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Abstract: Mandarin peels (MPs), a food-processing residue, have several restrictions on their disposal
and can cause serious environmental pollution. In this study, MP was used to fabricate a functional
bioelastomer with antioxidant and antibacterial activities. Bioactive compounds were recovered from
MPs in liquid form and added to the bioelastomer during fabrication to maintain the mechanical
strength of the bioelastomer. The radical scavenging activities of the fabricated bioelastomer (B–MPE
15%) were 3.3% for DPPH and 20.8% for ABTS, respectively. In addition, B–MPE 15% exhibited
antibacterial activity against gram-positive (Staphylococcus aureus), gram-negative (Escherichia coli),
and antibiotic-resistant bacteria (Methicillin-resistant S. aureus and Vancomycin resistant Enterococcus).
The chemical properties of B–MPE 15% were not significantly different from those of the control
group (bare PDMS). Tensile strength, elongation at break, and water vapor transmission rate of
B–MPE 15% were found to be 5.1 N/mm2, 649%, and 33.3 g/(m2 day), respectively. Therefore,
the addition of MP extracts did not significantly affect the physical properties. The fabricated
bioelastomer with antibacterial and antioxidant activities is expected to be utilized in the food
packaging, pharmaceutical, and medical industries. Our research is expected to represent a future-
oriented strategy for realizing carbon neutrality by upcycling food waste.

Keywords: bioelastomer; mandarin peel; flavanone; antioxidant; antibacterial

1. Introduction

Mandarin is one of the most popular fruits because of its sweet taste and ease of
consumption, as well as its antioxidant, anticancer, antibacterial, and anti-adipogenic prop-
erties [1,2]. An estimated 630,000 tons of mandarins were produced in Korea [3], and it
has been reported that approximately 50,000 tons of mandarin-processing residues are
generated annually [4]. However, only 30% of the mandarin residues are used as medicinal
herbs. While the remaining 70% used to be disposed of into the ocean [5], Korea has strictly
forbidden this disposal method for food wastes since 2013 in accordance with the 1996
Protocol of the London Convention [6], as it leads to disruption of the marine food chain
and loss of marine biodiversity [7]. Food waste is typically disposed of through landfilling,
incineration, and composting [8]. However, in Korea, direct landfilling of food waste has

Agriculture 2023, 13, 161. https://doi.org/10.3390/agriculture13010161 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13010161
https://doi.org/10.3390/agriculture13010161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-6100-9434
https://orcid.org/0000-0001-6701-6654
https://doi.org/10.3390/agriculture13010161
https://www.mdpi.com/journal/agriculture
http://www.mdpi.com/2077-0472/13/1/161?type=check_update&version=2


Agriculture 2023, 13, 161 2 of 14

been prohibited, by law, since 2005 to alleviate the shortage of landfills, protect ground-
water and soil, and promote the conversion of food waste into value-added materials [9].
Meanwhile, incineration of food waste with a high moisture content can generate dioxins
during combustion with other low-humidity wastes [10]. During composting, nitrate- and
phosphorus-contacting leachates and greenhouse gases (GHGs) get generated, causing
eutrophication and global warming, respectively [11]. As a result, various developed coun-
tries other than Korea, including the USA, EU, Japan, and China, are also suffering from
social and environmental issues related to the disposal of food waste [12,13]. Therefore, it
is necessary to propose a sustainable food-waste management plan that not only prevents
environmental pollution but also converts food waste into value-added materials.

Traditionally, value-added materials, such as fuels and chemicals, have been produced
in petroleum refineries [14]. However, these refineries are considered the main contributors
to GHG emissions because they release carbon that was buried in the ground into the atmo-
sphere. The CO2 emissions from this sector alone were estimated to be 1079 million tons in
2015 [15]. Many countries around the world are seriously concerned about environmental
pollution caused by these GHG emissions, so they participated in the UN Framework
Convention on Climate Change (UNFCCC) and adopted the Kyoto Protocol (1997), the
Lima Call for Climate Action (2014), the Paris Agreement (2015), etc. [16]. Consequently,
biorefineries, which utilize biomass as raw materials instead of petroleum-based materials,
have been attracting attention as a strategy to achieve net-zero CO2 emissions [17]. In
biorefineries, food waste is considered an ideal feedstock because it satisfies economic
feasibility, owing to its low transport and storage costs, year-round availability, and ease
of handling [18]. Mandarin peels (MPs), which account for approximately 7–11% of man-
darins generated during juice processing, are mostly discarded because they are considered
to have no economic value [19,20]. However, these residues contain cellulose, hemicel-
lulose, pectin, essential oil, and flavonoid, which have the potential to be converted into
value-added materials [21]. Although various studies have been carried out regarding the
production of biofuels, such as ethanol [22] and methane [23], energy-based products have
limitations that currently prevent them from completely replacing low-cost fossil fuels [24].
Therefore, in consideration of economic feasibility, it is necessary to produce bio-based
products with high market values [25], such as flavonoids [26] and essential oil [27].

