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Abstract: Face masks have become an essential commodity during the COVID-19 pandemic, and
their use rises daily. Excessive face mask use will likely continue to combat the virus and bacterial
impacts in the long term. Afterward, used face masks are hazardous to the environment since most
are made of nonbiodegradable porous polymeric fibrous materials. Thus, finding new ways to
recycle waste face masks is urgently needed. Similarly, managing agricultural water for irrigation is
a crucial challenge in saving water. This study demonstrates an approach for recycling face masks
as bag- or small-sized pillows filled with superabsorbent polymers (SAPs) for the slow release of
water near plant roots. Previous studies have reported that SAPs or hydrogel could boost soil’s
water retention capacity, mixed with hydrogel/SAP. However, mixing SAPs into soil is improper
because biodegradation generates low toxic organic molecules and contaminates soil and surface
water. The objective of this research was to develop a face mask reuse approach, reduce irrigation
water using polymers, and reduce toxic contamination in the soil. Here, swollen SAPs were taken
inside the pillow and buried near plants, and the growth of the plants was studied. The moisture of
the inner soil was constant for a long time, boosting plant growth. Afterward, the face mask pillows
could be removed from the soil and maintained for further use. This new approach could be helpful
in pot farming. This approach could contribute to the circular economy and the development of
environmental sustainability.

Keywords: irrigation; COVID-19 waste; hydrogel/SAP; agricultural applications; face mask

1. Introduction

The COVID-19 pandemic spread to more than 213 countries globally, and its impact
on the environment was enormous [1]. In detail, the World Health Organization (WHO)
recommends that health workers directly caring for COVID-19 patients should wear a
surgical mask or respirator and personal protective equipment (PPE) to have protection
from droplet contaminants [2]. The WHO also states that masks are part of a robust set
of ways to prevent and control the spread of multiple infectious respiratory diseases,
including COVID-19 [2]. Therefore, the public has started wearing face masks to save
their lives from this crafty coronavirus. This generates a massive amount of ‘COVID
waste’—polyethylene, polypropylene, plastics, hand gloves, face masks, and sanitizer
bottles—exhibiting a new kind of pollution in the total environment [3,4]. A recent study
estimated that 129 billion face masks and 65 billion gloves are used monthly [5]. There is
no basic waste disposal system to control the amount of COVID waste in many countries
worldwide [6]. Sadly, we will likely see the waste finding its way downstream to beaches,
contaminating water and the ocean [7,8]. Furthermore, face masks can generate massive
amounts of microplastics that could significantly affect fauna and flora populations [9,10].
Thus, we need to be serious about reducing the quantity of COVID waste in our society
where possible. At the same time, we must develop techniques to recycle or reuse COVID
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waste produced from lifesaving materials such as face masks [11]. Different face masks
are available on the market [12]. Most are manufactured with polypropylene (PP) and
polyurethane (PU) because of their hydrophobicity and nonallergic properties with respect
to human skin [13]. Researchers have recently reported the best strategies to reuse face
masks and minimize the creation of COVID waste [14–17]. However, the public is not
aware of the reuse process of different kinds of face masks. The people who can handle the
reuse process of disinfecting face masks are also not doing so because of the lack of mental
satisfaction and the expensive apparatus for mask disinfectants. Therefore, an alternative
process is required to minimize face mask waste in the environment. Recently, Joyce et al.
reported an approach for upcycling face mask waste into membranes to separate various
organic solvents using a nanofiltration technique [18]. In addition, Mohsin et al. reported
a strategy to transform face masks into electrocatalysts for oxygen reduction reactions,
hydrogen evolution reactions, and crude oil synthesis using the high-temperature pyrolysis
technique [19]. In addition, a green approach has been reported in which fish-scale waste is
used to make biodegradable face masks. It could contribute to the circular economy [20].
Here, we have reported a new approach to reuse waste face masks to make pillows to fill
with superabsorbent hydrogel for agricultural applications.

