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Abstract: China has had the highest fertilizer use rate in the world for years, but today a large
number of farmlands still use traditional manual fertilizer application methods, which rely entirely
on personal experience and not only cause the waste of fertilizer and water resources but also make
the local ecological environment polluted. This paper researches and designs a BP neural network
PID controller based on PSO optimization to address the above problems. The PSO algorithm is used
to optimize the initial weights of the BP neural network, and then optimize the control parameters of
the PID to achieve accurate control of the liquid fertilizer flow. A precision fertilizer control system
based on the STM32 microcontroller was also developed, and the performance of this controller was
verified in tests. The results showed that compared with the conventional PID controller and BP
neural network-based PID controller, this controller had good control accuracy and robustness, the
average maximum overshoot was 6.35%, and the average regulation time was 41.17 s; when the
fertilizer application flow rate was 0.6 m3/h, the shortest adjustment time is 30.85 s, which achieves
the effect of precise fertilizer application.

Keywords: precision fertilizer application; BP neural network; PSO optimization algorithm;
PID control

1. Introduction

China has a serious shortage of water resources, and agricultural irrigation water is
generally wasted and underutilized. Some remote areas still use the traditional manual
fertilization method, which relies solely on personal experience and is a huge waste of
fertilizer and may even cause harm to the land. Water-fertilizer integration technology is a
highly efficient, water- and fertilizer-saving agricultural technology recognized worldwide
today, which can mix liquid fertilizer with irrigation water and deliver it evenly, regularly,
and quantitatively to the crop root zone through drip irrigation pipelines, which not only
greatly reduces water pollution caused by excessive fertilizer application, but also has
many advantages such as improving soil environment and crop quality [1,2].

However, the process of regulating water and fertilizer flow in precision agriculture
has volume delays in the transmission pipeline, which leads to time-varying, hysteresis,
and non-linear characteristics of the system, so quick and effective regulation of water and
fertilizer flow during fertilizer application is a hot issue in water and fertilizer integration
technology today. Xiuyun Xue et al. [3] designed a variable-speed liquid fertilizer appli-
cator based on ZigBee technology for deep fertilization. The liquid flow information was
collected through a flow meter, and the frequency of the inverter was dynamically adjusted
using an incremental PID control algorithm to accurately achieve the set liquid fertilizer
flow rate, and field trials were conducted. The results showed that the fertilizer applica-
tion accuracy could reach 99.52%, and the maximum flow output difference was within
0.2 L/min for fertilizer application depth variation. Yingzi Zhang et al. [4] designed a slave
computer control system for applying variable-speed liquid fertilizer, using SMC as the core
processor and an electronically controlled pressure regulator as the actuating component,
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and obtained the characteristic equations of the system using classical control theory and
verified the performance of the slave computer by bench testing. The results showed that
the fertilizer application error was less than 0.9 and the fertilizer application accuracy was
greater than 97%. Zhiyun Zou et al. [5] proposed a new nonlinear Hammerstein MAC algo-
rithm and compared it with linear MAC and PID controllers in simulations. The simulation
results showed that the nonlinear Hammerstein MAC algorithm still had good stability and
robustness even in the case of large modeling errors. Zhounian Lai et al. [6] used a fuzzy
adaptive controller to approximate the system parameters to achieve control in a delay-free
model while introducing an extended Smith predictor variable to compensate for the time
delay of the system. The effectiveness of the control strategy was verified experimentally,
and the results showed that the controller had good control performance.

The emergence of many emerging algorithms and theories also brings more effective
solutions for precision fertilization. Yuhong Dong et al. [7] proposed a wavelet-BP neural
network-based method for accurate fertilization of maize, which effectively extracted in-
formation about soil nutrients, fertilization, and yield from the original signal by wavelet
transform, and combined wavelet analysis with an optimized BP neural network to achieve
better accuracy of fertilization prediction. Guozeng Feng et al. [8] proposed a BP neural
network-based valve-opening prediction model and tested the prediction of the model under
different conditions. The results showed that the approximation capability of the neural
network model can be used to directly output the position of the demand valve at the VAV
terminal, reducing the convergence time and stabilization time. Isabel S. Jesus et al. [9] used
Smith-fuzzy fractional order control to solve the time lag of the system. The fuzzy controller
was embedded in the Smith predictor structure and its parameters were tuned by a genetic
algorithm to evaluate the performance of the algorithm with two different approximation
models. The algorithm showed excellent control in nonlinear, time-lagged systems compared
to traditional integer-order control schemes. Jinbin Bai et al. [10] proposed a variable-speed
fertilizer-application-control system for liquid fertilizer based on the beetle tentacle search
algorithm, optimized three parameters of PID using the search algorithm, analyzed the re-
sponse time and overshoot of the system by software simulation, and experimentally verified
the control effect of the control system. The results showed that the actual response time of
the variable-speed fertilizer-application-control system based on the beetle tentacle search
algorithm could reach 2 s, and the average relative error could reach 1.27%. Qiang Fu et al. [11]
used a fuzzy clustering algorithm with Particle Swarm Optimization (PSO) to delineate soil
nutrient management areas and analyzed actual sample soil nutrient data from each manage-
ment area using one-way ANOVA. The delineation results showed that the fuzzy clustering
algorithm of PSO optimization had good performance in delineating the management areas
and provided a basis for variable fertilization techniques.