The predominant flavonoids in MP are hesperidin and narirutin [28], which have an-
tioxidant [29], antibacterial [30], antidiabetic [31], and anti-inflammatory properties [32]. In
addition, bioactive compounds derived from natural sources are in increasing demand, as
alternatives to synthetic compounds, because of their safety and non-toxic effect on the hu-
man body [33]. Extraction techniques, including maceration, Soxhlet, microwave-assisted,
ultrasound-assisted, and enzyme-assisted extraction, have been used to extract bioactive
compounds from MP [34]. Among the various extraction methods, microwave-assisted
extraction (MAE) has the distinct advantages of short extraction times, high extraction
yields, and low solvent usage [35]. In addition, this technique is suitable for industrial-scale
application [36]. The recovered bioactive substances are mixed with various polymers
to fabricate bioelastomers that are used as functional materials in the food, pharmaceu-
tical, and medical industries [37]. Dordevic et al. [38] produced edible chitosan films for
food packaging using extracts of blueberries, red grapes, and parsley. Meanwhile, non-
biodegradable synthetic polymers, such as polyethylene glycol (PEG), polyvinyl alcohol
(PVA), polypropylene (PP), polyethylene (PE), and polydimethylsiloxane (PDMS), are
also widely used in bioelastomer fabrication because they have stronger physicochemical
properties than natural polymers [39].

Following these research trends, we previously fabricated a bioelastomer with an-
tioxidant and antibacterial activities [40]. In our previous study [40], PDMS, which has
higher flexibility, thermal stability, and biocompatibility, as well as lower toxicity than other
synthetic polymers [41], was used as the polymer. In addition, by-products of aronia juice
processing were used as the raw materials for natural bioactive compounds. However, the
direct use of by-products in powder form dramatically reduced the mechanical strength of
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the fabricated bioelastomer. These barriers accentuate the disadvantage of PDMS, which is
its relatively low mechanical strength due to its major structure composed of Si–O bonds,
unlike the C–C bonds constituting PVA, PP, and PE [42]. Therefore, it is necessary to design
a strategy for fabricating bioelastomers with antioxidant and antibacterial activities while
maintaining their mechanical strength.

In this study, a strategy for the sustainable utilization of food processing residue was
designed by fabricating a functional bioelastomer using bioactive compounds extracted
from MPs. First, a mixing ratio of extraction solvents suitable for recovering the flavonoids,
hesperidin and narirutin, from MP was selected. Microwave-assisted extraction was
utilized to recover hesperidin and narirutin from MP with high efficiency in a short time.
Furthermore, the effects of microwave power and irradiation time on flavonoid extraction
were investigated. The recovered bioactive compounds were used to fabricate functional
bioelastomers with antioxidant and antibacterial activities. Finally, the biological properties,
chemical structure, and mechanical strength of the fabricated bioelastomer were compared
with those of the control group. This study is the first attempt to produce a functional
material by mixing flavonoid extracts obtained from MP, a waste resource, with PDMS to
design a sustainable biorefinery.

2. Materials and Methods
2.1. Materials

Mandarin peels (MPs) were purchased from Cheongmyeongyagcho (Chungju-si,
Chungcheongbuk-do, Korea). The MPs were ground with a blender and sieved to a size
of 90 µm. Polydimethylsiloxane (PDMS; Elastosil E43) was obtained from Wacker (Mu-
nich, Germany). Hesperidin, narirutin, dimethyl sulfoxide (DMSO), 1,1-diphenyl-2-picryl-
hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and
potassium persulfate were purchased from Sigma-Aldrich (St. Louis, MO, USA). Methanol
(MeOH), phosphoric acid, acetonitrile, and heptane were purchased from Samchun Chemi-
cal (Seoul, Republic of Korea). All reagents used in this study were of analytical grades.

