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Abstract: To explore the internal driving force of the growth of rice yield per unit area in China,
a model based on varying-coefficient production function is proposed in this study, which comes
from the idea that the constant elasticity parameters in the Cobb-Douglas production function can
be extended to functional forms. Applying such model to economic growth analysis, on the one
hand, the dynamic contribution rate of each input factor can be measured, and, on the other hand,
the contribution rate of the input factor can be decomposed into net factor contribution rate and
interaction factor contribution rate, thus expanding the explanatory ability of growth rate equation.
Using such model, the output elasticity of capital and labor in China’s rice yield growth are calculated
from 1978 to 2020, and the dynamic characteristics of the contribution rate of capital, labor and
generalized technological progress are analyzed. Next, the capital contribution rate is decomposed
according to the composition of the total capital. The results show that: (1) The capital elasticity and
labor elasticity are indeed not constant in different years. In China, from 1978 to 2020 the value of
capital elasticity was between 0.3209 to 0.3589, with a mean of 0.3437, and the value of labor elasticity
was between −0.1759 to −0.1640, with a mean of −0.1730. (2) Natural disasters do affect capital
elasticity and labor elasticity in rice production. (3) When the annual proportion of crop disasters
increases, the contribution rate of interaction between capital and natural disaster (KDR) value is
negative, whereas the contribution rate of interaction between labor and natural disaster (LDR)
value is positive. (4) Compared with 1978, the generalized technological progress contribution rate
(GTPR) of the rice yield growth in China from 1979 to 2020 shows a declining trend in fluctuations,
whereas the total capital contribution rate (TKR) shows a rising trend in fluctuations and the total
labor contribution rate (TLR) is relatively stable in the same period. Since 2000, capital investment
has become the main factor for the rice yield growth per unit area in China, of which machinery,
chemical fertilizer, seed and pesticide are the four most important input factors.

Keywords: production function; varying-coefficient model; averaged estimation; growth of rice yield
per unit area; contribution rate

1. Introduction

Rice is a food consumed regularly and is vital for the food security of over half
the world’s population [1]. FAOSTAT [2] shows that from 1978 to 2020, the world’s rice
harvested area increased from 143, 503, 572 to 164, 192, 164 ha, and the production increased
from 385, 208, 660 to 756, 743, 722 tones. As a result, rice production plays an increasingly
important role in world food security.
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China is the largest rice producer and consumer in the world [3]. Rice is the staple
food for over 65% of the Chinese population and so plays a significant role in Chinese food
security [4,5]. In recent years, however, the cost of rice production in China has been rising,
which continuously reduces margins, limits the development of the rice industry, reduces
the enthusiasm of rice farmer for planting, and even affects food security [6]. Increasing
rice yield is the main objective of rice research, the core goal of which is to improve the rice
yield per unit area [7,8]. Although research on rice breeding and cultivation has greatly
improved the potential rice yield, the actual rice yield is often lower than its theoretical
value [9,10]. It is closely relevant to the technological efficiency and technological progress
of rice production. Therefore, measuring the technological progress and technological
efficiency of rice production is an important research area for economic analysis in the rice
industry [11]. Particularly, from a more practical and operational perspective, researchers
are more concerned about what factors play a key role in increasing rice yield per unit area.
Generally speaking, capital, labor and technological progress are considered to be the three
main input factors for the increase of rice yield per unit area. Therefore, measuring the
contribution rate of input factors has become the basic task of the economic analysis of
rice industry.

In the existing literature, there are many methods to estimate the contribution rate of
technological progress, and the mainstream models include Cobb-Douglas (abbreviated to
C-D) production function [12], data envelopment analysis [13], frontier production func-
tion [14], total factor productivity [15], etc. Data envelopment analysis is a nonparametric
method. Using data envelopment analysis to measure the contribution rate of technological
progress, the production frontier is measured by the method of mathematical program-
ming, and the weight of input and output units is taken as the calculation variable, which
avoids the defect of strong subjectivity in the other methods. Therefore, its advantages
lie in the improvement of digital quantization and measurement accuracy. However, the
disadvantage of data envelopment analysis is that this method has poor stability and is
extremely sensitive to input and output data. The frontier production function model is
a parametric method that has a wide range of applications in measuring the contribution
rate of technological progress. Time series data can be used for long-term measurement,
and time series and cross-sectional mixed data can also be used for short-term calcula-
tion. However, the model has the disadvantages of large sample demand and a complex
estimation process. Total factor productivity is a method that is generally used to reflect
the changing trend of the contribution rate of long-term technological progress [16]. C-D
production function method is one of the earliest mathematical models used to measure
economic growth. Due to the characteristics of simple calculation, easy operation and wide
application range, it is commonly used to measure the contribution rate of technological
progress. When using the C-D production function to measure the contribution rate of
technological progress, it is necessary to estimate the output elasticity coefficient of each
input factor in the C-D production function. However, these output elasticity coefficients
are estimated to be fixed constants, representing the average elasticity over the research
period. Using them directly can only adapt to the analysis of the phase changes in the
whole study period, they cannot adapt to the analysis of the dynamic changes phase
by phase.

The main purpose of this study is to: (1) propose a varying-coefficient production
model, and (2) measure the output elasticity of input factors and analyze the dynamic
characteristics of the contribution rate of input factors using the proposed model.

2. Materials and Methods

In this Section, we firstly give the construction process of the varying-coefficient
production function model. Secondly, we introduce how to solve the varying-coefficient
regression model with two different covariate variables by using an averaged estimate
method. Then, bandwidth selection is discussed. Finally, the measurement methods of
contribution rate of input factors are derived.
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2.1. Proposed Model

Productivity analysis is a main tool adopted to explore the source of economic growth,
and the measurement of the growth rate of total factor productivity is the central content
of productivity analysis [17,18]. Among this, the main challenge is to determine the
contribution rate of different input factors in economic growth quantitatively. Production
function is a mathematical expression that describes the dependency relationship between
a certain combination of production factors and the possible maximum output in the
production process [19]. It is typically used to analyze the process of economic growth and
measure the contribution rate of various economic growth factors to economic growth. The
general form is

Y = f (K, L, A) (1)

where Y, K, L and A represent real output, capital investment, labor input and technical
level, respectively. Since Solow’s famous work in 1957 [20] on measuring technological
progress, also known as total factor productivity, the C-D production function has become
the most widely used form of studying technological progress, due to its simple structure,
clear economic significance and easy estimation. It can be expressed as

Y = AKαLβ (2)

where α and β represent the elasticity of capital investment and labor force, respectively.
In model (2), α and β are fixed constants that both reflect the average elasticity over

the whole research period. Using them directly can only adapt to the analysis of the phase
changes in the whole study period and cannot adapt to the analysis of the dynamic changes
phase by phase. However, objectively speaking, various input factors in real production are
constantly changing, especially with the continuous advancement of the market-oriented
reform process, the impact of various production factors on output growth should show
a dynamic change law. Therefore, the production function model with variable output
elasticity is worth studying [19].