Agriculture production depends heavily on water. However, the desertification and
salinization of soil brought on by water scarcity and droughts threaten both agriculture’s
sustainability and food availability. The efficiency with which water is used in agriculture
must thus be increased [21]. SAPs and HGs can improve water use in agriculture by
keeping moisture in the soil and using less irrigation water because of their extremely high
water absorption and retention capacities [22–26]. SAPs have demonstrated encouraging
benefits in agriculture by lowering irrigation water usage, reducing plant mortality, en-
hancing nutrient retention in the soil, and raising plant growth rates [27–30]. SAPs are
functional polymers that can absorb and hold huge amounts of water even at high pressures
or temperatures [31,32]. The chain contains many hydrophilic groups that contribute to
absorbing water hundreds to thousands of times their masses [33]. These polymers are
quickly synthesized using natural polymers and crosslinker monomers. Regarding safety
and environmental effects, using biopolymers for preparation provides benefits over syn-
thetic polymers [34]. Numerous studies have shown the benefits of using biopolymer-based
hydrogels in a wide range of applications [33,35]. Many studies focus on the evaluation
of water absorbency, swelling behavior, and the water retention capability of hydrogels.
Researchers are now focusing on the synthesis of starch-based graft copolymers using
vinyl and acryl monomers, which could improve polymer biodegradability [34,36–38].
Hydrogels made of starch (grafting) are affordable and biodegradable, and their ability to
retain water may be adjusted [39].

Furthermore, SAPs are utilized for controlled fertilizer delivery, enhancing soil’s
capacity to absorb water [40,41]. According to reports, traditional fertilizers typically
include between 40 to 70% nitrogen (N) and 80 to 90% phosphorus (P), both of which
cannot be absorbed by plants due to their high solubility in water and high diffusivity
to the environment [42]. The efficiency of fertilizer usage is increased by loading SAPs,
and needless environmental impacts are also reduced [43]. However, mixing SAPs or
crosslinked polymers with fertilizers and spreading them on soils is not a good practice
because SAPs can only be used once, and biodegradation takes a long time. It generates
some low-toxic organic pollutants during biodegradation, which may pollute soil and
surface water [44–46]. Therefore, recovering SAPs from soil and reusing them to reduce
agricultural production costs is a significant issue [47].

This study used one of our synthesized hydrogels, made by grafting starch (St), acry-
lamide, and 2-acrylamido-2-methylpropane sulfonic acid [47]. Herein, we used this hydrogel
in a face mask pillow and studied its slow-release water supply activity with respect to
Ophiopogon japonicus grass growth. This hydrogel is an example of how to apply this method
to several superabsorbent polymers used in agriculture. These starch-based hydrogels are not
available on the market. However, superabsorbent polymers, such as sodium polyacrylate
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(CAS No.: 9003-04-7) and potassium polyacrylate (CAS No.: 25608-12-2), are available on
the market. Sodium polyacrylate is frequently used in agriculture [46,48]. Recently it was re-
ported that potassium polyacrylate may be more beneficial than sodium polyacrylate because
potassium ions promote plant growth effectively while sodium ions do not [49,50]. The grass
was chosen for this experiment because of its beautiful evergreen leaves and because it is used
as ground cover in Korea, Japan, and China. It grows well in average medium-moisture soil
and is adaptive to various conditions. This new approach could entice pot farmers.

2. Materials and Methods
2.1. Materials

Waste face masks were collected from our buckets using hand gloves and face masks
to avoid droplet infections, cleaned with liquid detergent, and used in this experiment.
Pillows were made using needle and thread. Garden soil and Ophiopogon japonicus grasses
were collected from the university campus. The hydrogel used in this experiment was
prepared using rice-cooked starch wastewater. We have reported its synthetic process and
characterizations in a previous article [47]. It has yet to become commercially available.

