalize all the obtained feature maps to same size. The output of rice grade RoI
pooling layer is (7 × 7 × D). The leaf instances and diseased anchor boxes of various sizes
are converted into standardized data regardless of the input rice plant image.
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3.4.3. Step 3. Region-Based Convolutional Neural Network (Classifier and Regressor)

The RoI pooling layer generates a feature map having size (7 × 7 × D). It is then
passed to two fully connected layers. Here, the feature maps are flattened and are further
sent as output in two parallel fully connected layers. Each parallel fully connected layer
performs a different task. The first layer is the classifier layer, also called as Softmax layer.
The Softmax activation function is responsible for determining whether there is an object in
an image or background class. The second layer is the regressor layer, which is responsible
for finding the four coordinates of the bounding box and drawing the same on the object
classified by the classifier layer. In the proposed disease quantization model, the image
with dimension 512 × 512 is downsampled to reduce the dimensionality of the features
at the expense of some information loss—this aids in reducing computing time. Stride in
the convolutional layer is used to downsample the images. The value of stride represents
the distance between tiled anchor boxes. Therefore, the feature map dimension can be
calculated as Width/stride × Height/stride. Stride is a faster RCNN parameter that can
be tuned. The appropriate value of stride must be chosen as applying too low or too high
values can lead to localization errors. Localization error is the difference between the
ground truth position and predicted position. To mitigate the errors, the object detector
learns the offset applied to each tiled anchor box and adjusts the position and size of the
anchor box. There are sixteen anchors for every position in the feature map, and each anchor
has two possible classes that can be assigned to it, namely foreground and background
classes. The number of labels in the proposed model that needs to be classified is four,
so the depth of the feature map is 16 × 4. Anchor is a vector that can have binary values
representing background and foreground classes. These values are fed to the Softmax
activation function, which will predict the label of the rice disease class. Figure 6 represents
the RoI pooling layer functioning in the proposed model.

Figure 6. Output of RoI pooling layer of rice grade model.

3.5. Training

The neural network was trained using a training set of rice illnesses that was provided
to it at random. The testing of the model, examining the test results, was completed after
the training procedure. A multi-task loss function is optimized for a faster R-CNN [50].
The classification and bounding box regression losses are combined in the multi-task loss
function. Each anchor has been given a binary class label (whether an item or not) for
training RPNs. Equation (2) represents the loss function for a picture [51].

Loss({l_i}, {p_i}) = 1
N_cls ∑ Loss_cls(P_i, GT_i∗) + λ ∗ 1

N_reg ∑ P_i∗Loss_reg(p_i, gt_i∗) (2)

where, l_i is the likelihood that an anchor will include an object or not. GT_i* is the ground
truth value of anchors that determines whether or not they contain an object, p_i = predicted
anchor coordinates, gt_i* is the ground truth coordinate for bounding boxes, Loss_cls stands
for classifier loss (binary log loss over two classes), Loss_reg is loss of regression (Where R
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is smooth L1_loss, Loss_reg = R(ti-ti*), N_cls is classification normalization parameter, N_reg
is regression normalization parameter.

3.6. Building of Rice Grade Model

The configuration parameters used to build the rice grade model is presented in
Table 3. The configuration parameters during the training process were optimized using
the optim module in PyTorch library. Optimizers play a critical role in improving the
accuracy of the rice grade model. The comparison of seven optimizers, namely stochastic
gradient descent (SGD), RMSprop, Adagrad, Adadelta, Adam, and Adamax is performed.
It can be summarized that SGD outperforms all the optimizers considered for experimental
analysis; therefore, SGD is chosen as the best optimizer to perform experimental work as it
expedites the model training and minimizes the computational costs. The learning rate is
set to 0.0001, and the momentum is set to 0.9. The configuration of the learning rate for
different epochs was varied using CosineAnnealingWarmRestarts scheduler of the optim
package in PyTorch. On a single GPU unit, images were fed into the model having a batch
size equal to sixteen. The model was trained for 500 iterations with an initial learning rate
of 0.01, which was later reduced to 0.003 at epoch 111 and 0.001 at epoch 220. The model
converges at 222nd epoch and maintain the stability in model accuracy. The network was
trained on RGB images that were scaled down to 512 × 512 while retaining proportions.
There was a 0.1 percent difference in accuracy between validation and testing samples,
indicating that there is no overfitting effect.