The varying-coefficient model is a useful generalization of the classical linear model,
originating from Shumway’s monograph it was then systematically studied by Cleveland,
Hastie and Tibshirani [21–23]. Currently, the widely used model is the one proposed by
Cai et al. [24], and its specific form is written as follows:

Y =
p

∑
j=1

aj(U)Xj + ε (3)

where Y denotes the dependent variable,
(
U, X1, · · · , Xp

)
denotes independent vari-

ables, aj(·)(j = 1, · · · , p) are some unknown functions, ε is the random error satisfying
E
(
ε
∣∣U, X1, · · · , Xp

)
= 0 and Var

(
ε
∣∣U, X1, · · · , Xp

)
= σ2(U). Such a model arises natu-

rally when one wishes to examine how regression coefficients are changed with certain
specific independent variables such as time, temperature, area and more.

Based on varying-coefficient modeling techniques, Ahmad et al. [25], Luo et al. [26] and
Zhang et al. [19,27,28] introduced the varying-coefficient model to estimate the variable
elasticity of the capital and labor force. In Luo’s literature, the model is supposed as
Y = Kα(t)Lβ(t), and is also written as ln Y = α(t) ln K + β(t) ln L + ε, where t is time,
ε is the random error, α(t) and β(t) denote the elasticity coefficient function of the capital
and the labor force, respectively. The model is quite simple but unreasonable, because the
technical level A(t) is not included in the model. Of course, the model cannot be assumed
to be in the form of Y = A(t)Kα(t)Lβ(t), because of it is indiscernibility in statistics, as
discussed in Luo’s literature [26]. Therefore, in the articles of Zhang et al. [19,27], the model

is written as ln Y =
m
∑

i=1
γiZi + α(t) ln K + β(t) ln L + ε, where ln A =

m
∑

i=1
γiZi. Of which, it

is assumed that the technical level can be expressed as an exponential linear combination
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of a set of controllable variables. In essence, it is a semi-parametric varying-coefficient
regression model.

In the above models, it is assumed that the output elasticity of capital and labor
is a nonparametric smooth function that changes with time. Although they can reflect
the time-varying characteristics of elasticity, they cannot explain why they change with
time. Since “time” is a concept defined by people, it is not the fundamental reason for the
change of capital elasticity and labor elasticity. In the practice of rice production, it can
be considered that the technical level of rice production in two adjacent years is roughly
the same. Assuming that the capital and labor input of a certain region are the same for
the two adjacent years, theoretically, the rice yield per unit area should be similar, but the
actual rice yield per unit area will be different. Sometimes, significant differences exist,
the reasons for which are very complex and not completely clear. We believe that natural
disasters may be one of the main causes. Moreover, exploring the influence of climate
change on rice yield has received extensive attention [29,30]. Therefore, we assume that
the output elasticity is a nonparametric smoothing function dependent on natural disaster
factors (such as drought, flood, storm, low temperature, cold damage and so on). Although
it is assumed that natural disasters are independent of time in the later part of this study,
the numerical value of natural disasters in different years changes with time. Therefore,
there are still time-varying characteristics in output elasticity.

To establish an appropriate production function model for rice yield growth analysis,
the following assumptions will be made.

(1) Natural disasters are an important factor that affect the technical efficiency of rice
production. Therefore, they are also a covariant factor that affects the changes of rice
capital elasticity and labor elasticity. A natural disaster is represented by the annual
proportion of crop disaster Z. It is assumed that the output elasticity is a smooth
function dependent on the proportion of crop disaster.

(2) Generally, the technical level, A, is neutral, which essentially reflects the impact of all
other factors except for capital and labor inputs on output growth. Therefore, it is
assumed that the technical level, A, does not depend on the change due to natural
disasters, but only on the change of time, reflecting its dynamic characteristics.

(3) Supposing the natural disaster factor and the time factor are independent. Such an
assumption suggests that the occurrence of natural disasters is completely random.

Based on the above three assumptions, the following varying-coefficient production
function model is constructed:

Y = A(t)Kα(Z)Lβ(Z) (4)

Take the natural logarithm on both sides and add a random error term to obtain:

ln Y = A0(t) + α(Z) ln K + β(Z) ln L + ε (5)

where Y, K, L, Z and t represent rice yield, capital investment, labor input, annual propor-
tion of crop disaster and time, respectively.A0(t) = ln A(t) reflects generalized technical
progress. ε is the random error, satisfying that the mean is 0 and the variance is σ2.

2.2. Estimation Method

In model (5), the intercept function A0(t) and the coefficient functions α(Z) and β(Z)
are two types of function with different smoothing variables. The estimation method will
be different from the traditional varying-coefficient model where all coefficient functions
share a single smoothing variable in a model, due to that the commonly used kernel
estimation methods or the local polynomial estimation method are not applicable here. At
present, there are two approaches to solve the problem. One is the marginal integration
technique [31–33], the other is the smooth backfitting [34,35].
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In this study, the idea of averaged estimation [31,32] will be adopted to construct
the estimation method, which is essentially a marginal integration technique. The basic
procedure is described as follows:

Supposing that {Y(ti), K(ti), L(ti), Z(ti), ti, i = 1, · · · , n} is a sample from model (5),
A0(t), α(Z) and β(Z) all have a Lipschitz continuous second derivative, then A0(t) can
be locally approximated by a linear function at a neighborhood of ti, in which ti belongs
to the support of t, and α(Z), β(Z) can be locally approximated by a linear function at a
neighborhood of Zj = Z(tj), in which Zj belongs to the support of Z. The expressions are
written as follows:

A0(t) ≈ A0(ti) + A′0(ti)(t− ti)
def
= A0 + A1(t− ti), (6)

α(Z) ≈ α
(
Zj
)
+ α′

(
Zj
)(

Z− Zj
) def
= α0 + α1

(
Z− Zj

)
, (7)

β(Z) ≈ β
(
Zj
)
+ β′

(
Zj
)(

Z− Zj
) def
= β0 + β1

(
Z− Zj

)
. (8)

where A′0(ti) denotes the derivative of A0(t) at ti, α′(Zj) and β′(Zj) denote the derivatives
of α(Z) and β(Z) at Zj = Z(tj). We minimize

n
∑

i=1

n
∑

j=1
{ln Y(ti)− [A0+ A1(t− ti)]− [α0 + α1(Z− Zj)] ln K(ti)

−[β0 + β1(Z− Zj)] ln L(ti)}2Hh1(t− ti)
3

∏
s=2

Hhs

(
Z− Zj

)
,

(9)

where Hh(·) = h−1H(·/h), H(·) is a bounded, nonnegative, compactly supported symmet-
ric about zero and Lipschitz continuous density function. This study uses the Epanechnikov
kernel function H(x) = 0.75(1− x2)+. hi(i = 1, 2, 3) is a sequence of positive numbers,
and is called bandwidth.

Let
Y∗i = ln Y(ti), K∗i = ln K(ti), L∗i = ln L(ti),Y∗ = (Y∗1 , · · · , Y∗n )

θ = (A0, A1, α0, α1, β0, β1)
T , Wi,j = Hh1(t− ti)

3

∏
s=2

Hhs

(
Z− Zj

)
,W = diag(W1,1, · · · , Wn,n),

X =

1
...
1

t1 − ti
...

tn − ti

K∗1
...

K∗n

(Z1 − Zj)K∗1
...

(Zn − Zj)K∗n

L∗1
...

L∗n

(Z1 − Zj)L∗1
...

(Zn − Zj)L∗n

.

where the superscript T represents the transpose of a vector or a matrix, and
W = diag(W1,1, · · · , Wn,n) is a diagonal matrix with W1,1, · · · , Wn,n being its diag-
onal entries.

Based on the local polynomial estimation and the principle of least squares theory,
solving the minimization of Equation (9), we can get

θ̃
(
ti, Zj

)
=
(

XTWX
)−1

XTWY∗. (10)

In this study, θ̃ is called an initial value of θ. That is, let Ã0(ti), α̃
(
Zj
)
, β̃
(
Zj
)

denote an
initial value of A0(t), α(Z), β(Z), respectively, and then

Ã0(ti) = Ã0 = (1, 0, 0, 0, 0, 0)θ̃
(
ti, Zj

)
, (11)

α̃
(
Zj
)
= α̃0 = (0, 0, 1, 0, 0, 0)θ̃

(
ti, Zj

)
, (12)

β̃
(
Zj
)
= β̃0 = (0, 0, 0, 0, 1, 0)θ̃

(
ti, Zj

)
. (13)
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According to the idea of averaged estimation, the estimators of the intercept function
A0(t) and the coefficient functions α(Z), β(Z) are further defined as follows:

Â0(ti) = (1, 0, 0, 0, 0, 0)
1
n ∑n

j=1 θ̃
(
ti, Zj

)
, (14)

α̂
(
Zj
)
= (0, 0, 1, 0, 0, 0)

1
n ∑n

i=1 θ̃
(
ti, Zj

)
, (15)

β̂
(
Zj
)
= (0, 0, 0, 0, 1, 0)

1
n ∑n

i=1 θ̃
(
ti, Zj

)
. (16)

2.3. Bandwidth Selection

According to the local polynomial estimation theory, the bandwidth has a great
influence on the estimation of the coefficient functions. Generally, if the bandwidth is small,
the bias of the estimation of coefficient function is also small, but the variance is large. On
the contrary, if the bandwidth is larger, the variance of the estimation of coefficient function
is smaller, but the bias is larger. In model (5), due to the intercept function A0(t) and
coefficient functions α(Z) and β(Z) depend on different smoothing covariates respectively,
it is difficult to get a good estimation by selecting a single bandwidth. The existing literature
shows that in order to make the estimations having good properties, such as asymptotic
normality and more, the bandwidth needs to meet the following constraints [31–33]:

1) n
p

∏
i=1

hi → ∞, n→ ∞ ;

2) hi = cin−
1
5 , nh5

j → 0, j 6= i, i, j = 1, · · · , p, and ci is a constant.

However, so far, how to select the optimal bandwidth in varying-coefficient models
with different smoothing covariates remain a problem that needs further research. In this
study, we adopted Zhang’s suggestions [32]: Supposing our aim is to estimate the coefficient
function α(Zj), let hj = cjn−

1
5 , the bandwidths corresponding to other smoothing variables

are set as hi = cin
− 3

5(p−1) , i 6= j, where i, j = 1, · · · , p, ci and cj are undetermined constants,
p is the number of smoothing variables. In this study, p = 3. These undetermined constants,
ci and cj, are determined using the cross-validation method.

2.4. Measurement Methods on Contribution Rate of Input Factors

Firstly, the growth rate equation under the varying-coefficient production function
model is derived. Supposing that {Y(ti), K(ti), L(ti), Z(ti), ti, i = 1, · · · , n} is a time series
sample, the model (5) will be written as

ln Y(t) = A0(t) + α(Z(t)) ln K(t) + β(Z(t)) ln L(t) + ε(t), t = ti,i = 1, · · · , n. (17)

where Z(t) is a virtual function used to derive the calculation formulas for measuring the
contribution rates of input factors. In model (17), taking the derivative with respect to t on
both sides, we can obtain

dY(t)
Y(t)dt =

dA0(t)
dt + dα(Z(t))

dZ(t)
dZ(t)

dt ln K(t) + α(Z(t)) dK(t)
K(t)dt

+ dβ(Z(t))
dZ(t)

dZ(t)
dt ln L(t) + β(Z(t)) dL(t)

L(t)dt +
dε(t)

dt .
(18)

Equation (18) is called the time point growth rate equation. In practice, an interval
growth rate equation is needed due to the fact that the sample is often time series data. In
other words, the differentials in Equation (18) needs to be approximately replaced by the
corresponding increment. In general, considering the period [t, t + 1], define

dt = ∆t = t + 1− t = 1,

dY(t) = ∆Y(t) = Y(t + 1)−Y(t),
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dK(t) = ∆K(t) = K(t + 1)− K(t),

dL(t) = ∆L(t) = L(t + 1)− L(t),

dA0(t) = ∆A0(t),

dα(Z(t))
dZ(t)

dZ(t)
dt

=
dα(Z(t))

dt
= ∆α(Z(t)) = α(Z(t + 1))− α(Z(t)),

dβ(Z(t))
dZ(t)

dZ(t)
dt

=
dβ(Z(t))

dt
= ∆β(Z(t)) = β(Z(t + 1))− β(Z(t)),

dε(t) = ∆ε(t).

