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Abstract: Mapping and monitoring land use (LU) changes is one of the most effective ways to
understand and manage land transformation. The main objectives of this study were to classify LU
using supervised classification methods and to assess the effectiveness of various machine learning
methods. The current investigation was conducted in the Nord-Est area of Tunisia, and an optical
satellite image covering the study area was acquired from Sentinel-2. For LU mapping, we tested three
machine learning models algorithms: Random Forest (RF), K-Dimensional Trees K-Nearest Neighbors
(KDTree-KNN) and Minimum Distance Classification (MDC). According to our research, the RF
classification provided a better result than other classification models. RF classification exhibited the
best values of overall accuracy, kappa, recall, precision and RMSE, with 99.54%, 0.98%, 0.98%, 0.98%
and 0.23%, respectively. However, low precision was observed for the MDC method (RMSE = 1.15).
The results were more intriguing since they highlighted the value of the bare soil index as a covariate
for LU mapping. Our results suggest that Sentinel-2 combined with RF classification is efficient for
creating a LU map.

Keywords: sentinel-2; land use mapping; supervised classification; spectral index; machine learning

1. Introduction

Land use (LU) is the result of complex interactions between humans and the physical
environment, having significant effects on ecosystem processes [1,2]. Furthermore, it is
strongly associated with the sustainable development of the social economy [3]. Land
uses change more quickly when economic development picks up speed and the contrast
between different LU types increases [4]. In fact, the surface of the earth is rapidly changing
due to certain natural reasons and other impacts by society. Thus, various approaches were
used to detect and map LU [5].

In fact, there is a high demand for LU maps for the monitoring and management of the
most significant changes in the environment, including urbanization, agricultural expansion
and the creation of strategies to understand soil biophysical processes [6,7]. Therefore,
LU maps are indispensable for controlling the dynamics of environmental ecosystems
and to monitor the environmental phenomena [8,9]. Sustainability science is based on LU
mapping [10]. It provides a better distinction between artificial areas, agricultural areas,
forests, moors and wetlands [11] and monitors the direct effect of climate change, as well
as changes in vegetation cover, surface conditions and LU on catchments [12].

Both the management of land potential throughout the year and the monitoring of
changes in the environment can benefit from accurate LU maps. Various tools can be used
to obtain LU mapping. One of the primary techniques that can be applied to achieve land
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cover (LC) mapping is remote sensing [7,10,13,14]. According to [11,15], the contribution
of remote sensing in conventional mapping methods is indispensable to making cover
mapping a reasonable practice.

Optical remote sensing images are considered a very appropriate tool for studying and
managing the evolution of land use and land cover (LULC) in a constant and continuous
way [16,17]. Abou Samra et al. [18] focused on the potential benefits of optical image
data in order to assess human-induced changes and their impacts and to highlight how
remote sensing contributes to developing the best environmental management plans for
mid-crop climate and land use change. Furthermore, in arid and semi-arid areas, Shafiza-
deh-Moghadam et al. [19] revealed that multispectral data are an effective tool for LULC
mapping, especially for the separation of different green cover areas. Optical remote sensing
data from Sentinel-2 has been increasingly successful due to its high spatial resolution and
improved spectral resolution in the near-infrared region, which provides wide applicability
for classification and calculating soil properties [20], land mapping [21] and monitoring
purposes [15,22,23].

LU classification is one of the most popular applications used in remote sensing [16].
Using the pixel values, different techniques are adopted for data extraction of LC types
from optical imagery (Sentinel-2). In this regard, the classification method is the most useful
tool for image interpretation and information extraction in different bands of the satellite
sensor. This information is extracted in terms of digital numbers that will be converted to a
category [24].

In recent years, a great revolution in the implementation of various classification
algorithms has been achieved. Classification can be carried out by different methods, para-
metric or nonparametric, contextual or noncontextual [25] and supervised or unsupervised
methods [26].

Supervised classification is considered a technique where the user supervises the
process of classifying the pixels. The user specifies the various pixel values or spectral
signatures that might be associated with the specific class [24]. Through supervised classifi-
cation, information such as LC type, vegetation type and soil properties can be obtained [27].
Moreover, referring to [27,28], supervised classification is more advantageous than unsu-
pervised classification in most applications [29]. It has been commonly employed to detect
the land use map [19], and according to [30], it must be followed by knowledge-based
specialist classification systems depending on reference maps to enhance the accuracy of
the classification process.