Table 3. Configuration parameters used to build the proposed model.

Configuration of Rice Grade Model Optimal Value

Number of proposals generated (Anchor box) 16
Anchor box size 32, 64, 128, 256

Anchor Box Scale Ratios (1:1), (1:2), (2:1), (2:2)
Proposal Selection count 200

Overlap Threshold 0.8
Learning Rate 0.0001

Optimizers SGD

3.7. Rice Disease Severity Quantification

The rice disease severity quantification is performed after the execution of faster
RCNN algorithm. The region of interest for the proposed model is the leaves of the rice
crop. The algorithm can be applied to almost various species of rice. The other parts of the
rice plant, such as rice grains, can be considered as the future scope of the research. The
algorithm can handle images with multiple leaves against a single rice leaf blade which
is the most common approach used in the existing literature. Initially, from the acquired
image, the leaf instances are segregated. Then, from the segregated leaf instances, rice
disease instances are found. The total area of leaf instance, as well as the total infectious
part on the leaf, is also calculated. The severity percentage of the rice diseases is quantified
by calculating the ratio of the diseased region (TDA) with leaf instances area (TLA). The
severity quantification can be calculated by applying the formula in Equation (3).

Severity Quanti f ication (%) =
∑ Disease a f f ected bounding box area (TDA))

∑ Total lea f bounding box area (TLA)
∗ 100 (3)

The grading of the rice diseases is determined from severity quantification percentage
value. The disease severity index of rice grade model is shown in Table 4.
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Table 4. The disease severity index of rice grade modeler of rice images used for the proposed study.

Severity Grade Percentage of Diseased
Region on Leaf Instances Severity Level

0 0 No Infection
1 0.1–10% Low
2 10.1–25% Mild
3 25.1–50% Moderate
4 50.1–75% Severe
5 >75% Critical

4. Results and Discussion
4.1. Evaluation Parameters of Rice Grade Model

This paper used the testing dataset to evaluate the results of the training models to
evaluate the performance of the applied object detection models. The following section
will cover the specific details of the experiment’s findings. To evaluate the results of
bounding box positioning, the standard statistical measures of intersection over union
(IoU), sensitivity, and positive predictive value (PPV) are typically used. Precision refers
to how accurately the model identifies only relevant objects. In other words, it measures
the total number of TPs that the model has detected. The recall of the model measures
how well it detects all ground truths. The IoU operation for model detection is to estimate
the closeness between the predicted bounding box and the actual box. It can be used
to determine whether the bounding box is correct. Figure 5 depicts the definition of the
IoU. For the proposed model the threshold value is set to 0.7 which is obtained after trial
and error basis, If the IoU value is greater than 0.7, the object detection classified results
are considered true positive (TP). If the IoU value is less than 0.7, a false positive (FP)
is considered. False negative (FN) for object detection means that the predicting results
should have been positive, but the models detected the object incorrectly.

The IoU output is a popular technical indicator for evaluating the performance of
object detection models. The definitions of PPV, sensitivity, and IoU are given in Equations
from (4) to (6), respectively. PPV denotes the ability to recognize patterns in negative
datasets. The ability of models to distinguish a negative dataset improves as the PPV
score increases. Sensitivity represents the ability to recognize positive datasets. When the
sensitivity score is higher, the ability of models to account for positive datasets improves.

Precision =
TP

(TP + FP)
(4)

Sensitivity =
TP

(TP + FN)
(5)

IoU =
OverlappingArea(violet)

Groundtruth(pink) + overlappingarea(violet) + modelpredicted(blue)
=

TP
TP + FP + FN

(6)

4.2. Comparison of Rice Grade Model Results Using Various Backbone Architectures

This section specifies the results of the rice grade model for rice disease quantification.
Figures 7–10 represents the positive predictive value and sensitivity values for VGG16,
ResNet101, MobileNet, and EfficientNet-B0 backbone architectures, respectively. It is
observed that rice grade model with EfficientNet-B0 backbone architecture outperforms
VGG16, ResNet101, and MobileNet backbone architectures. The X-axis represents the PPV
and sensitivity values and Y axis represents the metrics used for assessment.

4.2.1. Statistical Indicators of Rice Grade with VGG16 as a Backbone

Figure 7 indicates a healthy class, and that blast disease can be classified more accu-
rately as compared to brown spot and blight classes using VGG16 backbone model. The
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PPV and sensitivity values for all the classes ranges from 0.76 to 0.9 which can be improved.
Hence VGG16 is not chosen as backbone architecture for rice grade.

Figure 7. PPV, sensitivity, and DSC of proposed model using VGG16 backbone architecture.

4.2.2. Statistical Indicators of Rice Grade with ResNet101 as a Backbone

Figure 8 represents the evaluation parameters of rice grade with ResNet101 as a
backbone framework. The performance has slightly improved as it classifies brown spot
disease class in more definite way when compared with VGG16 architecture. However, the
performance is still not up to the mark.

Figure 8. PPV, sensitivity, and DSC of proposed model using ResNet101 backbone architecture.

4.2.3. Statistical Indicators of Rice Grade with MobileNet as a Backbone

Figure 9 represents the evaluation parameters of rice grade with MobileNet as a
backbone framework. The results demonstrated by the model are better as compared to
earlier backbone architectures.
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Figure 9. PPV, sensitivity, and DSC of proposed model using MobileNet backbone architecture.

4.2.4. Statistical indicators of rice grade with EfficientNet-B0 as a backbone.

Figure 10 represents the evaluation parameters of rice grade with EfficcientNet as a
backbone framework. EfficcientNet architecture outperforms other backbone architectures
as DSC score for all the classes are highest of all. Hence, EfficientNet-B0 becomes the
optimal choice for proposed rice grade model.

Figure 10. PPV, sensitivity, and DSC of proposed model using EfficientNet-B0 backbone architecture.

4.2.5. Average Precision Parameter Comparison of Rice Grade with Various Backbone
Architectures and Different Threshold Values

Table 5 shows the average precision values for two criteria, which is 0.7 and 0.8
for VGG16, ResNet101, MobileNet, and EfficientNet-B0. It can be concluded that when
IoU value is 0.7 the model gives best performance in detecting rice disease severity with
EfficientNet-B0 as backbone.

Table 5. Average precision parameter comparison of rice grade with various backbone architectures.

Backbone Architecture Average Precision (>0.7) Average Precision (>0.8)

VGG16 0.67 0.71
ResNet101 0.81 0.84

MobileNetV1 0.88 0.90
EfficientNet-B0 0.89 0.92
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4.2.6. Training Time and Inference Time of Rice Grade with Various Backbone Architecture

Table 6 shows the training time (TT) in minutes and the inference time (IT) in mil-
liseconds [52]. Table 6 shows that EfficientNet-B0 is the quickest training and inference
time. The average per picture inference time in milliseconds over ten runs for all backbone
models considered is listed in the table for batch size equal to one on Tesla k80. According
to Table 6, when the batch size is one, all backbone models can achieve excellent real-time
performance on the Tesla k80. EfficientNet-B0 is computationally simpler and thus takes up
less computing space. As a result, in terms of training and inference speeds, EfficientNet-B0
outperforms the other architectures. VGG16, on the other hand, is by far the most expensive
architecture investigated for this experiment, both in terms of processing requirements
and the number of parameters tested. Increasing the number of layers and parameters,
on the other hand, had no effect in this scenario because the model’s complexity began
to outweigh the accuracy gains. As a result, accuracy began to saturate at a certain point.
Overall, comparing the computational speeds and model accuracy, it appears that there is
no linear relationship between the model computational speeds and model accuracy for
this experiment. MobileNet, for example, has a longer inference and training time than
EfficientNet-B0, but their accuracy is very close. As a result, EfficientNet-B0 is the best
choice for grading the severity of rice diseases.

Table 6. Training time and inference time with different backbone architectures.

Backbone Architecture Training Time Inference Time

VGG16 738.21 847
ResNet101 639.36 723

MobileNetV1 529.11 701
EfficientNet-B0 522.22 693

Figure 11 represents the final result produced by the rice grade model. In Figure 11, the
leaf image is of rice blast. The predicted boundary boxes of the leaf instance is represented
by red color and disease instances boundary boxes is represented by pink color. The pixel
area of red bounding box and pink bounding box is calculated and the ratio of pink to
red area is taken to calculate the severity grade level of the rice blast disease. Finally, the
percentage is mapped to Table 4 and as per the percentage the model outputs that the leaf
is affected with rice blast disease with grade 1 (low) severity level.

Figure 11. Rice grade model: original image, classification, and boundary box from FRCNN, compu-
tations, and result.

Table 7 shows the comparison of rice grade with the state-of-the-art crop disease
severity estimation techniques.
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Table 7. Comparison of rice grade with the state-of-the-art crop disease severity estimation tech-
niques.

Reference Crop/Fruit Affected with
Disease Input Dataset Methodology

Used
Model Evaluation

Parameters

[6] Apple Black rot Plant village VGG16 Accuracy = 90.4%

[53] Maize
Blight

Gray Spot
and Rust

Plant village
Otsu

segmentation
and fuzzy

logic

Severity levels: Low,
Moderate and High

[13] Maize Northern Leaf
Blight

Unmanned Aerial
Vehicle acquired

images

Cascaded Mask
Region CNN

Disease Severity
Correlation = 73%

[54] Soybean
Soybean
mosaic

virus disease

Own dataset of
hyperspectral

images

CNN-SVM
combined model

Accuracy = 94.17%

[55] Dragon fruit Quality of fruit Own dataset ANN, CNN, SVM
Quality levels: High,

Low, Moderate
and Infected

Proposed rice
grade model Rice Brownspot, Rice

blight,Blast

Images (real time
images collected
from rice farm as

well as images
from publicly

available datasets)

Updated Faster
RCNN with

EfficientNet-B0 as
backbone

Precision = 0.97,
Sensitivity = 0.96,

Dice Similarity
Coefficient = 0.96,

MAP = 0.92,
Accuracy = 96.43

4.2.7. Limitations of the Work

1. Need of database expansion: The size of the dataset has a significant impact on the
deep learning model’s performance. The suggested model training is strongly reliant
on images that have undergone numerous post-processing processes. One of the
challenges of this project is the restricted number of images available. As a result,
database expansion is required to achieve greater accuracy.

2. Data annotation: The image annotation task is predominant in artificial intelligence
models for estimating rice disease severity. The annotations of the image are entirely
subject to the annotator’s expertise in identifying rice diseases.

5. Conclusions and Future Work

It is crucial to deploy a real-time rice disease severity estimation system to increase
crop productivity. Therefore, a severity estimation system is proposed to identify the
type and quantity of the infection on the leaves. This system has a unique feature that
simultaneously detects and segments rice infections using images. This feature makes the
proposed rice grade model more suitable for an automated, integrated management system
for rice crops. The proposed model outperforms the existing severity quantification systems
for crops in the literature. The experimental results reveal that the proposed model achieves
a superior result in recognizing the three disease classes of rice disease and one healthy
class, identifying blight with sensitivity score of 97%, blast with that of 97%, and brown spot
with that of 95%. Further, the disease severity level was quantified by taking the ratio of leaf
area and the affected areas. This study also proves that the architecture could improve the
speed and increase the accuracy of real-time disease level estimation. The effectiveness of
the rice grade model is represented by comparing it with other available CNN architectures
in the literature for object detection. In comparison to the other architectures, the rice grade
model trained with the feature extractor Resnet-101 achieved the highest mean average
precision. Using an Adam optimizer to train obtained the most significant identification
results, gaining 92% of mAP. The overall accuracy achieved is 96.43%. This accuracy is
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achieved using paradigms such as transfer learning and deep learning techniques for object
detection and localization. Thus, the rice grade severity quantification model described in
this work can grade the severity of the infection on rice with high accuracy. The system can
handle the real-time rice diseases image dataset collected in heterogeneous backgrounds
corresponding to diseases. It can be concluded that the proposed method is new because
the quantification based on the leaf instances and the diseased area is calculated. The
successful severity estimation of rice diseases by artificial intelligence techniques would
lead to the appropriate application of pesticides and fungicides. The following are some
future recommendations for the scientific community:

• The data samples collected are limited as far as different environmental conditions are
considered. The requirement of deep learning techniques is a large number of data
samples. So, the few shot learning approach is recommended, which works on very
few data samples and achieves better accuracy.

• The accuracy can be improved using techniques, such as removing features, cross-
validation, early stopping, ensembling, regularization, etc., which can prevent overfitting.

• Agricultural experts must be involved in annotating rice leaf instances and disease
instances. So, creating publicly available annotated datasets is recommended to help
agricultural researchers enhance their research in this field.

• It can be further helpful for agricultural robot systems that quantify the crop disease
severity level in real-time, contributing to precision agriculture.
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