In Equation (18), α(Z(t)) and β(Z(t)) are the point elasticity of K(t) and L(t) with
respect to Y(t), respectively. When the time point growth rate equation is replaced by an
interval growth rate equation, the point elasticities in Equation (18) need to be replaced by
the arc elasticities. There are two methods for estimating the arc elasticities on the period
[t, t + 1] as follows.

Method 1: Let α̃(Z(t)) = [α(Z(t)) + α(Z(t + 1))]/2, β̃(Z(t)) similar definition.
Method 2: Let α̃(Z(t)) = wα(Z(t)) + (1− w)α(Zt + 1), β̃(Z(t)) similar definition.
where w denotes the weight, α̃(Z(t)) and β̃(Z(t)) are the arc elasticities of K(t) and

L(t) with respect to Y(t), respectively. Obviously, method 1 is a special case of method 2, in
which w = 0.5.

In Equation (18), due to the fact that the values of α(Z) and β(Z) are estimated, the
estimation errors of α(Z) and β(Z) will be inevitable. Therefore, the error item dε(t) exists
naturally. According to Solow’s idea, the error term is included in the so-called “residual
value”, we define ∆Ã0(t) = ∆A0(t) + ∆ε(t) and this is used to reflect the share of output
growth contribution by all factors except K(t) and L(t). That is, the so-called generalized
technological progress.

To sum up, the interval growth rate equation corresponding to Equation (18) is
written as

∆Ã0(t) =
∆Y(t)
Y(t)

−
[

∆α(Z(t))lnK(t) + α̃(Z(t))
∆K(t)
K(t)

+ ∆β(Z(t))lnL(t) + β̃(Z(t))
∆L(t)
L(t)

]
. (19)

where ∆Ã0(t) is called generalized technological progress, and ∆Y(t)
Y(t) is the rate of output

growth. α̃(Z(t))∆K(t)
K(t) is called net capital contribution, which reflects the increase of

output caused purely by an increase in capital input; ∆α(Z(t))lnK(t) is called interaction
between capital and natural disaster, which reflects the change of capital contribution
under the influence of natural disasters; and ∆α(Z(t))lnK(t) + α̃(Z(t))∆K(t)

K(t) is called total
capital contribution, which comprehensively reflects the contribution of capital to output
growth under the influence of certain natural disasters. Obviously, when suffering from a
serious natural disaster, ∆α(Z(t)) < 0 and ∆α(Z(t))lnK(t) < 0 will appear. At this time,
the interaction of capital and natural disaster has a negative impact on output growth,
the total capital contribution will be smaller than the net capital contribution and vice
versa. Similarly, β̃(Z(t))∆L(t)

L(t) is called net labor contribution, which reflects the increase
of output caused purely by an increase in labor input; ∆β(Z(t))lnL(t) is called interaction
between labor and natural disaster, which reflects the change of labor contribution under
the influence of natural disasters; and ∆β(Z(t))lnL(t) + β̃(Z(t))∆L(t)

L(t) is called total labor
contribution, which comprehensively reflects the labor contribution to output growth under
the influence of certain natural disasters.

According to Equation (19), the calculation formulas are defined as follows:
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The net capital contribution rate (abbreviated to NKR)

NKR =

[
α̃(Z(t))

∆K(t)
K(t)

/
∆Y(t)
Y(t)

]
× 100% (20)

The contribution rate of interaction between capital and natural disaster (abbreviated
to KDR)

KDR =

[
∆α(Z(t))lnK(t)/

∆Y(t)
Y(t)

]
× 100% (21)

The total capital contribution rate (abbreviated to TKR)

TKR = NKR + KDR (22)

The net labor contribution rate (abbreviated to NLR)

NLR =

[
β̃(Z(t))

∆L(t)
L(t)

/
∆Y(t)
Y(t)

]
× 100% (23)

The contribution rate of interaction between labor and natural disaster (abbreviated
to LDR)

LDR =

[
∆β(Z(t))lnL(t)/

∆Y(t)
Y(t)

]
× 100% (24)

The total labor contribution rate (abbreviated to TLR)

TLR = NLR + LDR (25)

The generalized technological progress contribution rate (abbreviated to GTPR)

GTPR = 1− TKR− TLR (26)

3. Empirical Analysis and Results
3.1. Data Source

In this study, we will use the national rice production data of China for empirical anal-
ysis. The data is extracted from China Statistical Yearbook (1979–2021) and China Agricultural
Product Cost-Benefit Compilation (1979–2021).

The data used in this study includes rice yield per unit area Yi(Kg•hm−2), material
and service cost per unit area of rice Ki(CNY•hm−2), labor employment per unit area of
rice Li(Day•hm−2) and annual proportion of crop disasters Zi(%) from 1978 to 2020 in
China. The time is year denoted by ti, i = 1978, · · · , 2020. From the perspective of cost-
benefit statistics, rice production costs include material and service costs and labor costs.
However, China’s rice production is still based on small-scale decentralized production and
management, and it is difficult to accurately measure the labor costs. In China Agricultural
Production Cost-Benefit Compilation, the labor costs are mainly composed of the discount of
family labor. To avoid double counting the discount of family labor into the model, the
material and service cost per unit area and labor employment per unit area in rice represent
capital investment and labor input, respectively. The natural disaster is represented by the
annual proportion of crop disasters. The value of material and service costs per unit area
are adjusted by the price index of means of agricultural production, in which 1977 is the
base period.