2.2. Preparation of Mandarin Peel Extracts

To select the most efficient extraction solvent, 1 g of MP was immersed in 10 mL of a
MeOH:DMSO solution mixed in different proportions (1:9, 3:7, 5:5, 7:3, and 9:1, v/v). MP,
then, was extracted in an incubator at 40 ◦C, with a shaking speed of 150 rpm, for 24 h. To
design the MAE process for maximum flavanone recovery from MP, MP was immersed
in the selected extraction solvent (1:10, w/w) and extracted at various microwave powers
(70, 210, 350, 490, and 630 W) and irradiation times (5, 10, 15, 20, and 30 s). Each extract
was centrifuged at 13,000 rpm for 10 min to separate the supernatant and, then, analyzed
and used for bioelastomer fabrication.

2.3. Fabrication of Bioelastomer

PDMS was poured into a square Petri dish (24.5 × 24.5 cm), and 20 mL of heptane
and mandarin peel extracts (MPEs) were recovered under the determined MAE conditions
were added and mixed uniformly. The bioelastomer manufacturing conditions are listed
in Table 1. The Petri dish was transferred to a vacuum oven and dried at 40 ◦C until the
moisture was completely removed.

Table 1. Detailed manufacturing conditions of bioelastomers.

Sample PDMS (g) MPE (g)

B–MPE 0% (control, PDMS) 50 0
B–MPE 1% (w/w) 49.5 0.5

B–MPE 3% 48.5 1.5
B–MPE 5% 47.5 2.5
B–MPE 7% 46.5 3.5

B–MPE 10% 45 5
B–MPE 15% 42.5 7.5
B–MPE 20% 40 10
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2.4. Antioxidant Activity of Bioelastomer
2.4.1. DPPH Radical Scavenging Activity

DPPH radical scavenging activity was determined using the DPPH assay with a
slight modification [43]. The DPPH stock solution was prepared by dissolving the DPPH
reagent in MeOH to a concentration of 0.5 mM. The DPPH working solution was prepared
by diluting the prepared DPPH stock solution with methanol until the absorbance at
517 nm reached 1.2. Each bioelastomer (size: 1 × 1 cm) was immersed in 1 mL of the DPPH
working solution and reacted at 25 ◦C for 30 min. The bioelastomer was then removed,
and the absorbance of the supernatant was measured at 517 nm using a spectrophotometer
(DU 730, Beckman Coulter, Brea, CA, USA). The blank was 1 mL of methanol, and the
control was 1 mL of DPPH working solution without bioelastomer added. All experiments
were performed in triplicate to obtain the standard deviations. Radical scavenging activity
was calculated using the following Equation (1):

Radical scavenging activity (%) = (1 − (ODsample/ODcontrol)) × 100 (1)

2.4.2. ABTS Radical Scavenging Activity

ABTS radical scavenging activity was measured using the ABTS assay with a slight
modification [44]. An ABTS stock solution was prepared by reacting 7 mM ABTS solution
and 2.45 mM potassium persulfate in a 1:1 ratio (v/v). ABTS working solution was prepared
by diluting the prepared ABTS stock solution with methanol until the absorbance at
734 nm reached 1.0. Each bioelastomer (size: 1 × 1 cm) was immersed in 1 mL of the ABTS
working solution and reacted at 25 ◦C for 30 min. The bioelastomer was then removed, and
the absorbance of the supernatant was measured at 734 nm using a spectrophotometer; the
blank was 1 mL of methanol, and the control was 1 mL of ABTS working solution without
bioelastomer added. All experiments were performed in triplicate to obtain the standard
deviations. The radical scavenging activity was calculated using Equation (1) above.