In this paper, a BP neural network PID control algorithm based on PSO optimization
is designed, which can make fast and effective regulation of fertilizer flow and reduce the
influence of time lag and nonlinearity in the flow regulation process.

Section 1 of this paper introduces the current research status of water-fertilizer in-
tegration technology; Section 2 introduces the working principle of precision fertilizer
application control system and establishes the mathematical model of the system; Section 3
derives the principles of PID algorithm, BP neural network algorithm, and Particle Swarm
Optimization algorithm and analyzes their advantages and disadvantages; Section 3 es-
tablishes simulation models for each of the above three algorithms using Matlab software
and analyzes the simulation results; Section 3 carries out experimental verification of the
dynamic performance of the controller; and Section 4 summarizes the conclusions obtained.

2. Materials and Methods
2.1. Precision Fertilization Control System Structure Composition

Figure 1 shows the structure of the precision fertilization control system. The system
consists of a reservoir, fertilizer tank, filter, solenoid valve, flow sensor, pressure gauge,
hose pump, and other devices, which can be opened and closed by the corresponding
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solenoid valve to achieve irrigation, or irrigation and fertilization at the same time. Among
them, pressure gauges were installed at each end of the filter of the fertilizer tank, and
the clogging of the filter is judged by the before and after values of the pressure gauges to
regularly clean and replace the filter to prevent solid deposits in the fertilizer from clogging
the pipe. The irrigation main was equipped with a pressure regulator to ensure stable
pressure in the pipeline during irrigation; one-way valves were installed in the irrigation
mains and fertilizer mix output pipes to prevent backflow of irrigation water and fertilizer
mix and two flow meters were installed in front of the main valve to monitor the supplied
irrigation water flow and the fertilizer application flow. When solenoid valves 13, 14, 16,
and 19 are opened, independent irrigation can be performed, and when solenoid valves 13,
14, 16, 17, and 18 are opened, irrigation and fertilization can be performed simultaneously.
The hose pump was chosen as the conveying device of the fertilizer application system. The
three-phase asynchronous motor was connected with the pump body of the hose pump,
and the material to be conveyed is surrounded by the hose without contact with other
parts. When the rotor rotates, the hose is compressed and rebounded as the position of the
roller changes, causing the pump to produce suction and pressure out effects to achieve the
purpose of fertilizer delivery. The system precisely regulates the fertilizer application flow
rate at the hose pump outlet by changing the frequency of the inverter connected to the
hose pump.
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Figure 1. Structure diagram of precision fertilization control system: 1. Reservoir; 2. Fertilizer tank;
3. Filter; 4. One-way valve; 5. Pressure regulator; 6. Flow sensor; 7. Pressure gauge; 8. Mixing tank;
9. Agitator pump; 10. Y-filter; 11. Hose pump; 12. Pressure holding valve; 13. Master valve;
14. Branch valve; 15. Drip irrigation belt; 16–19. Solenoid valve.

The STM32F103ZET6 microcontroller was selected as the control element, and the BP
neural network PID control algorithm based on PSO optimization was written into the
microcontroller, with the set fertilizer flow rate as the desired value and the actual flow
rate collected by the flow sensor as the feedback value, and the corresponding control
quantity was calculated to control the motor speed in the hose pump [12] to finally realize
the accurate control of the fertilizer flow rate.

When irrigation and fertilizer application are carried out, the set fertilizer flow rate
will be input into the system, the solenoid valve at the reservoir and fertilizer storage tank
will be opened at the same time, and the hose pump will pump water and fertilizer into the
mixing tank respectively according to the proportion, and in the process of fertilizer mixing,
the agitation pump will be used to mix the fertilizer and water evenly, when the flow
sensor monitors the deviation of the fertilizer flow rate from the set value, the system will
automatically adjust the hose pump flow rate at the outlet of the mixing tank to maintain a
stable state.