3.2. Results of Estimation

In the varying-coefficient production function model, the optimal kernel function the
Epanechnikov kernel function H(z) = 0.75

(
1− z2)

+ is selected. The optimal bandwidths
are h1,opt = 0.5383, h2,opt = 0.1495, h3,opt = 0.1497, respectively, determined by the cross-
validation method. Based on the optimal bandwidths, the annual estimated values of
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capital elasticity and labor elasticity from 1978 to 2020 are obtained (See Appendix A
Table A1). The results show that from 1978 to 2020, the value of capital elasticity is between
0.3209 and 0.3589, with mean 0.3437, and the value of labor elasticity is between −0.1759
and −0.1640, with mean −0.1730.

In this study, the key problem is the estimation of capital elasticity and labor elasticity.
To test the reliability of our estimation, we use the same data sets to estimate and compare
the capital elasticity and labor elasticity with the varying-coefficient production function
model and the C-D production function model, respectively. The data sets are 1978–2016,
1978–2017, 1978–2018, 1978–2019 and 1978–2020, respectively. In the C-D production
function model, natural disaster data is missing. The results are shown in Table 1.

Table 1. Comparison of estimation results of two models.

Data Sets
C-D Production
Function Model

Varying-Coefficient Production Function
Model

Capital
Elasticity

Labor
Elasticity

Average Value of
Capital Elasticity

Average Value of
Labor Elasticity

1978–2016 0.5046 −0.0518 0.3171 −0.1747
1978–2017 0.5100 −0.0462 0.3315 −0.1738
1978–2018 0.5133 −0.0431 0.3314 −0.1737
1978–2019 0.5159 −0.0406 0.3367 −0.1732
1978–2020 0.5195 −0.0374 0.3437 −0.1730

It is observed that the average estimation results of capital elasticity and labor elasticity
of the two models are different because of the different construction mechanisms of the
models, but the change trends of capital elasticity and labor elasticity are basically the
same. Such trends can be explained in other words that, in the past five years, the capital
elasticity has an increasing trend, whereas the absolute value of labor elasticity has a slightly
decreasing trend. This shows that the application of the varying-coefficient production
function model to measure capital elasticity and labor elasticity is worthy of reference.
Here, the labor elasticity is negative, indicating that labor input has a negative impact
on the growth of rice yield per unit area, and China’s rice production is in the stage of
declining marginal return from the labor force.

In fact, using the C-D production function to measure capital elasticity and labor
elasticity severely depends on the data set and model variable structure. Different data
sets give different elastic estimation. For example, using the C-D production function,
Tian et al. [36] obtained that the capital elasticity was 0.1072 and the labor elasticity was
−0.0631 based on China’s rice production data from 1991 to 2008. Li et al. [37], based
on China’s rice production data from 1978 to 2012, concluded that the capital elasticity
was 0.4824 and the labor elasticity was −0.0826. Based on the rice production data of the
Sichuan Province from 1980 to 2015, Chen et al. [38] attained that the capital elasticity was
0.2814 and the labor elasticity was −0.0655. As we all know, the C-D production function
model is a parametric model, and the varying-coefficient model is a nonparametric model.
In statistics, nonparametric models are generally more robust than parametric models.
Moreover, using the mean square error (MSE) to evaluate the fitting of the model, we
find that based on the rice production data in China from 1978 to 2020, the MSE of the
estimation in the varying-coefficient production model is 2.23 × 10−5, less than the MSE
of the estimation in the C-D production function model, which is 1.54 × 10−3. To sum up,
the use of the varying-coefficient production function model in measuring capital elasticity
and labor elasticity depends on the data set, but also the fitting effect and robustness of the
model; the varying-coefficient production function model is better than the C-D production
function model.

To show the estimated effect, the fitting results of the model are showed in Figure 1,
where LnY represents the natural logarithm of Y. The dynamic characteristics of output
elasticity of capital and labor are presented visually in Figures 2 and 3, respectively.
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In Figure 1, the real values and the fitting values of LnY are shown with asterisks
and circles, respectively. The difference between the real values and the fitting values is
quite small, thus the estimation of the model is satisfactory. Figures 2 and 3 show that
capital elasticity and labor elasticity have obvious fluctuation characteristics in different
years. From 1978 to 2004, both capital elasticity and labor elasticity shows an obvious
downward trend. From 2005 to 2020, capital elasticity shows an increasing trend, whereas
labor elasticity is relatively stable. When the proportion of crop disasters is significantly
larger, such as in the years 1980, 1991, 1994, 1997, 2000, 2001 and 2003, the elasticity of
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capital and labor decrease significantly. It indicates that natural disasters greatly effect
rice yield per unit area, as well as the capital elasticity and labor elasticity. As a result,
hypothesis (1) in Section 1 is reasonable.

To explore the impact of natural disasters on the output elasticity of capital and labor,
scatter plots are drawn with the annual proportion of crop disasters as abscissa and the
corresponding elasticity value as ordinate. The results are given in Figures 4 and 5.
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Figure 5. The relationship between the output elasticity of labor and the annual proportion of
crop disasters.

It can be seen from Figure 4 that there is a significant negative linear correlation
between capital elasticity and annual proportion of crop disasters, with a correlation
coefficient of −0.9817. Figure 5 shows that there is also a negative correlation between the
absolute value of labor elasticity and annual proportion of crop disasters, with a correlation
coefficient of −0.8752. As the annual proportion of crop disasters increases, the decreasing
speed of capital elasticity and labor elasticity tends to increase. When the annual proportion
of crop disasters is more than about 18%, the elasticity of capital and labor show a significant
decline curve. It indicates that capital elasticity and labor elasticity are greatly affected
by natural disasters. When natural disasters reach a certain proportion, such as 18%, the
capital elasticity and the labor elasticity will decrease rapidly, and at this time, the ability of
existing rice production technology to resist natural disasters will decrease rapidly.
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3.3. Contribution Rate of Rice Input Factors