2.5. Antibacterial Activity of Bioelastomer

The antibacterial activity of the bioelastomer was determined following the method
in our previous study [41]. Staphylococcus aureus was used as the gram-positive bacteria,
Escherichia coli as the gram-negative bacteria, and methicillin-resistant Staphylococcus aureus
(MRSA) and vancomycin-resistant Enterococcus (VRE) as the antibiotic-resistant bacteria.
All the bacteria were cultured in a shaking incubator at 150 rpm, for 24 h, at 37 ◦C in
50 mL of nutrient broth. The bacteria were diluted to 106 CFU/mL and inoculated on
nutrient agar plates. Bioelastomers (size: 1 × 1 cm) were placed in the center of the nutrient
agar medium, inoculated with each bacterium, and then, incubated at 37 ◦C for 24 h. The
antibacterial zone was determined using the Image J software (v1.52i, National Institutes of
Health, Bethesda, MN, USA). All experiments were performed in triplicate to obtain the
standard deviations.

2.6. Characterization of Bioelastomer

The chemical structures of the bioelastomers were investigated using Fourier-transform
infrared spectroscopy (FT-IR; JASCO FTIR-4600, Jasco, Japan). Tensile strength and elonga-
tion at break were determined, according to ASTM D412, using a universal testing machine
(Instron 3367; Norwood, MA, USA). Water vapor transmission rate (WVTR) was deter-
mined, according to ASTM F1249, using a Permatran-W 3/33 MA (Mocon, Minneapolis,
MN, USA). The morphology of both bioelastomers was characterized using scanning elec-
tron microscopy (SEM, SNE-3000M, SEC Inc., Suwon, Republic of Korea) at a scanning
voltage of 5 kV.

2.7. Analytical Methods

The hesperidin and narirutin contents in MPE were determined using high-performance
liquid chromatography (HPLC). The analytical conditions were as follows: INNO column
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C18 (5 µm, 4.6 mm × 250 mm, Young Jin Biochrom, Seongnam-si, Republic of Korea);
diode array detector (DAD); wavelength, 250 nm; temperature, 25 ◦C; injection volume,
5 µL; flow rate, 0.8 mL/min. The gradient elution conditions were as follows: acetoni-
trile for solvent A and 0.03% (v/v) phosphoric acid in DW for solvent B; 0 min, 10% A;
0–15 min, 20% A; 15–28 min, 40% A; 28–36 min, 75% A; 36–38 min, 10% A; 38–50 min,
10% A. Standard curves for quantification were prepared using hesperidin and narirutin as
the standard reagents.

3. Results and Discussion
3.1. Selection of Extraction Solvent for Flavanone Recovery from Mandarin Peels

To maximize flavanone recovery from MPs, appropriate mixing ratios of the extraction
solvents were investigated. A MeOH:DMSO mixture was used to extract total flavonoids
from MP [45]. Similarly, Magwaza et al. [46] demonstrated that a mixed MeOH:DMSO
solution (1:1, v/v) effectively and rapidly extracts phenolic compounds, such as flavanone
glycosides and phenolic acid, from mandarin rinds. Figure 1 shows the effects of the mixing
ratio of MeOH:DMSO on the flavanone (hesperidin and narirutin) recovery from MPs. The
extraction solvent was mixed with solutions of MeOH and DMSO that had MeOH:DMSO
ratios of 1:9, 3:7, 5:5, 7:3, and 9:1 (v/v). The resulting flavanone recovery with each solution
was 26.6, 31.9, 43.7, 28.0, and 18.4 mg/g-biomass for hesperidin and 5.2, 6.3, 8.7, 6.1, and
5.3 mg/g-biomass for narirutin, respectively. These results agree with those of a previous
study [46], which showed that the MeOH:DMSO solution mixed in the same ratio is the
most effective extraction solvent for recovering flavanone from MPs. Therefore, a 5:5 ratio
(v/v) of the MeOH:DMSO mixture was selected as the extraction solvent for recovering
flavanone from MPs (Figure A1).

Agriculture 2023, 12, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 1. Effects of the mixing ratio of MeOH:DMSO solution on flavanone (hesperidin and nariru-

tin) recovery from MPs. 