Since the object of this paper is the fertilization control system, it is necessary to obtain
the mathematical model of this system, and according to the fertilization characteristics
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and the complexity of the system, the first-order inertia plus delay link transfer function
was chosen to describe the mathematical model of the fertilization control system [13].

G(s) = Ke−τs

Ts+1 (1)

The expected value of fertilizer application flow rate was used as the input of the
open-loop system with a sampling interval of 1 s to obtain the data on flow rate variation.
The first-order approximation method was used to fit the data in Matlab software, the gain
coefficient K of the system was obtained as 1, the delay time τ as 11 s, and the time constant
T as 3.63. The mathematical model of the fertilization control system was obtained above.

2.2. BP Neural Network PID Controller Design Based on Particle Swarm Optimization
2.2.1. Conventional PID Controller Design

The conventional PID controller consists of three units: proportional, integral, and
differential, which have the advantages of simple and reliable operation, high robustness,
and can solve most practical applications in the industry [14]. The structure of the PID
controller in this paper is shown in Figure 2.
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In the controller, the set value r(t) is compared with the measured value y(t) to obtain
the deviation e(t) = r(t)− y(t). The control law gives the control quantity u(t) according
to the deviation e(t), and the control quantity u(t) is applied to the controlled object as a
way to correct and regulate the response of the control system. The control quantity u(t) is
specifically expressed as:

u(t) = Kp[e(t) + 1
Ti

∫ t
0 e(τ)dτ + Td

de(t)
dt ] (2)

where Kp is the scaling factor.
Ti is the integration time constant and Td is the differential time constant.
The above equation describes a continuous PID control algorithm, but in a real control

system, the deviation value e(t) needs to be obtained by sampling, so Equation (2) needs
to be discretized. Assuming that the sampling period is T and a total of k samples are
taken, the integral part of the control algorithm can be represented by Equation (3) and the
differential part can be represented by Equation (4).

∫ t
0 e(t)dt ≈ T

k
∑

j=0
e(j) (3)

de(t)
dt ≈

e(kT)−e[(k−1)T]
T =

ek−ek−1
T (4)

Bringing Equations (3) and (4) into Equation (2), the PID control algorithm expression
is obtained.

u(k) = Kpek + Ki
k
∑

j=0
ej + Kd(ek − ek−1) (5)
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where Kp is the proportionality factor, Ki is the integration factor and Kd is the differentiation
factor; Ki = Kp

T
Ti

, Kd = Kp
Td
T .

In this paper, the incremental PID control algorithm is used to operate on the variation
of the control quantity ∆u(k), which can be obtained recursively according to Equation (5):

u(k− 1) = Kpek−1 + Ki
k−1
∑

j=0
ej + Kd(ek−1 − ek−2) (6)

Equation (6) is subtracted from Equation (5) to obtain:

∆u(k) = Kp(ek − ek−1) + Kiek + Kd(ek − 2ek−1 + ek−2) (7)

Thus, the control quantity u(k) can be expressed as:

u(k) = u(k− 1) + ∆u(k) (8)

The parameter tuning of the PID controller is the core content of control system design,
which determines the proportionality coefficient, integration time, and differentiation time
of the PID controller according to the characteristics of the controlled process. At present,
the main methods are the Cohen–Coon method, critical proportionality method, decay
curve method, and other rectification methods. The common point of these methods is
that the controller parameters are adjusted by test and then according to the engineering
experience formula, which is simple and easy to master.

The Cohen–Coon method is used to initially rectify the three parameters KP, Ti, and Td.
The Cohen–Coon method is mainly used to obtain the optimal PID parameter rectification
value by configuring the dominant pole of the system so that the transition curve of the
object decays at a decay rate of 4:1 [15]. The rectification equation is shown in Equation (9).

Kp = T
Kτ

(
4
3 + τ

4T

)
Ti = τ

(
32+ 6τ

T
13+ 8τ

T

)
Td = τ

(
4

11+ 2τ
T

) (9)

The mathematical model of the control object is shown in Equation (1), and the
corresponding parameters are brought into Equation (1) to obtain Kp = 0.69, Ki = 0.05, and
Kd = 1.78.

Although PID control can solve most engineering problems, it also has shortcomings,
for example, the control parameters of conventional PID cannot follow changes dynamically,
so it is difficult to obtain better control results when it is applied to complex systems [16].