To investigate the dynamic characteristics of the contribution rate of input factors to the
rice yield growth in China, taking the production level in 1978 as the common comparison
object, the contribution rate of each input factor in rice yield growth from 1979 to 2020
are calculated by using the measurement methods described in Section 2.3. The results
are shown in Appendix A Table A2. Figure 6 shows the change trend of the contribution
rate of the three main production factors to the rice yield growth. The names of the three
main contribution rates are total capital contribution rate (abbreviated to TKR), total labor
contribution rate (abbreviated to TLR) and generalized technical progress contribution rate
(abbreviated to GTPR). We emphasize that this study does not calculate the contribution
rate in rice yield growth each year relative to the previous year, because technological
progress is a gradual process, and there is little difference in the technical level of rice
production between two adjacent years. It is difficult and meaningless to calculate the
technological progress of each year, compared with the previous year in rice production.
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Figure 6 shows that, compared with 1978, the GTPR of the rice yield growth in China
from 1979 to 2020 shows a declining trend in fluctuations, whereas the TKR shows a rising
trend in fluctuations and the TLR is relatively stable in the same period. Specifically, from
2000 to 2020, the GTPR decreased significantly. Its value decreased from 52.58% in 2000 to
15.30% in 2020. The value of the TKR increased from 25.80% in 2000 to 65.52% in 2020, an
increase of 153.95%. Capital investment became the main factor in rice yield increase. It
shows that China’s rice yield growth in recent years has mainly depended on the increase of
material and service cost, indicating that it is an extensive and unsustainable growth mode.

3.4. Decomposition of Capital Contribution Rate

It can be seen from Section 3.3 that the increase in rice yield per unit area in China has
mainly depended on the increase of capital investment since 2000. To identify which inputs
are playing the leading role, this section will decompose the total capital contribution rate
for the second time.

In this study, capital investment is measured by the material and service cost per unit
area of rice. The material and service cost are composed of seed cost, chemical fertilizer cost,
farm fertilizer cost, pesticide cost, agricultural film cost, lease cost (including mechanical
operation cost, irrigation and drainage cost, animal power cost, etc.), fuel power cost,
technical service cost, tools and materials cost, repair and maintenance cost, other direct
costs and indirect costs. We define the weight of each input is the proportion of the cost
of each input factor to the material and service cost. The capital contribution rate will be
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decomposed according to the weight of the input factors. The data is extracted from China
Agricultural Product Cost-Benefit Compilation. The results are listed in Appendix A Table A3,
and the trend for visual perception is shown in Figure 7.
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Figure 7 shows that the top four input factors are machinery, fertilizer, seed and pesti-
cide in order of contribution rate. The contribution rate of machinery increases fastest, and
machinery becomes the factor with the largest contribution rate among capital investment.
The contribution rate of machinery increased from 2.76% in 2000 to 24.24% in 2020. It
proves that the mechanization of rice production in China has made great progress. The
second most important input factor is chemical fertilizer. The contribution rate of chemical
fertilizer increased from 7.38% in 2000 to 18.25% in 2012, and slightly decreased from 17.56%
in 2013 to 16.47% in 2020 ranking it second. The third important input factor is seed. The
contribution rate of seed increased from 1.98% in 2000 to 8.18% in 2020. The fourth input
factor is pesticide. The contribution rate of pesticide increased from 1.93% in 2000 to 7.35%
in 2020. Thus, it can be seen that, firstly, since the 21st century, with the rapid growth of
agricultural labor costs, machinery plays an increasingly important role in China’s rice
production, and the development of rice production mechanization is of great significance
to improve the rice yield. Secondly, chemical fertilizer and pesticide play an important
role in the rice yield growth, indicating that the current rice production mode in China is
not sustainable. In the future, people expect to drastically reduce the use of fertilizers and
pesticides in rice production. Finally, the most fundamental way to improve rice yield per
unit area is to cultivate good varieties. The application of superior rice varieties has played
an increasingly important role in China’s rice yield growth. Based on the improvement of
rice varieties and the integration of agro-machinery and agronomy, China’s rice production
mode will quickly enter the modernization stage.

4. Discussion
4.1. Policy Implications

The contribution rate of rice input factors is an important basis for the formulation
of rice industrial policy. The empirical results presented in this study provide important
insights into policy design in the rice industry.

One of the main contributions of this study is to provide a method for measuring
the dynamic elasticity and contribution rate of input factors. Using such method, the
characteristics of the contribution rate of rice input factors in China from 1979 to 2020 were
investigated, and the conclusions from which can be used as a reference for the adjustment
of rice industrial policy.

It can be seen from the conclusion in Section 3.2 that, compared with results calculated
by our proposed model, the capital elasticity is overestimated, whereas the labor elasticity
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is underestimated, when using the traditional C-D production function to measure capital
elasticity and labor elasticity. As a result, the capital contribution rate is overestimated,
the labor contribution rate is underestimated, and the contribution rate of generalized
technological progress is distorted. The results in this study show that the contribution of
generalized technological progress to China’s rice production presents a downward trend in
fluctuations from 1979 to 2012, which is basically consistent with the conclusion by Li et al.
(2016) [37]. However, from 2012 to 2020, the downward trend of the contribution rate of
generalized technological progress has been significantly alleviated, the labor contribution
rate has become more stable, and the capital contribution rate has a slight increasing trend,
but the growth rate has slowed down significantly. The results show that since 2012, China’s
rice industrial policy has achieved certain success in changing the extensive mode of rice
production. In addition, it can be seen from Figures 2 and 3 that the watershed between
the dynamic changes of capital elasticity and labor elasticity was 2004. In the same year,
the Law of the People’s Republic of China on Promotion of Agricultural Mechanization
was promulgated and implemented. Perhaps, such a discovery can be used as one of the
bases to test the impact of the Law of the People’s Republic of China on Promotion of
Agricultural Mechanization on China’s rice industry.

In the analysis of economic growth, capital is a complex concept. The secondary
decomposition of capital contribution rate can measure the contribution rate of various
material inputs, thus providing a more targeted basis for the formulation of industrial
policies [39]. The results in this study show that, since 2000, although China has made great
progress in rice production technology, including the success of super hybrid rice breeding
and the gradual maturity of cultivation technology and mechanization technology, the blind
expansion of capital investment has reduced the contribution of technological progress to
the growth of rice yield per unit area. Among the numerous capital investments in rice
production, machinery, chemical fertilizer, seed and pesticide are the four most important
input factors. The increase in machinery and seed input at this stage is in line with China’s
needs to develop rice mechanization and strengthen variety cultivation. However, the
increase of chemical fertilizers and pesticides has restricted the sustainable development of
China’s rice industry. With the development and progress of human society, not starving
is no longer the only goal of human life, and grain yield is also no longer the only goal of
agricultural production. Healthy and delicious food is gradually getting people’s favor.
The environmental pollution and food toxicity caused by the residues of chemical fertilizers
and pesticides are also being realized and studied [40,41]. In future rice production,
we cannot unilaterally pursue the improvement of yield at the cost of environmental
pollution and food poisoning. The extensive mode of rice production in China has not
been fundamentally changed. Technology and resource constraints remain the “key” issues
that perplex the development of China’s rice industry [42]. Strengthening scientific and
technological support as well as optimizing the policy system are the inevitable choice for
the development of China’s rice industry.

4.2. Advantage of the Proposed Model and Applications in Future Work

Based on the idea of varying-coefficient modeling, the C-D production function is
extended to a varying-coefficient production function, which can be used to estimate the
dynamic elasticity of input factors and calculate the contribution rate of input factors,
providing a new method to study the dynamic characteristics of the contribution rate of
input factors in economic growth.

In particular, the analytical ability of the model is expanded due to the introduction
of the natural disaster factor. In this model, the contribution rate of an input factor can be
decomposed into the net factor contribution rate and the contribution rate of interaction
between input factor and natural disaster. For example, it can be seen from Appendix A
Table A2 that the natural disaster has a certain impact on the rice yield growth. The value
of KDR is between −31.25% and 41.13%, with mean 1.11%. The value of LDR is between
−11.85% to 28.98%, with mean 0.61%. The law is concluded as follows: when the annual
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proportion of crop disaster increases, the KDR is negative, whereas the LDR value is positive
and vice versa. This is consistent with intuitive perception. Therefore, when the traditional
C-D production function is extended by varying-coefficient production function, the new
model can not only be used to measure the dynamic output elasticity and contribution rate
of input factors in the study period, but also can be used to explore the interaction between
input factors and natural disasters in studying rice yield growth. Such a model can provide
a new way for in-depth analysis of the factors in studying economic growth.

Of course, the model can be further improved. When the model is applied, its adapt-
ability needs to be considered. Firstly, in essence, the varying-coefficient production
function model belongs to the nonparametric statistical model. To get good results, large
samples are generally required. Secondly, the bandwidth has a great influence on the
estimation of the coefficient functions. How to determine the optimal bandwidth is still
a problem to be further studied [31,32]. Thirdly, the variable, Z, in the elastic functions
α(Z) and β(Z) is not unique. In this study, Z means the annual proportion of crop disas-
ters. In other applications, Z can be represented by other variables such as temperature,
concentration, humidity and so on.

5. Conclusions

From the results presented in this study, the following conclusions can be drawn:

(1) From 1978 to 2020, the value of capital elasticity of rice yield growth in China is
between 0.3209 and 0.3589, with mean 0.3437, and the value of labor elasticity is
between −0.1759 to −0.1640 with mean −0.1730, indicating capital elasticity and
labor elasticity are not constant in different years.

(2) The correlation coefficient between capital elasticity and the annual proportion of
crop disasters is −0.9817, and correlation coefficient between labor elasticity (absolute
value) and the annual proportion of crop disasters is −0.8752, presenting a negative
relationship for both. With an increase in the annual proportion of crop disasters, the
decreasing speed of capital elasticity and labor elasticity tends to increase. When the
annual proportion of crop disasters is more than about 18%, the capital elasticity and
the labor elasticity show a significant decline curve, proving that natural disasters
have a great impact on capital elasticity and labor elasticity. Therefore, we should
focus on the long-term strengthening of disaster prevention and resistance. In view of
the possibility of the more frequent occurrence of extreme weather events, we should
systematically consider various links such as variety cultivation, water conservancy
projects, farmland construction, agricultural machinery and agronomy, explore scien-
tific methods, and promote the improvement of the agricultural disaster prevention
and relief work system and mechanism.

(3) Compared with 1978, the GTPR of China’s rice yield growth from 1979 to 2020 shows
a declining trend in fluctuations, whereas the TKR shows a rising trend in fluctuations
and the TLR is relatively stable in the same period. The value of GTPR is between
15.30% and 58.71%, the TKR is between 9.57% and 65.52%, and the TLR is between
0.92% and 69.373%. Since 2000, the increase in rice yield per unit area in China mainly
depended on the increase of capital investment. The top four input factors are machin-
ery, chemical fertilizer, seed and pesticide in the order of contribution rate. To ensure
the sustainable and healthy development of China’s rice industry, it is suggested to
reasonably limit the use of chemical fertilizers and pesticides, vigorously develop
agricultural mechanization technology, and strengthen rice variety cultivation.
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Appendix A

Table A1. The values of output elasticity of capital and labor from 1978 to 2020.

Year α β

1978 0.3426 −0.1735
1979 0.3504 −0.1757
1980 0.3280 −0.1671
1981 0.3466 −0.1748
1982 0.3497 −0.1756
1983 0.3495 −0.1756
1984 0.3502 −0.1757
1985 0.3408 −0.1728
1986 0.3394 −0.1722
1987 0.3444 −0.1741
1988 0.3382 −0.1717
1989 0.3388 −0.1719
1990 0.3482 −0.1753
1991 0.3337 −0.1697
1992 0.3370 −0.1712
1993 0.3411 −0.1729
1994 0.3246 −0.1656
1995 0.3428 −0.1735
1996 0.3446 −0.1742
1997 0.3302 −0.1681
1998 0.3399 −0.1724
1999 0.3378 −0.1715
2000 0.3209 −0.1640
2001 0.3277 −0.1670
2002 0.3366 −0.1710
2003 0.3239 −0.1653
2004 0.3505 −0.1757
2005 0.3467 −0.1749
2006 0.3399 −0.1724
2007 0.3395 −0.1722
2008 0.3439 −0.1739
2009 0.3455 −0.1745
2010 0.3488 −0.1754
2011 0.3546 −0.1758
2012 0.3555 −0.1757
2013 0.3532 −0.1759
2014 0.3547 −0.1758
2015 0.3550 −0.1758
2016 0.3539 −0.1759
2017 0.3564 −0.1755
2018 0.3566 −0.1755
2019 0.3589 −0.1751
2020 0.3589 −0.1751
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Table A2. Input factor contribution rates in rice yield growth from 1979 to 2020.

Year GTPR/% NKR/% KDR/% TKR/% NLR/% LDR/% TLR/%

1979 42.89 15.06 41.13 56.19 12.77 −11.85 0.92
1980 20.70 40.82 −31.25 9.57 40.75 28.98 69.73
1981 32.38 23.85 16.15 40.00 32.93 −5.31 27.63
1982 58.08 12.68 11.11 23.79 21.20 −3.07 18.13
1983 56.77 17.92 8.97 26.89 18.78 −2.44 16.34
1984 58.71 17.51 7.98 25.49 17.82 −2.01 15.80
1985 58.43 22.51 −2.11 20.41 20.49 0.68 21.17
1986 54.11 28.58 −3.51 25.07 19.68 1.13 20.82
1987 40.66 38.44 1.93 40.37 19.53 −0.56 18.98
1988 32.66 49.63 −5.20 44.43 21.27 1.64 22.91
1989 38.26 46.19 −3.92 42.28 18.25 1.21 19.46
1990 36.56 43.08 5.07 48.14 16.58 −1.28 15.30
1991 41.67 46.05 −8.52 37.53 18.05 2.75 20.80
1992 37.61 48.73 −4.87 43.87 17.04 1.48 18.52
1993 29.94 54.21 −1.28 52.94 16.77 0.36 17.13
1994 34.72 58.95 −15.80 43.15 17.20 4.93 22.13
1995 31.55 52.79 0.17 52.96 15.54 −0.05 15.49
1996 36.37 48.23 1.50 49.73 14.29 −0.39 13.89
1997 46.79 44.78 −8.58 36.20 14.40 2.61 17.01
1998 42.51 43.33 −1.79 41.54 15.48 0.48 15.96
1999 39.60 46.19 −3.33 42.86 16.63 0.90 17.53
2000 52.58 41.04 −15.24 25.80 17.19 4.43 21.62
2001 45.03 44.16 −10.99 33.17 18.68 3.12 21.81
2002 36.06 47.88 −4.43 43.45 19.32 1.16 20.49
2003 41.53 48.63 −14.52 34.11 20.33 4.03 24.36
2004 31.96 43.75 5.46 49.21 19.79 −0.96 18.83
2005 33.58 43.48 2.92 46.40 20.63 −0.61 20.02
2006 31.67 47.98 −1.95 46.03 21.86 0.44 22.30
2007 37.20 43.97 −2.06 41.90 20.44 0.45 20.89
2008 34.68 44.71 0.82 45.53 19.95 −0.16 19.79
2009 33.64 44.58 1.82 46.40 20.30 −0.33 19.96
2010 25.87 49.77 3.98 53.74 21.02 −0.63 20.39
2011 23.07 50.14 7.36 57.50 20.14 −0.71 19.43
2012 18.68 54.07 7.88 61.96 20.01 −0.65 19.36
2013 17.32 56.38 6.53 62.91 20.44 −0.68 19.76
2014 17.52 55.82 7.23 63.05 20.06 −0.62 19.43
2015 17.80 55.86 7.27 63.13 19.65 −0.59 19.06
2016 16.32 57.43 6.71 64.15 20.12 −0.59 19.53
2017 15.74 56.80 8.00 64.80 19.95 −0.48 19.47
2018 18.21 55.02 7.83 62.84 19.38 −0.44 18.94
2019 16.76 55.30 9.04 64.34 19.25 −0.34 18.91
2020 15.30 56.42 9.10 65.52 19.51 −0.33 19.18

Table A3. Capital contribution rate and its decomposition from 2000 to 2020.

Year Seed
Cost/%

Chemical
Fertilizer
Cost/%

Farm
Fertilizer
Cost/%

Pesticide
Cost/%

Agricultural
Film Cost/%

Mechanical
Operation

Cost /%

Irrigation and
Drainage
Cost/%

Animal
Power
Cost/%

Fuel Power
Cost/%

Other
Cost/%

2000 1.98 7.38 0.91 1.93 0.36 2.76 2.33 2.38 0.01 5.77
2001 2.26 9.39 1.17 2.60 0.43 3.64 3.21 2.99 0.00 7.47
2002 3.20 12.00 1.45 3.26 0.54 4.90 3.88 3.51 0.01 10.70
2003 2.48 9.65 1.00 2.87 0.38 4.04 3.16 2.73 0.08 7.71
2004 3.62 15.83 1.79 4.83 0.66 7.11 3.99 3.86 0.21 7.29
2005 3.89 16.29 1.57 5.03 0.70 7.95 3.51 3.26 0.10 4.10
2006 3.93 15.18 1.36 6.06 0.67 9.28 3.57 2.99 0.12 2.88
2007 3.52 13.59 0.99 5.67 0.59 9.40 3.03 2.75 0.07 2.30
2008 3.50 16.54 1.06 5.65 0.56 10.91 2.62 2.56 0.08 2.04
2009 4.10 15.04 1.10 5.66 0.49 12.19 2.81 2.36 0.32 2.34
2010 5.42 15.88 1.34 6.47 0.58 15.72 2.97 2.25 0.22 2.89
2011 5.97 17.44 1.11 6.25 0.58 17.56 3.15 2.09 0.33 3.01
2012 6.60 18.25 1.15 6.69 0.60 20.10 3.04 1.85 0.34 3.33
2013 6.92 17.56 1.10 6.63 0.59 21.46 3.20 1.44 0.39 3.60
2014 7.28 16.22 1.04 6.74 0.60 22.89 2.77 1.36 0.44 3.72
2015 7.30 16.07 1.13 6.75 0.59 23.17 2.73 1.18 0.45 3.77
2016 7.61 15.88 1.13 6.79 0.62 23.93 2.74 0.99 0.51 3.95
2017 7.96 16.04 1.16 6.90 0.59 24.03 2.64 0.75 0.65 4.07
2018 7.74 15.99 1.17 6.54 0.54 23.30 2.53 0.53 0.57 3.93
2019 7.88 16.61 1.14 6.86 0.51 23.73 2.74 0.41 0.65 3.81
2020 8.18 16.47 1.17 7.35 0.51 24.24 2.60 0.32 0.72 3.97
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