Machine learning algorithms are widely used in remote sensing data [10,14] and
applied for LU classification [28,31]. Performance criteria are optimized by using data to
program computers in machine learning [32]. The latter has a wide range of uses and is
one of the fields with the fastest growth rate. In addition, one of the targets of the machine
learning technique is to give the algorithm the ability to learn, implement [29] and improve
the efficiency of systems and the de-signature of machines [33].

Recent recommendations for classifying land cover include different methods, such
as Random Forest. By comparing the accuracy of RF algorithms with other models, such
as support vector machine (SVM) and artificial neural network (ANN), for LU mapping
using optical image data, Talukdar et al. [34] have shown the effectiveness of using RF and
revealed that all the classifiers have a similar accuracy level with minor variation, but the
RF algorithm has the highest accuracy.

Additionally, it was discovered by Kulkarni and Lowe [35] that RF outperformed all
other classifiers, including MDC, in terms of total accuracy and kappa coefficient. Added
to that, Shareef et al. [36] have shown that when RF and KDTree-KNN classification are
compared for the purpose of creating LULC maps using multispectral images, RF always
has higher accuracy than KDTree-KNN.

Despite the previous studies using the RF algorithm in many data mining applications,
its potential is not fully explored for analyzing Sentinel-2 images to create LU maps. In
recent decades, Tunisia, with a semi-arid climate and irregular rainfall, has been threatened
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by an increase in soil degradation associated with a change in land usage [33,34]. In this
context, the main objectives of this study are to (i) compare the performance of different
supervised classification algorithms of LU mapping using Sentinel-2 image data and
(ii) assess the most efficient supervised classification for mapping LU and the potential of
Sentinel-2 data to classify LU in a semi-arid area.

2. Materials and Methods
2.1. Study Area

The study area is located in Tunisia’s Northeast, Zaghouan governorate (latitude:
36◦32′47.81” N, longitude: 10◦2′7.46” E) (Figure 1C), with a total area of 34,000 ha. The
topographic elevation in the research region ranges from 130 to 1295 m in the output of the
Meliane valley’s watershed and at the top of Zaghouan mountain, respectively [37]. The
region is characterized by a semi-arid climate with two seasons: a dry season from June
to September and a wet season from October to May. Rainfall varies greatly in both time
and place. The annual evapotranspiration rate is 1398 mm, while the average rainfall is
390 mm. The average temperature value is 22 ◦C [38]. The study area is composed of vast
plains with a series of mountainous masses in the middle, crossed in its south-eastern part
by the limestone Dorsale, which has played an important paleogeographic and tectonic
role in geological eras [39]. Moreover, this plain is a collapsed area limited from the north
by the Triassic fault of the mountain [37].
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Figure 1. Location of the study area. (A) Tunisia’s location worldwide, (B) Governorate of Zaghouan
in Tunisia and (C) Study area.

Further, the vegetation is quite homogenous and characterized by shrubby species
such as (Calycotome villosa) and clumps of esparto grass (Stipa tenacissima L.) with some
spontaneous annual crops. Added to that, fruit growing with intercropping of irrigated
vegetable crops and field crops are installed [40,41].

2.2. Data Collection

The dataset used in this study was obtained from the regional agricultural devel-
opment committee of Zaghouan (RADCZ of Tunisia in 2021). It consists of LU data,
boundaries of the study area, topography and climatic data [42].
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Data collection took place at the end of August month. The chosen point and species
crops are adopted based on data obtained from Google Earth (Table 1), Tunisian LU maps
and, finally, by a field survey (Figure 1).

Table 1. Data collection information.

Data Collection Characteristics

Sample number 220 points

Date August 2021

Sampling type systematic with a step of 1 Km

Total area 34,000 ha

Sol class number 6 classes

Water 4 points

Urban area 42 points

Fields crop 67 points

Arboriculture 65 points

Forest 34 points

Bare soil 8 points

In addition to the field data, in our study, we used Sentinel-2 images, which have
13 spectral bands with different spatial resolutions: 10, 20 and 60 m [43].