2.2.2. BP Neural Network-Based PID Controller Design

The BP neural network-based PID controller can dynamically adjust the parameters of
the PID through the autonomous learning capability of the neural network, thus replacing
the human empirical values and making the parameters achieve the best control according
to the changes in the environment [17,18].

According to the characteristics of cooperation and constraints of three parameters
Kp, Ki, and Kd of PID control, the mapping ability of the BP neural network to nonlinear
functions is used to obtain the optimal solution for the nonlinear combination of the three
parameters. The structure of the BP neural network-based PID controller is shown in
Figure 3.
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The structure is divided into two parts. Bulleted lists look like this:

1. Conventional PID controller generates control quantities through Kp, Ki, Kd output
from BP neural network to realize feedback control of controlled objects.

2. The BP neural network provides optimal parameters for the PID controller based on
the system operating state and the learning algorithm.

The network structure is shown in Figure 4.
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The input of neurons in the input layer of the neural network is the output:

Oj
(1) = x(j) (j = 1, 2, . . . , M) (10)

where M is the number of input layer variables of the neural network, which can be
adjusted according to the complexity of the controlled object, and the input layer variables
in this paper are expected value, actual value, error, and network threshold.

The input and output of the implicit layer neurons are:

neti
(2) = ∑M

j=0 wij
(2)Oj

(1) (11)

O(2)
i (k) = f

(
net(2)i (k)

)
(i = 1, 2, . . . , Q) (12)

where Q is the number of neurons in the hidden layer, which is set to 5 in order to simplify
the complexity of the system and accelerate the learning speed. wij

(2) denotes the weight
between the ith neuron in the hidden layer and the jth neuron in the input layer, and the
continuous function can be approximated with arbitrary accuracy in the neural network
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using the Sigmoid function, so the transformation function of the hidden layer is chosen as
the positive and negative symmetric Sigmoid function, as in Equation (13).

f (x) = ex−e−x

ex+e−x (13)

The output layer neuron inputs and outputs are:

netl
(3)(k) = ∑Q

i=0 wli
(3)Oi

(2)(k) (14)

O(3)
l (k) = g

(
net(3)l (k)

)
(l = 1, 2, 3) (15)

where wli
(3) denotes the weight between the lth neuron of the output layer and the ith

neuron of the input layer, and the three outputs of the output layer correspond to the three
adjustable parameters Kp, Ki, and Kd of the PID controller, respectively. Since Kp, Ki, and
Kd cannot be negative, the transformation function of the output layer neurons is taken as
a non-negative Sigmoid function, as in Equation (16).

g(x) = ex

ex+e−x (16)

To ensure the real-time performance of the system, the online learning method is used,
and the quadratic of the error is used as the performance indicator, so the performance
indicator function is chosen as:

E(k) = 1
2 [r(k)− y(k)]2 (17)

The gradient descent method is used to adjust the weights of each layer of the BP neural
network in the direction of the negative gradient of E [19]. To improve the convergence
speed, the inertia term with α as the inertia factor is added.

∆w(3)
li (k) = −η

∂E(k)

∂w(3)
li

+ α∆w(3)
li (k− 1) (18)

where η is the learning rate and α is the inertia factor, according to the chain rule we get:

∂E(k)

∂w(3)
li

= ∂E(k)
∂y(k) ×

∂y(k)
∂∆u(k) ×

∂∆u(k)

∂O(3)
l (k)

× ∂O(3)
l (k)

∂net(3)l (k)
× ∂net(3)l (k)

∂w(3)
li (k)

(19)

After simplification and approximation, the final amount of regulation between the
weight of the lth neuron in the output layer and the ith neuron in the hidden layer after
learning is obtained as:

∂E(k)

∂w(3)
li

= ∂E(k)
∂y(k) ∗

∂y(k)
∂∆u(k) ∗

∂∆u(k)

∂O(3)
l (k)

∗ ∂O(3)
l (k)

∂net(3)l (k)
∗ ∂net(3)l (k)

∂w(3)
li (k)

(20)

∆w(3)
li (k) = α∆w(3)

li (k− 1) + ηδ
(3)
l O(2)

i (k) (21)

δ
(3)
l = e(k)sgn

(
∂y(k)

∂∆u(k)

)
∂∆u(k)

∂O(3)
l (k)

g′
(

net(3)l (k)
)

(l = 1, 2, 3) (22)

Similarly, the amount of weight regulation between the ith neuron in the hidden layer
and the jth neuron in the input layer can be obtained as:

∆w(2)
ij (k) = α∆w(2)

ij (k− 1) + ηδ
(2)
i O(1)

j (k) (23)

δ
(2)
i = f ′

(
net(2)i (k)

) 3
∑

l=1
δ
(3)
l w(3)

li (k) (i = 1, 2, . . . Q) (24)
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In summary, Equations (20) and (22) are the calculation equations for the regulation
amount of the weight coefficients of each layer of the network. The BP neural network
algorithm flow is shown in Figure 5.
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The inclusion of the BP neural network algorithm in the PID controller enables the
dynamic regulation of the PID parameters, but due to the gradient descent method, the BP
neural network converges more slowly and is prone to local minima when trained in places
where the error curve is flat [20]. Therefore, this paper makes use of the global optimum
and fast convergence of the Particle Swarm algorithm to improve the BP neural network
and optimize the initial weights of the BP neural network, to overcome the defects that the
neural network is prone to fall into local minima and slow convergence speed.

2.2.3. BP Neural Network PID Controller Design Based on PSO Optimization

The Particle Swarm Optimization (PSO) algorithm, first proposed by Eberhart and
Kennedy in 1995, is an intelligent algorithm designed by simulating the predatory behavior
of a flock of birds. Its basic core is to use the sharing of information by individuals in the
group to continuously update their position and velocity information, thus making the
motion of the whole group produce an evolutionary process from disorder to order in the
problem-solving space, and finally obtaining the optimal solution of the problem [21,22].

The structure of the BP neural network PID controller based on PSO optimization is
shown in Figure 6.
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The PSO algorithm is described in detail as follows:
In the PSO algorithm, each particle possesses two attributes: velocity V and position

X. V represents the speed of particle movement, and X determines the direction of particle
search. Assume that in a D-dimensional search space, a population X = (X1, X2, . . . , Xn)
is composed of n particles, and the position and velocity of the ith particle are denoted
as follows:

Xi = (xi1, xi2, . . . , xiD) (i = 1, 2, . . . , n) (25)

Vi = (vi1, vi2, . . . , viD) (i = 1, 2, . . . , n) (26)

where Xi represents not only the particle position, but also a potential solution to the prob-
lem, i.e., the initial weights of a set of BP neural networks. The fitness value corresponding
to each particle position can be calculated by substituting Xi into the fitness function.

The current individual optimal solution Pbest of the particle, and the current global
optimal solution gbest of the whole particle population will be used as the basis for updating
V and X in the optimization search process.

Pbest = (Pi1, Pi2, . . . , PiD) (i = 1, 2, . . . , n) (27)

gbest = (g1, g2, . . . , gD) (28)

V and X of the particle are updated by Equations (28) and (29), respectively.

vk+1
id = wkvk

id + c1r1

(
Pk

id − xk
id

)
+ c2r2

(
gk

d − xk
id

)
(29)

xk+1
id = xk

id + vk+1
id (30)

where d = 1, 2, . . . , D; i = 1, 2, . . . , n; k is the number of current iterations; wk is the inertia
weight; c1, c2 are learning factors, generally take c1 = c2 =2; r1, r2 are generally taken as
random numbers in the range of [0, 1].

The inertia weight wk decreases as the number of iterations increases.

wk = ws − (k− 1) (ws−we)
Tmax

(31)

where ws and we are the upper and lower bounds of inertia weights in the range of [0.4, 0.9],
respectively, and Tmax is the maximum number of iterations.

In this paper, Equation (17) is used as the fitness function of the PSO algorithm, and
since the optimization object is the weight of the BP neural network and the neural network
structure is 4 − 5 − 3, the dimension D is set to 4 × 5 + 3 × 5 = 35, the maximum number
of iterations is set to 50, the particle swarm size is taken as 20, and the initial weights of
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20 groups of BP neural network are generated randomly. To prevent the particles from
searching blindly, the position X and velocity V are limited to a certain range. The PSO
optimization algorithm flow is shown in Figure 7.
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3. Results
3.1. Analysis of Simulation Results

Matlab software was used for simulation, and three different control methods were
used in the simulation experiments, namely: conventional PID control, BP neural network-
based PID control (BP-PID control), and PSO optimization-based BP neural network PID
control (PSO-BP-PID control). The unit step was used as input signal, respectively, and the
simulation time was 100 s. The simulation results are as follows:

Figure 8 shows the iterative process of the PSO algorithm under unit step response, and
the optimal individual adaptation value was obtained after 50 iterations. