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Abstract: To improve the automation, welding efficiency, and welding quality of duckbill welding of
the cotton seeder, this study designed a cotton seeder duckbill welding robot. According to the char-
acteristics of the duckbill weldment and welding requirements, the overall structure of the welding
robot was determined, including the girdle feeding mechanism, static duckbill feeding mechanism,
hinge feeding mechanism, welding fixture, welding actuator, and control system. To realize the
continuous automatic feeding, positioning, fixing, welding, and unloading of the workpiece in the
duckbill welding, the feeding mechanism adopts the method of cooperative cooperation of inductive
proximity switch, electromagnet, and cylinder. The main body of the welding fixture adopts the
pneumatic clamping method; the welding actuator adopts the synchronous belt module electric drive
so that the welding torch can move in a straight line along the X axis and the Z axis. The welding
process of the duckbill was simulated by Simufact Welding software, and the deformation and stress
changes of the weldment were compared and analyzed when the single-sided single welding, the
bilateral symmetrical double welding torch, two welding forms, and two welding process parameters
were used to determine the welding process parameters of the welding robot. The prototype was
made and the welding test was carried out. The test results show that the duckbill welding robot of
the cotton seeder has stable feeding, solid clamping, accurate positioning, and high welding efficiency.
According to the national standard, the appearance of the duckbill weld is inspected. The surface of
the duckbill weld and the heat-affected zone has no cracks, incomplete fusion, slag inclusion, crater,
and porosity. The forming quality of the welded parts is good. The design of the duckbill welding
robot for cotton seeder is helpful in solving the problems of cumbersome positioning and clamping
and low efficiency in manual and semi-automatic duckbill welding robots, which provides a strong
guarantee for the large-scale and standardized welding production of the dibbler duckbill.

Keywords: cotton seeder; duckbill; Simufact Welding; welding robot; automated welding

1. Introduction

The plastic mulching technique is one of the most widely used and effective technical
measures to improve soil water storage capacity and plant water use efficiency [1,2]. At
present, cotton sowing in Xinjiang is based on the method of sowing on film, which is
carried out on the soil covered with the film [3,4]. The duckbilled dibbler is used for sowing
on film in Xinjiang. The duckbill of the dibbler will cut the film at the sowing position
and form holes in the soil. The welding quality of the duckbill of the dibbler is the key to
affecting the quality of the hole and the speed of operation [5].

The number of welded duckbills in Xinjiang is about millions every year. Before 2017,
the welding method of cotton planter duckbill was manual welding. Welding workers
manually position, fix, and weld the three parts of the duckbill, static duckbill, hinge,
and girdle. Manual welding has the following problems: unstable welding quality, low
efficiency, high labor intensity, and low degree of automation. In 2017, we developed a semi-
automatic duckbill welding robot. This semi-automatic welding robot needs to be loaded,
positioned, fixed, and unloaded manually, and the welding operation is completed by the
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robot. The welding robot improves the welding efficiency of the duckbill. The purpose
of this study is to further improve duckbill welding automation, welding efficiency, and
welding quality, as well as reduce the labor intensity of welding duckbills.

There are many ways to improve welding efficiency and welding quality. For example,
on the one hand, some research can be conducted on harmonic drive transmission [6–8].
This method can improve the welding quality by improving the positioning accuracy of
the welding robot manipulator. On the other hand, according to the characteristics of the
welding object and the welding requirements, a special welding robot can be designed
to replace manual welding [9–13]. For example, Süleyman ERSÖZ et al. [14] proposed
a robot system that can automatically complete measurement and welding operations
for products that are difficult to manually complete standard measurement or welding
operations. Namkug Ku et al. [15] designed a self-driving mobile welding robot for double-
hull structures in shipbuilding. Stephen Mulligan et al. [16] developed and demonstrated an
autonomous, mobile welding robot capable of fabricating large-scale customized structures.
Jiang Yi et al. [17] designed a series-parallel-series hybrid structure mobile welding robot
for welding corrugated plates of liquefied natural gas (LNG) membrane tanks. At present,
there is little research on the application of special welding robots in the field of duckbill
welding of the cotton planters.

Different from the traditional plane welding operation, the weld of the duckbill part
is a fillet weld. Its processing technology is complex, the welding workload is large, and
the weld is prone to defects [18]. The traditional welding process relies on experience
to determine the amount of deformation, the reasonable welding method, and welding
process parameters, which rely on experience and cannot fully and quantitatively grasp
the law of welding deformation. With the development of finite element technology, the
welding simulation is fully applied to the actual production and used to guide the process
design and gradually became an effective means to provide technical support for the control
of process measures in the welding robot manufacturing process [19–22].

To design a duckbill welding robot to improve the welding quality, stability, and
welding efficiency of the duckbill parts of the cotton seeder, this study first analyzes the
characteristics of the duckbill parts and then uses Simufact Welding software to simulate
and analyze the duckbill welding process, which effectively provides technical support
for the welding deformation control process measures of the duckbill welding robot in
the manufacturing process. Finally, a cotton seeder duckbill welding robot is designed,
and the reliability of the welding robot is verified by the welding test. The research results
provide ideas for further improving the quick automatic feeding, clamping, positioning,
and welding of the duckbill of the dibbler, as well as provide basic and technical support
for the automatic welding of the duckbill of the dibbler.

2. Welding Object Characteristics
2.1. Assembly Structure of Duckbill Welding Parts

The assembly relationship diagram of duckbill welding parts is shown in Figure 1.
The dibbler is one of the key components of the cotton mulching seeder, which is used to
complete the seeding process. Sowing quality has a significant impact on crop growth and
yield [23,24]. The duckbill part cuts the film at the seeding position during the seeding
operation and forms holes in the soil. The duckbill is welded by three parts: the static
duckbill, hinge, and girdle. The welding quality has a very important influence on the
hole-forming effect of the dibbler and the seed falling position.
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Figure 1. The assembly relationship diagram of duckbill welding parts.

2.2. Material Properties of Duckbill Welding Parts

As shown in Figure 2, the duckbill of a cotton seeder is composed of a girdle, static
duckbill, and hinge, and its structural parameters are shown in Table 1. The material
of duckbill parts is Q235, which is an ordinary carbon structural steel. The chemical
composition and mechanical properties are shown in Table 2. Q235 has low carbon and
alloy element content and excellent welding performance. Generally, special process
measures, such as preheating and post-weld heat treatment, are not required during
welding. However, when the incorrect welding form is adopted, the appearance of the
weld will also appear poor, forming cracks.
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Table 1. Structural parameters of duckbill welding parts.

Parts Length (mm) Width (mm) Thickness (mm) Height (mm) Mass (g)

Girdle 78.12 68.30 2.11 5.90 73.046
Static duck bill 34.09 27.52 2.57 74.97 77.747

Hinge 69.02 36.11 2.08 7.97 39.281

Table 2. Material properties of Q235.

C (Mass Fraction)/% Mn Si S P

0.14~0.19 0.30~0.65 0.30 ≤0.050 ≤0.045
Tensile strength (MPa) Yield point (MPa) Elongation (%)

375~500 235 26
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2.3. Weld and Welding Requirements Analysis

As shown in Figure 3, the weld of the duckbill welding part is two fillet welds, which
are: weld 1 formed by the static duckbill and the hinge and girdle, and weld 2 formed on
another back symmetrical surface.
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An inappropriate welding process will increase the deformation of duckbill welding,
resulting in the following problems: (1) the girdle and seeding wheel being difficult to
assemble; (2) the following performance being affected; and (3) the quality of the hole being
unstable. Duckbill parts in the process of sowing operation need to film soil punching and
work under great pressure. The duckbill parts of the welding quality requirements are very
high, including the ability to weld duckbill weld surface without cracks, crater shrinkage,
and welding tumor defects.

3. Simulation and Analysis of the Welding Process

Welding deformation is the most important factor affecting welding quality. Welding
deformation will lead to a manufacturing delay, economic cost, and reduced productivity.
Excessive deformation may seriously damage manufacturing in extreme cases, leading to
failure [25]. At the same time, high welding residual stresses in the weld can adversely
affect the safety and performance of welded components [26,27]. In this study, Simufact
Welding software is used to simulate the welding process of duckbill welding parts, and the
influence of deformation and the stress of weldments under a single-sided single welding
torch and bilateral symmetrical double welding torch, two welding forms, and two welding
process parameters, is analyzed.

3.1. Heat Source Model

In welding simulation, a reasonable heat source model is very important for the
accurate calculation of post-weld deformation and welding stress [28]. To realize the
simulation calculation, the commonly used heat source models are the classical Gaussian
distribution heat source model and the double ellipsoid heat source model [29,30]. The
Gaussian model can obtain better calculation accuracy for planar high-energy beam welds
in simulation calculations. The double ellipsoid heat source model is more close to the
actual welding situation of a fillet weld, so this study chooses the double ellipsoid heat
source model for calculation.

The heat flux density expression of the front part of the double ellipsoid heat source is:

q f (x, y, z) =
6
√

3 ftq0

abc f π
√

π
exp(−3x2

c2
f
− 3y2

a2 −
3z2

b2 ). (1)
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The heat flux distribution expression of the second half of the double ellipsoid heat
source is:

qb(x, y, z) =
6
√

3 ftq0

abcbπ
√

π
exp(−3x2

c2
b
− 3y2

a2 −
3z2

b2 ). (2)

In the formula: a, b, cf, and cb are oval shape parameters of the heat source; q0 is the
heat input power, and q0 = ηUI; and ff, fb are the heat flux distribution coefficients of the
ellipsoid before and after the heat source, ff + fb = 2.

3.2. Establishment of Welding Model

The solid model of duckbill welded parts was established by SolidWorks, and then
the model was imported into Hypermesh for hexahedral meshing. The number of finite
element mesh nodes was 37,394, and the number of finite elements was 27,997. The divided
model was imported into Simufact Welding for assembly and configuration, as shown in
Figure 4. In this study, the weldment material is Q235, and the energy input per unit length
of the weld (line energy) is calculated according to Equation (3).

Q = η
IU
v

(3)
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In the formula: Q is the line energy; I is the welding current; U is the welding voltage;
v is the welding speed; and η is the welding thermal efficiency. As the weld of duckbill
weldment is fillet weld, the welding heat is relatively concentrated. In this study, the
welding thermal efficiency is taken as 0.8 in the simulation process [31].

3.3. Welding Simulation Results and Analysis
3.3.1. Effect of the Unilateral Single Welding Torch and Bilateral Symmetrical Double
Welding Torch on Welding Deformation and Stress

Figure 5 shows the deformation of the duckbill welding parts under the single welding
torch and the bilateral symmetrical double welding torch. By comparing and analyzing
their total displacement cloud diagrams, the following conclusions were obtained: The area
of deformation was larger under the condition of the single welding torch. This is because
the two sides of the workpiece are uniformly heated and uniformly contracted at the same
time by using the bilateral symmetrical double welding torch to reduce the distribution of
welding deformation. The maximum displacement difference under the two conditions is
0.09 mm.
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Figure 6 shows the equivalent stress diagram under the condition of the single welding
torch and the bilateral symmetrical double welding torch. It can be seen from the figure
that under the two conditions, the equivalent stress decreases rapidly from the center of
the weld generation area, and then tends to be gentle until it is close to zero. A large stress
is generated in the weld zone, which is one of the main reasons for the deformation of the
static duckbill. After welding, the weldment is cooling, and the volume shrinkage around
the weld is caused by the decrease in temperature. However, the weldment is constrained
to prevent its shrinkage, so large tensile stress is generated in the weld area. Under both
conditions, the maximum stress difference produced by the duckbill component is 7.28 MPa,
but welding a duckbill component with a single torch takes more time than with a bilateral
symmetrical double torch. Therefore, this study finally chose the welding method of the
bilateral symmetrical double welding torch.
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3.3.2. Effect of Welding Form on Welding Deformation and Stress

Figure 7, respectively, shows the use of continuous welding and spot welding under
the two forms of total displacement cloud. From Figure 7, it can be seen that the displace-
ment areas of the two were mainly distributed at the top of the static duckbill, and the
deformation of the rest was relatively small. This is because the deformation of the fixed
part is smaller than that of the free part. The position and deformation of the fixed part
will be greatly limited under the action of the clamping device, so the thermal deformation
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is reduced during the welding cycle. The maximum displacement of continuous welding
is 0.98 mm, and that of spot welding is 0.26 mm. This is because in the weld, continuous
welding, compared to spot welding, outputs greater thermal energy.
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Figure 8 is the equivalent stress diagram of continuous welding and spot welding. It
can be seen from Figure 8 that the stress distribution of spot welding is smaller than that
of continuous welding, and the difference in their maximum stress value is 121.89 MPa.
Their stress distribution is similar, the stress distribution appears to diffuse from the weld
to the distance and then weaken, but it is obvious that the stress distribution of continuous
welding is wider and wider. This study finally chose the welding form of spot welding.
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Figure 8. Equivalent stress diagram under continuous welding and spot welding. (a) Continuous
welding; (b) spot welding.

3.3.3. Effect of Welding Process Parameters on Welding Deformation and Stress

Figure 9 is the total displacement diagram of the duckbill welded parts when the
welding speed is 4 mm/s and 10 mm/s. It can be seen from the figure that the total
displacement difference between the two welding speeds is 0.13 mm, but at the welding
speed of 4 mm/s, the deformation area is relatively larger. This is because the deposition
amount of the wire metal on the unit-length weld is inversely proportional to the welding
speed, and the melting width is inversely proportional to the square of the welding speed.
Therefore, when the welding speed increases, the energy decreases, the penetration depth
and width decrease, and the deformation area is relatively reduced.
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Figure 10 is the equivalent stress diagram under the two welding speeds of 4mm/s
and 10 mm/s. As can be seen from the figure: 4 mm/s welding speed under the maximum
equivalent stress is larger and the equivalent stress of a wider range of areas. Welding
speed is directly related to the size of the welding productivity, and to obtain the maximum
welding speed, should be on the premise of quality assurance as far as possible, according
to the specific circumstances of the appropriate adjustment of welding speed, to ensure
that the weld height and width are the same. In this study, the welding speed is finally
selected as 10 mm/s.
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4. Design of Duckbill Welding Robot for Cotton Seeder
4.1. Structure Composition and Working Principle

The duckbill welding robot of the cotton planter is mainly composed of a girdle
feeding mechanism, static duckbill feeding mechanism, hinge feeding mechanism, support
table, welding fixture, welding actuator, and control system, as shown in Figure 11.

Working process: Firstly, the girdle feeding mechanism completes the girdle feeding,
and then the hinge and the static duckbill feeding structure completes the feeding work
in turn. After the three welding parts of the girdle, the hinge, and the static duckbill are
all loaded, the workpiece enters the position to be welded, the clamping cylinder works
to clamp the workpiece, and the welding actuator moves and performs welding. After
the welding is completed, the welding platform is opened, and the weldment falls to
the ground.
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Figure 11. Structure diagram of duckbill welding robot for cotton seeder. 1. Girdle feeding mech-
anism; 2. static duckbill feeding mechanism; 3. hinge feeding mechanism; 4. support platform;
5. welding fixture; 6. welding actuator.

4.2. Design of Girdle Feeding Mechanism

According to the analysis of the assembly requirements of the duckbill parts, the
feeding mechanism needs to meet the following requirements: (1) the hinge and the girdle
should be vertical; (2) the static duckbill and the hinge are symmetrically distributed in
the transverse center when they are matched with the girdle; (3) the static duckbill should
avoid shielding girdle under the mouth. According to the above assembly requirements
and the structural parameters of duckbill welding parts, the feeding structure is designed.
The feeding mechanism realizes the sequential feeding action of welded parts through the
cooperation of an inductive proximity switch, electromagnet, and cylinder.