3.2. Determination of Microwave-Assisted Extraction Conditions 

The MAE process was designed to recover high yield of flavanone from MP in a short 

time. However, high microwave power and extended irradiation time can cause the ther-

mal degradation of these phenolic compounds [47]; extraction conditions should be de-

termined based on the maximum energy that can be input without causing thermal deg-

radation to reduce the consequent loss of bioactive compounds. Therefore, the effects of 

microwave power and irradiation time on flavanone extraction from MPs were investi-

gated (Figure 2). Figure 2a shows the results of hesperidin recovery from MPs. At a mi-

crowave power of 70 W, hesperidin recovery was not significantly affected by irradiation 

time, and it only slightly increased from 49.0 mg/g-biomass at 5 s to 53.2 mg/g-biomass at 

30 s. At a microwave power of 210 W, hesperidin recovery steadily increased from 49.5 

mg/g-biomass at 5 s to 66.8 mg/g-biomass at 30 s, but the maximum recovery was not 

achieved. At microwave powers of 350, 490, and 630 W, hesperidin recovery steadily in-

creased for 20 s, after which it decreased with increasing irradiation time. The reduction 

significantly increased as the microwave power increased, which was presumed to be be-

cause of thermal degradation caused by excessive energy input. This phenomenon was 

confirmed by Ahmad and Langrish [48], who extracted phenolic acids from MPs. Finally, 

the maximum hesperidin recovery was found to be 71.6 mg/g-biomass at 490 W and 20 s. 

Recovery of narirutin from MPs showed a similar tendency to that of hesperidin (Figure 

2b). At microwave powers of 350, 490, and 630 W, narirutin recovery steadily increased 

for 20 s, after which it decreased with increasing irradiation time. The maximum narirutin 

recovery was found to be 16.3 mg/g-biomass at 490 W and 20 s. At 490 W and 20 s, the 

energy input was approximately 9600 J (W × s); as it was estimated that energies higher 

than 9600 J caused thermal degradation of flavanones, 490 W and 20 s were chosen as the 

extraction conditions for flavanone recovery from MPs. 

Figure 1. Effects of the mixing ratio of MeOH:DMSO solution on flavanone (hesperidin and narirutin)
recovery from MPs.

3.2. Determination of Microwave-Assisted Extraction Conditions

The MAE process was designed to recover high yield of flavanone from MP in a
short time. However, high microwave power and extended irradiation time can cause
the thermal degradation of these phenolic compounds [47]; extraction conditions should
be determined based on the maximum energy that can be input without causing thermal
degradation to reduce the consequent loss of bioactive compounds. Therefore, the effects
of microwave power and irradiation time on flavanone extraction from MPs were inves-
tigated (Figure 2). Figure 2a shows the results of hesperidin recovery from MPs. At a
microwave power of 70 W, hesperidin recovery was not significantly affected by irradiation
time, and it only slightly increased from 49.0 mg/g-biomass at 5 s to 53.2 mg/g-biomass



Agriculture 2023, 13, 161 6 of 14

at 30 s. At a microwave power of 210 W, hesperidin recovery steadily increased from
49.5 mg/g-biomass at 5 s to 66.8 mg/g-biomass at 30 s, but the maximum recovery was
not achieved. At microwave powers of 350, 490, and 630 W, hesperidin recovery steadily
increased for 20 s, after which it decreased with increasing irradiation time. The reduction
significantly increased as the microwave power increased, which was presumed to be
because of thermal degradation caused by excessive energy input. This phenomenon was
confirmed by Ahmad and Langrish [48], who extracted phenolic acids from MPs. Finally,
the maximum hesperidin recovery was found to be 71.6 mg/g-biomass at 490 W and 20 s.
Recovery of narirutin from MPs showed a similar tendency to that of hesperidin (Figure 2b).
At microwave powers of 350, 490, and 630 W, narirutin recovery steadily increased for 20 s,
after which it decreased with increasing irradiation time. The maximum narirutin recovery
was found to be 16.3 mg/g-biomass at 490 W and 20 s. At 490 W and 20 s, the energy input
was approximately 9600 J (W × s); as it was estimated that energies higher than 9600 J
caused thermal degradation of flavanones, 490 W and 20 s were chosen as the extraction
conditions for flavanone recovery from MPs.
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Figure 2. Effect of microwave power and irradiation time on the hesperidin (a) and narirutin
(b) recovery from MPs.