For LU classification, the Sentinel 2-MSIL 1C images were acquired from ESA’s Coper-
nicus program [44]. Optical data were extracted in August 2021 using the Sentinel-2 satellite
with a high spatial resolution (HR) with cloud cover not exceeding 1.88% and covering the
entire study area. SNAP 8.0 software (European Space Agency) was used to pre-process
the S2 images, including radiometric calibration and atmospheric correction.

2.3. Methodology

The overall workflow of the study is described in Figure 2. This methodology is
divided into four steps: pre-processing, processing, supervised classification and classifica-
tion’s accuracy evaluation.
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2.3.1. Pre-Processing

Pre-processing was carried out using the SNAP tool provided by ESA. First, the
image was resampled to 10 m; secondly, to avoid distortion that may occur during the
data collection, Sens2Cor atmospheric correction was performed [22] before information
extraction and, finally, the study area was subset.

2.3.2. Processing

In the processing step, six classes were identified (urban area, water, forest, field
crops, arboriculture and bare soil). After pre-processing the S2 image, the training region
polygons for each class were created. In this research, the input layers used in the model
prediction consisted of five bands: B2, B3, B4, B8 with 10 m resolution and B11 because
we need it in the calculation of the bare soil index. In addition to these spectral bands,
vegetation and soil conditions of the study area were defined by the Normalized Difference
Vegetation Index (NDVI), Coloration Index (CI), Redness Index (RI), Normalized difference
built-up index (NDBI), Adjusted Vegetation Index (SAVI), Green Leaf Index (GLI), Green
Chlorophyll Index (GCI) and Bare Soil index (BSI). All these indices were used to increase
the classification accuracy (Table 2).

Table 2. Descriptions of some characteristic indices.

Index Characteristics Equations Reference

NDVI

Normalized Difference Vegetation Index: is used to
monitor the condition of vegetation cover as well as to
evaluate the photosynthetic activity of vegetation. Water,
bare soil and vegetation are indicated by NDVI values of
−1, 1 and 0, respectively.

(B4 − B8)/(B4 + B8) [45,46]

CI
Coloration Index: Applying this index, researchers can
learn more about the soil’s organic matter content and
mineral composition.

(B4 − B3)/(B4 + B3) [45,47]

RI Red Index: Used as one of the indices to assess soil
mineralogy, including iron concentration. B42/B32 [48]

BSI

Bare Soil Index: Provides an idea of the state of crops, and
allows the detection of recent deforestation or monitoring
of droughts. Used to improve the accuracy of bare soil
prediction using medium-resolution satellite data.

[(B11 + B4) − (B8 + B2)]/[(B11 + B4) +
(B8 + B2] [49–52]

GCI

Green Chlorophyll Index: This index is used to calculate
the amount of leaf chlorophyll in a wide variety of plant
species. It decreases in stressed plants, making it a useful
indicator of plant health.

[B8/B3] − 1 [53–55]

SAVI

The Soil-Adjusted Vegetation Index: The ground-adjusted
vegetation index was designed to minimize the influences
of soil brightness. Its creator, Huete, added a soil
adjustment factor L to the NDVI equation to correct for
the effects of soil noise (soil color, soil moisture, soil
variability across regions, etc.), which tend to have an
impact on the results: Important fact: L is a soil brightness
correction factor ranging from 0 to 1.

(B8 − B4)/(B8 + B4 + L) x(1 + L)
Avec L = 0.428 [56]

NDBI
The normalized difference built-up index: To enhance the
built-up area’s ability to predict future incidents using
medium resolution satellite datasets

(B8 − B4)/(B8 + B4) [49–52]

2.3.3. Supervised Classification Techniques

Three popular classifiers were applied in this study, Random Forest (RF), the Minimum
Distance Classification (MDC) and the K-Dimensional Tree-KNN classifications technique,
and were implemented in SNAP. The supervised classification consists of three steps;
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selecting the training area, creating signature fields and classifying the S2 image [24]. In a
specific limited region, different combinations of feature sets were evaluated.

Machine Learning Algorithms

Based on previous studies, this section provides descriptions of the advantages of the
three algorithms used in the supervised classification.

Random Forest Classification

The RF classification has been successfully used to integrate remotely sensed imagery
with ancillary geographic information for LULC and is the most popular among digital
soil mappers for predicting soil properties. The predictive performance of RF is better than
other ML techniques for soil mapping [57–60]. A deep mathematical description of RF is
acquired by [61].

Minimum Distance Classification

Minu Nair and Bindhu [27] have shown that the MDC depends mainly on the training
dataset and is recognized to have rapid execution with all pixels being well classified.

K-Dimensional Tress-k-Nearest Neighbor

The KDTree-KNN model can greatly improve search performance while reducing time
complexity. It is characterized by a low cost and effort for the learning processes and no
advanced design and training are required [27,62].

2.3.4. Validation

To validate the results, we used the confusion matrix, and from this, several external
measures were defined, namely:

The Accuracy, which gives an overall indication of the matching degree between the
model and the ground truth. It represents the ratio of the sum of well-classified pixels to
the sum of classified pixels

The Accuracy =
true positive + true negative

true positive + f alse positive + f alse negative + true negative
(1)

The Precision index, which gives an idea about the correct prediction rate of positive
values and recall; it represents the true positive rate or the sensitivity. Precision and recall
are defined as:

Precision =
True positive

True positive + False positive
(2)

Recall =
True positive

True positive + False negative
(3)

In addition, the Kappa coefficient is calculated by the following formula [63]:

Coefficient Kappa =
N ∑ xii – ∑ xi+ x+i

N2 −∑ xi+x+i
(4)

where N: number of rows and columns in the confusion matrix, Xii: observation in row i
and column i, Xi+: Marginal total of row i, X+i: marginal total of column i.

3. Results
3.1. Statistical Evaluation

The statistical results are presented in Table 3 the obtained values in this study were
run based on the results classification. These detailed values were obtained in terms of the
fully supervised creation of the polygon area. The latter was evaluated with Google Earth.
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Table 3. Statistical result analysis.

Sentinel2
31 August 2021

Accuracy Value
(%) RMSE Kappa Value

(%)
Precision

(%)
Recall

(%)

RF 99.54 0.23 0.98 0.986 0.986

MDC 94.29 1.15 0.79 0.828 0.83

KDTree-KNN 99.07 0.49 0.96 0.972 0.97

In our investigation, the data revealed that the obtained accuracy values were more
than 94%, and the highest value occurred for the RF classification, 99% (Table 3). In
regards to the Kappa, RMSE, Precision and Recall values, the best values were noted for
the RF classifications, while we exhibited the worst RMSE value for the MDC classification
algorithm, with 1.15.

The description of the Kappa value can be observed in Table 3.

3.2. Land Use Map

Among the three obtained LU maps, our data revealed that the six classes of the LU
map depended on the choice of the supervised algorithm. In fact, according to the LU
field survey and Google Earth, the RF classification, with homogeneity of class distribution
(water, forest, urban area, bare soil, fields crop and arboriculture), is more realistic (Figure 3).
Moreover, MDC and KDTree-KNN provided a big difference in the obtained maps, where
the field crop class is the most dominant in the produced map, showing, in most cases, a
lack of precision.
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RF showed the best class distribution; this is consistent with the statistical results
obtained by the confusion matrix. However, in the two other models (MDC and KDTree-
KNN), there is some ambiguity between the percentages of class distribution and the land
use map obtained (Figure 4).
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3.3. Relative Importance of the Covariates in RF and Class Distribution

In our investigation, the correlation of the index distribution (GCI, NDVI, RI, NDBI,
SAVI, CI and BSI) in the RF classification used in this investigation showed that the highest
value was obtained for the Bare Soil Index (BSI), with more than 25% (Figure 5), and the
lowest correlation values were obtained for NDVI and GCI (less than 7%) (Figure 5).
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Figure 5. Percentage of index correlation for RF classification. GCI: Green Chlorophyll Index;
* NDVI Normalized Difference Vegetation Index,* CI: Coloration Index;* RI: Redness Index;* NDBI:
Normalized difference built-up index;* SAVI: Soil Adjusted Vegetation Index;* BSI: Barren Soil index.

4. Discussion

In recent years, with the effect of climate change, the application of optical remote
sensing has been used to monitor and assess the distribution of land area. Many tools have
been investigated, but the use of Sentinel-2 images with machine learning algorithms has
been less studied, particularly in Tunisia’s semi-arid climate context.

The present research addressed the research questions: (1) How can Sentinel-2 images
and the use of machine learning algorithms be efficient for managing soil use? (2) How
do the three supervised classification algorithms for the creation of the LU map com-
pare? (3) What are the best performance spectral indices of the supervised classification
algorithms for producing a LU map?
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4.1. Comparison between Machine Learning Classification Methods

The results show that the best machine learning algorithm was obtained for RF classifi-
cation. It performed better in terms of Kappa value, RMSE, Precision, Recall and Accuracy
of LU classification. The LU visualization obtained by RF classification is the most efficient
and close to reality. Our result revealed that RF classification is more efficient than MDC
and KDTree-KNN and has a better classification accuracy (99.54%); this is in agreement
with the studies [35,36], and such results could be explained by the fact that it is simple
and easy and takes less time [64,65].

More interestingly, the RF method is based on decision tree classifiers. Therefore, it
is more flexible and useful for classifying optical image data than MDC. The RF methods
used to enhance the predictive accuracy for LU classification subsequently help to control
the overfishing of data [66]. As demonstrated by [67], RF was able to successfully separate
field crops and arboriculture from the other LU types for all settings.

In our study, the best accuracy (99.54%) obtained for LU classification using Sentinel-
2 is in line with the results achieved by [6,68] in mapping the forest cover in Vietnam
(in Southeast Asia) and in Gabon (in Central Africa), respectively. In the Mediterranean
climate (in Northwestern Spain), Sentinel-2 data and RF supervised classification for an LC
map [69] showed an overall accuracy of 91.6%, which is close to our obtained results.

4.2. Spectral Index Importance for Land Use Classification

To identify both the vegetation and soil characteristics for the LU area, a combination
of various indices, such as the NDVI, SAVI, BSI, CI, RI, NDBI, GLI and GCI, was adopted
for more precision. Our data revealed that BSI has the best correlation, more than 25%;
this is in line with [66] using multispectral imagery. The BSI performance improves with
increasing aridity and decreasing soil moisture. In addition, Qiu et al. [70,71] have shown
that the percentage of bare soil often decreases when the LC is transferred from grass and
crops to forests. Moreover, optical image data are a reliable approach for detecting bare soil
due to seasonal bare soil [51]. This highlights the fact that BSI allows the differentiation
between bare soil and built-up soil, which improves the evaluation of urban expansion
and the good management of agricultural land [72]. In contrast to BSI, our investigation
showed that the correlation between NDVI and GCI is less than 8%.

Several remote sensing indices are derived from different spectral wavelengths of the
optical image, which aim to enhance and separate bare soil from other LC features (water,
forests, urban areas . . . ) [73].

In our case, the enhancement of the BSI value has been promoted by the semi-arid
climate, the low cloud cover percentage, and the field campaign period (August). In our
study, the results proved that Sentinel-2 can be an efficient tool for describing soil charac-
teristics using a spectral index. Such results corroborate those obtained in [74] in India,
showing the preference of Sentinel-2 data over other multispectral data for the classification
of vegetation types. Therefore, the decrease in the NDVI values is explained by the lower
natural vegetation cover [66]. In the case of multispectral images, Naguyen et al. [51] and
Rasul et al. [75] indicated that the study area’s climatic conditions, surrounding vegetation,
soil composition and moisture content must be taken into consideration in order to establish
a satisfactory correlation for the indices.

5. Conclusions

The recent research emphasizes the relevance of Sentinel-2 images for managing LU
and creating LU mapping using machine learning classification methods.

The highest accuracy, Kappa value, Recall and Precision for the LU classification were
obtained for RF. The best correlation for the spectral index used for LU classification was
observed in BSI, and the lowest was for GCI and NDVI. The significant importance of
optical remote sensing images using supervised classification indicated their powerful
capacity for mapping and LU management potential.
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However, the research area’s climatic conditions and soil qualities must be taken
into account while choosing a classification algorithm. Future studies should incorporate
hyperspectral and SAR images with very high resolutions for soil classification to monitor
changes in LU and support agriculture in managing the land.
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