2.2. Water Absorbency, pH Effects, and Water Retention Capacity

Our previous article reported hydrogel’s water absorbency, pH effects, and water
retention (hydrogel mixed soil) characteristics [47]. It showed the water absorbency, urea
water absorbency (0.1 M), and saline water (0.1 M) absorbency of NaCl, CaCl2, and FeCl3.
The typical procedure involved about 1.0 g of hydrogel being taken into the face mask
pillows and immersed in the water, saline solutions, and urea at room temperature. After
24 h, the face mask pillow was removed from the solutions and drained of excess water.
Then, water absorbency was calculated using Equation (1). The face mask did not absorb
water due to its hydrophobic nature. These experiments were performed three times
(swelled hydrogel is shown in Figure 1).

WA =
(MSP − MDP)

MDP
(1)

where WA: water absorbency, MSP: mass of swollen polymer, and MDP: mass of dry polymer.
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Herein, the water retention characteristics of the pillow with hydrogel inside the soil
were analyzed. One thermocol box (size 300 × 200 × 60 mm) was filled with soil (moisture,
19%) of about 40 mm, and a face mask pillow with completely swollen HGs was kept in
the middle position of the box and inside the soil (20 mm). Afterward, the box was kept in
a hot chamber at 30 ± 1.0 ◦C for 20 days. After a one-day interval, the pillow was taken
out to measure the weight.

Consequently, the soil moisture of the upper soil, below the pillow, the side of the
pillow, and apart from the pillow was measured. A detailed schematic illustration is shown
in Figure 2a–c. The above experiments were performed in an oven at 70 ± 5.0 ◦C for
24 h, and weight was taken every 2 h. The amount of water retained was calculated using
Equation (2) [51]. This experiment was conducted two times. Slow evaporation or the slow
release of water happened due to the small size of the pores (30.365 µm ± 0.939) present
in the face mask [52]. The surface morphology of the face mask was examined using field
emission scanning electron microscopy (FESEM-ZEISS SUPRA 40VP, Tokyo, Japan). A
FESEM micrograph of a face mask is shown in Figure 2d.

Water retention (wt%) =
Mass o f soil mixture dried a f ter a day

Initial mass o f the soil mixtures
× 100 (2)
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Figure 2. A schematic illustration of water retention in an oven at 30 ◦C: (a) initial soil moisture;
(b) soil moisture after 5 days; (c) soil moisture after 20 days; and (d) FESEM micrograph of face mask.

2.3. Applications in Agriculture

First, the germination of ten peas (Pisum sativum) and ten mung bean (Vigna radiata)
seeds was studied on a swelled hydrogel bed in a Petri dish. In addition, a control exper-
iment was performed in a Petri dish containing only water and seeds. The germinated
seeds are shown in Figure 3. The same test was performed and reported in our previous
article [47].

Second, a plant growth study was conducted using Ophiopogon japonicus grass. For this
investigation, we used two pots: one as a control with only 3 kg of garden soil (pot-a) and
the other with a face mask pillow containing swollen HGs buried in the soil (pot-b). Then,
healthy grasses were planted in the soil of both pots. About 100 mL of water was added to
each pot. The pots were placed near the window in the laboratory for sunlight. The soil
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moisture was tested using a Test 606-1 moisture meter at room temperature (18 ◦C). After
three days, the soil surface moisture in each pot was 52.4%. The growth of grasses was
studied for 60 days. However, other than dryness, no pests or infections were found on the
grasses. Grass growth experiments are shown schematically in Figure 4. This experiment
was repeated twice.
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Figure 3. Digital photos of the germination of seeds: (a) water and (b) hydrogel.
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pillow near the plant roots.

2.4. Reusability Test

The reusability of hydrogel was studied by measuring the loss of water absorbance
over a five-cycle period. The agriculturally used hydrogel was collected from the face mask
and dried in a hot air oven at 40 ◦C for 24 h. Afterward, the weighted hydrogel was again
taken into the face mask and poured into the water for swelling for 24 h. Then, the face
mask pillow was buried in the same soil from which it was collected 60 days later, and
100 mL of water was added to the soil. The process was repeated until the fifth cycle.

3. Results
3.1. Water Absorbency, pH Effects, and Retention

The results revealed a water absorbency order of water > urea > NaCl > FeCl3 > CaCl2.
It is possible that multivalent cations interacted with the —OH- and —SO3H-functional
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groups in the polymer to produce complex compounds that improve the crosslinking
density of hydrogels. Therefore, the network of polymers shrinks, which might lower
the water absorbency and the swelling of the polymer [47,53]. Furthermore, the highest
water absorbance was observed at pH 7 (158.7 g/g 1.0) and the lowest (45.0) at pH 2.0.
In acidic pH, many hydrogen bonds form, which may cause polymer networks to shrink
and affect water absorbency. However, from pH 5 to 10, the number of hydrogen bonds
formed may decrease, allowing the polymer network to swell and absorb more water.
Furthermore, water absorbance was reduced at pH 10 due to the cationic effects of Na+
ions in the polymer networks. The effects of pH on hydrogel are described in detail in our
previous article [47].

The HGs in the FMP and buried in the soil showed 89 wt.% water retention after 24 h
at 30 ◦C (as shown in Figure 5). In addition, HGs in the FMP buried in the soil showed
5.2 wt.% water retention after 24 h at 70 ◦C. However, the soil moisture of the upper soil,
below the pillow, the side of the pillow, and apart from the pillow (as shown in Figure 2c)
showed 5%, 17%, 5%, and 0%, respectively.
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Figure 5. Water retention performance of the HGs–FMP in the soil at 30 ◦C and 70 ◦C.

3.2. Agricultural Use

The germination of seeds was good in both cases, including in the polymer bed and in
the control after three days (as shown in Figure 3). This indicates that hydrogel does not
release toxins during pea and mung bean seedling growth. In addition, this suggests that
hydrogel may be used to promote seed germination and seedling growth, which offers a
practical application for hydrogel use in agriculture [54].

On the other hand, grass growth was observed to be better in pot-b (containing the
HGs–FMP) than in pot-a (the control), as shown in Figure 6. After 15–30 days, the grass
leaves in pot-a were observed to dry and become yellowish. However, the grass in pot-b
showed quite green and alive leaves. After 60 days, it was distinctly obvious that the
grass from pot-b exhibited more freshness compared with the grass from pot-a. This is
because of water retention in the polymers and the slow release of water to the soil in pot-b.
The face mask pillow was removed from the soil, and the moisture levels were measured
(5.2%). The HG polymers became yellowish; biodegradation and morphological changes
were observed (Figure 6). The last image in Figure 6 was taken with a Dino-lite digital
microscope (AM4132) at a magnification of 52×.



Agriculture 2023, 13, 152 7 of 12Agriculture 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 6. Growth studies of Ophiopogon japonicus grass over 60 days: (a) control and (b) FMP in-

side the soil. 

3.3. Reusability 

The results of the reusability test are shown in Figure 7. Figure 7a,b show the reswell-

ing study of the used polymers, and Figure 7c shows that water absorbency decreased 

slightly after the first cycle (25.6%), after the second cycle (31.2%), after the third cycle 

(36.4%), after the fourth cycle (41.3%), and after the fifth cycle (43.4%) compared with the 

control. This may be due to the biodegradation of starch moieties in the hydrogel. The 

decreases in the rate of biodegradation from the third cycle may be due to the lower quan-

tities of starch present in the hydrogel’s backbone. The average loss of water absorbency 

was found to be 13.74 ± 15.13 g/g. Figure 7d presents an image of hydrogel loaded with 

water. 

15

days

30 days

45

days

60 days

(a) (b)

Figure 6. Growth studies of Ophiopogon japonicus grass over 60 days: (a) control and (b) FMP inside
the soil.

3.3. Reusability

The results of the reusability test are shown in Figure 7. Figure 7a,b show the reswelling
study of the used polymers, and Figure 7c shows that water absorbency decreased slightly
after the first cycle (25.6%), after the second cycle (31.2%), after the third cycle (36.4%), after
the fourth cycle (41.3%), and after the fifth cycle (43.4%) compared with the control. This
may be due to the biodegradation of starch moieties in the hydrogel. The decreases in the
rate of biodegradation from the third cycle may be due to the lower quantities of starch
present in the hydrogel’s backbone. The average loss of water absorbency was found to be
13.74 ± 15.13 g/g. Figure 7d presents an image of hydrogel loaded with water.
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Figure 7. (a) Reswelling hydrogel after 2 min; (b) reswelling hydrogel after 24 h; (c) decreasing
percentage of water swelling; and (d) image using Dino-lite digital microscope (AM4132) at a
magnification of 54×.

3.4. Concept of Practical Utility

Pot farming is now an economical process for cultivating various vegetables and
fruits. A pot can be placed indoors, outdoors, or in a greenhouse. It depends on what type
of plants are to be grown. Pots can be made with clay, wood, plastic, or metal. Here, a
schematic of pot farming is shown in Figure 8a. It shows a hydrogel- or SAP-containing face
mask pillow in a pot. Water-loaded polymers inside the pillow slowly release water near
the plant for a long period. However, this may vary with the plant’s water requirements,
soil texture, and environment. Therefore, water must be supplied to the polymer when it is
almost out of water. Water may be injected into the SAPs directly, as shown in Figure 8c, to
save irrigation water.
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Furthermore, the face mask pillow with SAPs could also be helpful in the agricultural
field, as shown in Figure 8b. Similarly, from time to time, water could be injected directly
into the SAPs–face mask pillow, as shown in Figure 8c.

4. Discussion

A face mask pillow filled with swelling hydrogel retained around 5.2 wt.% water
after 24 h at 70 ◦C and 89 wt.% water after 24 h at 30 ◦C inside the soil. However, the
soil moisture values of the upper soil, below the pillow, the side of the pillow, and apart
from the pillow were 5%, 17%, 5%, and 0%, respectively. The germination study suggested
that hydrogel could be helpful for agricultural applications [54]. The plant growth study
indicates that a face mask pillow filled with SAPs could help supply plentiful water to the
plant roots for a long period. Therefore, the moisture in the inner soil was consistent for a
long period and, thus, improved the effectiveness of irrigation [55]. In addition, enough
urea water can be absorbed by polymers, which releases slowly into the roots of plants [56].
This could enhance plant growth and productivity. Hence, this hydrogel or commercially
available SAPs with a face mask pillow might be helpful for pot framing. The polymers
inside the pillow can absorb, retain, and slowly release water for a long period when soil
moisture decreases. This entire process could decrease the utility of water and production
costs and increase environmental sustainability. More research needs to be performed to
check the toxicity parameters of soils and foods when using this starch-based hydrogel.
However, according to the literature, it is anticipated that sodium polyacrylate use in
agriculture is safe [57]. Afterward, the face mask pillow can be collected from the soil and
immersed in water or urea water for subsequent use.

However, the research on the end use of face masks is quite challenging. Recently, some
studies reported various approaches to the reuse and recycling of face masks [10,58–60], which
could boost the circular economy [19]. Most of them established different strategies for convert-
ing hazardous face masks into other forms of use, but they are still hazardous to the environment.
Therefore, face mask end use or biodegradation could be a significant research area.

5. Conclusions

A waste COVID face mask was used to make pillows to fill with superabsorbent poly-
mers. Water-loaded polymer covered with a face mask was studied for its water retention
capability inside soil at 30 ◦C and 70 ◦C. The crosslinked polymer (hydrogel) used in this
study could be used as an example of this approach for several superabsorbent polymers
in agricultural use. The water-loaded pillows near the plant’s roots revealed acceptable
evidence of plant growth. This could be due to the polymers in the face mask pillows
slowly releasing plentiful water for plant growth. Furthermore, the reusability of hydrogel
was investigated, and the results showed that hydrogel could be used repeatedly for up to
five cycles with a loss of 43.4% water absorbance capacity. It was found that the average
loss of water absorbency was about 13.74 ± 15.13 g/g. Superabsorbent polymers that are
available in the market, such as sodium polyacrylate and potassium polyacrylate, could be
more effective and helpful for repeated use in pillows for irrigation. This facile approach
could help in the repeated use of polymers in agriculture. In addition, it could decrease
agricultural irrigation water and enhance productivity and environmental sustainability.
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