3.3. Antioxidant Activity of Bioelastomer

Measuring the antioxidant activity of bioelastomers is important for preventing
the negative effects of free radicals in biological and food packaging applications [49].
Table 2 shows the radical scavenging activity of the fabricated bioelastomer. The rad-
ical scavenging activity of the bioelastomer increased in proportion to the content of
MP-derived flavanone extract (MPE). The DPPH radical scavenging activity of the bioe-
lastomer increased sharply by 1.8-fold when 15% MPE was added, but it was still a low
3.3 ± 0.2%. The ABTS radical scavenging activity exceeded 20% at 15% MPE and reached
26.7 ± 1.2% at 20% MPE. The DPPH and ABTS radical scavenging activities of the hes-
peridin standard (100 ppm) were found to be 3.5 ± 0.4% and 17.8 ± 0.6%, respectively.
These results imply that the ABTS assay is more sensitive than the DPPH assay for evaluat-
ing the antioxidant activity of the bioelastomers and hesperidin, a major component of MPE.
Floegel et al. [50] reported that the DPPH assay is appropriate for hydrophobic systems,
and the ABTS assay is suitable for hydrophilic, lipophilic, and highly pigmented systems.
Flavonoid glycosides, such as hesperidin, are hydrophilic because the presence of sugars
increases their polarity [51]. In addition, MPE recovered using a MeOH:DMSO mixture
is hydrophilic and is presumed to contain high amounts of pigments such as flavonoids,
carotenoids, and chlorophylls [52].
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Table 2. Radical scavenging activity of the fabricated bioelastomer.

Sample
Radical Scavenging Activity (%)

DPPH ABTS

B–MPE 0% (control, PDMS) 0 0
B–MPE 1% 1.0 ± 0.0 13.1 ± 0.3
B–MPE 3% 1.1 ± 0.1 16.8 ± 0.4
B–MPE 5% 1.2 ± 0.1 17.3 ± 0.6
B–MPE 7% 1.5 ± 0.1 18.8 ± 0.3

B–MPE 10% 1.8 ± 0.1 19.8 ± 0.6
B–MPE 15% 3.3 ± 0.2 20.8 ± 0.8
B–MPE 20% 4.8 ± 0.3 26.7 ± 1.2

Hesperidin 100 ppm 3.5 ± 0.4 17.8 ± 0.6

3.4. Antibacterial Activity of Bioelastomer

S. aureus can cause food poisoning and toxic shock syndrome, while E. coli can cause
septicemia and cholecystitis [53]. In addition, infections of antibiotic-resistant bacteria,
such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant Enterococcus (VRE),
threaten human safety to the extent that the World Health Organization (WHO) has se-
lected it as one of the top 10 threats to global public health [54]. Therefore, bioelastomers
that exhibit antibacterial activity are expected to be highly useful in the food packaging,
pharmaceutical, and medical fields.

B–MPE 0–10% did not exhibit antibacterial activity against any bacteria (data not
shown). However, B–MPE 15% showed antibacterial activity against gram-positive
(S. aureus), gram-negative (E. coli), and antibiotic-resistant bacteria (MRSA and VRE)
(Figure 3). The antibacterial zone of B–MPE 15% was determined to be 20.4 ± 1.5 cm2 for
S. aureus, 16.0± 1.2 cm2 for E. coli, 9.4± 0.4 cm2 for MRSA, and 14.8± 1.0 cm2 for VRE. The
antibacterial zone of 50 ppm ampicillin, an antibiotic used as a positive control, was found
to be 19.3 ± 0.6 cm2 for S. aureus and 12.5 ± 0.5 cm2 for E. coli. The antibacterial activity
of B–MPE 15% was presumed to be due to the flavonoids present in MPE: flavonoids can
cause bacterial cell death by inhibiting the metabolism and synthesis of DNA and RNA [55].
The antibacterial effect of B–MPE 15% was more sensitive against gram-positive bacteria
(S. aureus) than against gram-negative bacteria (E. coli). Alexandre et al. [56] reported that
gram-positive bacteria are more sensitive to interactions with phenolic compounds because
they lack an outer membrane, causing the compounds to diffuse into them more quickly
than in gram-negative bacteria. Similarly, Choi et al. [57] demonstrated that hesperidin, a
major flavonoid in MPE, has lower values of minimum inhibitory concentration (MIC) and
minimum bactericidal concentration (MBC) for S. aureus than for E. coli.

Therefore, the bioelastomer with antioxidant and antibacterial activity was determined
to be B–MPE 15%, and the contents of hesperidin and narirutin added to the bioelastomer
were estimated to be 53.7 mg/50 g-B–MPE 15% and 12.2 mg/50 g-B–MPE 15%, respectively.

3.5. IR Analysis of Bioelastomer

The chemical structures of B-MPE 0% (control, PDMS) and B-MPE 15% were measured
using FTIR. In the FT-IR spectra (Figure 4), the peak was at 797 cm–1, corresponding to the
symmetric stretching of Si–O–Si, the peaks at 1020 cm–1 and 1100 cm–1 corresponded to
the asymmetric stretching of the Si–O–Si of the PDMS backbone, the peak at 1257 cm–1

corresponded to the asymmetric stretching of CH3, and 2926 cm–1 corresponded to the
symmetric bending of the CH3 of the PDMS side chain. The same peaks appeared for
both PDMS layers, indicating that the PDMS monomers with MPE were completely cured.
Furthermore, this proves that there are only physical interactions between the filler and the
matrix without the formation of covalent bonds [58]. These results agreed with those of
Shivangi et al. [59], who found that the addition of bioactive extracts did not significantly
affect the surface chemical properties of the fabricated biofilm.
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3.6. SEM Image of Bioelastomer

Scanning electron microscopy (SEM) was used to observe the surface of the fabri-
cated bioelastomer (Figure 5). The B–MPE 0% film was transparent with a smooth surface
(Figure 5a). In contrast, the B–MPE 15% film exhibited a yellowish porous surface
(Figure 5b). The difference in the morphology of the samples was attributed to the presence
of insoluble flavonoid matter that was left behind after the evaporation of the extraction
solvent [60]. In addition, the addition of the extracts changed the optical properties of the
bioelastomer, resulting in differences in color and transparency.
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3.7. Mechanical Strength of Bioelastomer

To evaluate the applicability of the selected B–MPE 15%, the mechanical properties
of the fabricated bioelastomer, namely its tensility and flexibility, were investigated by
measuring its tensile strength and elongation at break, respectively [61]; the results are
shown in Table 3. There was no significant difference between the tensile strengths of
B–MPE 0% (5.2 N/mm2) and B–MPE 15% (5.1 N/mm2). This indicated that the MPEs
were uniformly mixed with the well-cured PDMS layer without reducing the mechanical
strength of the fabricated bioelastomer. Meanwhile, the elongation at break of B–MPE 15%
(694%) was significantly higher than that of B–MPE 0% (551%); these results are consistent
with those reported by da Rosa et al. [62], who showed that phenolic compounds, derived
from plant extracts, can increase elongation at break.

Table 3. Physical properties of Bioelastomer–MPE 0% (control, PMDS) and Bioelastomer–MPE 15%.

Sample Tensile Strength
(N/mm2)

Elongation at Break
(%)

Water vapor Transmission Rate
(g/(m2 day))

B–MPE 0% 5.2 551 26.6
B–MPE 15% 5.1 649 33.3

3.8. Water Vapor Transmission Rate of Bioelastomer

The water vapor transmission rate (WVTR) refers to the amount of water vapor that
can permeate per unit area of a material per unit time. In the food packaging industry,
lower values are considered advantageous [63]. Bourakadi et al. [64] reported that barrier
properties, including the WVTR, are significantly affected by the chemical properties
of the additives. From the WVTRs of B–MPE 0% and 15%, which were found to be
26.6 g/(m2 day) and 33.3 g/(m2 day), respectively (Table 3), it can be seen that the addition
of MPE slightly increased the WVTR of the bioelastomers. This was probably due to the
presence of polar compounds in the MPE: in general, extracts containing polar compounds,
such as flavonoids and phenolic acids, improve the hydrophilicity of film materials, leading
to an increase in their water vapor permeability [65].

4. Conclusions

Here, we proposed a biorefinery strategy based on the extraction of useful substances
prior to the saccharification process of MPs, as well as the utilization of the extracted
compounds. In this study, we recovered hesperidin and narirutin from MP and used them
to fabricate bioelastomers. These bioelastomers that were fabricated using extracts exhibited
significantly improved mechanical strength compared to bioelastomers that directly utilized



Agriculture 2023, 13, 161 10 of 14

biomass in powder form. In addition, the fabricated bioelastomer exhibited significant
antioxidant and antibacterial activities and, thus, shows great potential for use in the food
packaging, pharmaceutical, and medical industries. Our biorefinery strategy is expected to
provide future direction for the realization of a sustainable society and carbon neutrality.
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