The structure size of the girdle feeding mechanism is 800 mm × 68 mm × 22 mm. It
adopts a modular design and is installed on the support platform through the aluminum
profile pillar. The working process is as follows: When the inductive proximity switch
detects that there is a girdle in the storage chute, the electromagnet is energized and absorbs
the second girdle, and the cylinder shrinks. The first girdle falls freely to the girdle waiting
area due to gravity, and finally, the mini cylinder pushes the girdle into the welding area.
The girdle feeding mechanism is shown in Figure 12.
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4.3. Design of Static Duckbill and Hinge Feeding Mechanism

To save space, the static duckbill feeding mechanism and the hinge feeding mechanism
adopt an integrated design, and the assembly relationship of the parts is shown in Figure 13.
The static duckbill and the hinge feeding mechanism are equipped with fixed plates to fix
inductive proximity switches, electromagnets, and cylinders.
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The width of the storage chute of the hinge feeding mechanism is bent according to
the dimensions of the hinge, and the bending angle is 90◦. To ensure that the hinge is
perpendicular to the girdle during blanking, the lower end of the storage chute adopts a
circular arc design, and its arc inner diameter is 100 mm. To prevent the hinge from sliding
out of the arc guide rail when feeding, the guide bars are symmetrically distributed on both
sides to guide and limit displacement. The verticality of the hinge is ensured by limiting
the outer side of the guide bar and the arc guide rail. The guide bar is shown in the partially
enlarged section view in Figure 13.

The main component of the static duckbill feeding mechanism is an arc feeding plate,
and the arc feeding plate is connected with the hinge storage chute through a connecting
plate. When the static duckbill is feeding, the contact with the feeding plate is strip contact,
and the contact area is small, which greatly reduces the friction when sliding. When
sliding, the static duckbill slides along the outer edge of the arc feeding plate. To prevent
it from sliding out directly at the outer arc position, a block cover is placed at the lug of
the hinge storage chute. The feeding accuracy of the static duckbill will directly affect the
welding quality. Therefore, there are multiple through holes on the arc feeding plate and
the connection plate, respectively, and the porous coordination ensures structural stability.
The static duckbill and hinge feeding mechanism structure diagram is shown in Figure 13.

4.4. Design of Welding Fixture

As shown in Figure 14, the welding fixture is mainly composed of three parts: girdle
clamping mechanism, hinge clamping mechanism, and static duckbill clamping mechanism.
The girdle clamping device is positioned by a limit block and clamped by a girdle pusher.
The girdle first slides down from the girdle storage chute to the girdle waiting area, and
the girdle push plate sticks out. According to the four-point positioning principle, the
transverse and longitudinal positioning and clamping of the girdle are completed.
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Figure 14. Structure diagram of welding fixture. 1. Limit block; 2. limit block; 3. limit block;
4. welding workbench; 5. static duckbill clamping device; 6. girdle push plate; 7. static duckbill;
8. hinge; 9. hinge clamping device; 10. girdle; 11. limit block.

The hinge clamping mechanism is composed of a guide bar and a hinge push plate.
The guide bar is close to the side wall of the storage chute, symmetrically distributed on
both sides, and plays a guiding and limiting role to the hinge. The guide bar is shown
in the partially enlarged section of Figure 13. After the hinge is loaded onto the welding
platform, the hinge is pushed out to complete the positioning of the hinge.

The static duckbill clamping mechanism is mainly composed of a cylinder and clamp
push plate. The arc feeding plate supports and guides the static duckbill. After the static
duckbill slides down to the welding workbench, the clamp push plate is pushed out to
complete the horizontal and vertical positioning of the static duckbill.

The bottom of the welding workbench is composed of two welding bottom plates and
two cylinders. The welding workbench can open and close under the action of the cylinder.

4.5. Welding Actuator

The schematic diagram of the welding actuator is shown in Figure 15. The welding
actuator can move back and forth in a straight line along the X axis and Z axis. The stroke
in the X axis direction is 100~150 mm, and the stroke in the Z axis direction is 150~200 mm.
The double welding torch is symmetrically distributed on the welding torch bracket of the
X axis linear slider. The movement of the X axis and Z axis is completed by the stepper
motor electric drive synchronous belt module, and the movement speed is controlled by
Siemens S7-1200PLC and the stepper motor driver. The Z axis selection has a brake stepper
motor, which is locked when power fails, to prevent sliding.
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4.6. Control System Design

The cotton seeder duckbill welding robot controller is the Siemens S7-1200PLC. The
communication between PLC and human–machine interaction (HMI) is Ethernet. PLC
realizes manual and automatic control of the girdle, static duckbill, and hinge feeding
operation. It also controls welding parameters, fixtures, welding actuators, and welding
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platforms. HMI enables manual and automatic program switching of welding robots and
monitors the working conditions of welding robots to ensure the safe and smooth operation
of welding operations. The control system flow chart is shown in Figure 16.
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5. Results and Discussion
5.1. Cotton Seeder Duckbill Welding Robot Test Results and Analysis

The welding wire used in the welding test is a 1.2 mm diameter solid wire (JQ·MG50-6;
Tianjin Golden Bridge Welding Materials Group Co., Ltd., Tianjin, China), the protective
gas is a mixture of CO2 and argon gas, and the cotton planter duckbill welding robot was
tested. The welding process parameters used in the test are shown in Table 3. The cotton
seeder duckbill welding robot is shown in Figure 17.

Table 3. Welding process parameters.

Welding Current
(A)

Welding Voltage
(V)

Welding Speed
(mm s)

38 26 10
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The cotton seeder duckbill welding robot factory test photo is shown in Figure 18. The
Human Machine Interface (HMI) of the cotton seeder duckbill welding robot is shown
in Figure 19. According to the national standard DL/T 868-2004 welding procedure
qualification procedure [32], the appearance of the weld after duck beak welding is analyzed.
It can be seen from Figure 20 that there are no defects such as unmelted, porosity, and
undercutting on the weld surface, and the welding quality is good. After testing, the
welding efficiency of the cotton seeder duckbill welding robot is 6–7 times faster than that
of the manual, and 600–800 duckbills can be welded per hour. The weld is well-formed.
The welding pass rate is 85%, which can meet the needs of practical engineering. The
development of the cotton seeder duckbill welding robot will greatly improve the welding
efficiency of the duckbill parts and promote the large-scale and standardized production of
the duckbill of the cotton seeder. The forming of welding parts is shown in Figure 20. The
cotton seeder duckbill welding robot performance comparison is shown in Table 4.
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Table 4. The cotton seeder duckbill welding robot performance comparison.

Assessment Indicators
Welding Method Welding Duckbill Efficiency

(Piece/h)
Welding Qualification Rate

Manual welding 100–130 99%
Semi-automatic duckbill welding equipment 200–300 100%

Cotton seeder duckbill welding robot 600–800 85%

5.2. Discussion

In this paper, a duckbill welding robot for cotton seeder is designed, including the
mechanical structure and control system of the welding robot. The efficiency of a cotton
seeder duckbill welding robot was greatly improved compared with manual work and semi-
automatic welding robots, but there is still unqualified welding in the duckbill welding test.
The main reason for this phenomenon is that there are some errors in the manufacturing
and assembly of the parts of the duckbill welding robot for the cotton seeder. Mechanical
vibration will occur during the operation, which will affect the accuracy of welding parts
and the accuracy of welding gun welding. In the follow-up study, improving the welding
robot parts manufacturing and assembly accuracy, and further optimizing the structure,
will improve the welding robot welding qualification rate.

6. Conclusions

In this study, the characteristics of the duckbill parts were analyzed first, and then the
welding process of the duckbill parts was simulated by Simufact Welding software. The
whole process of welding was observed intuitively. At the same time, the deformation and
stress changes of the weldment were compared and analyzed when the unilateral single
welding torch and the bilateral symmetrical double welding torch, two welding forms, and
two welding process parameters, were used. On this basis, a kind of cotton seeder duckbill
welding robot was designed, and the welding test was carried out. The results show that
the cotton seeder duckbill welding robot has high welding efficiency and good forming
quality of welded parts. The design of the cotton seeder duckbill welding robot greatly
improves the welding efficiency of the duckbill, which helps to solve the problems of low
welding efficiency and unstable welding quality in manual welding and semi-automatic
welding robots, and provides a strong guarantee for large-scale and standardized welding
production of the duckbill.
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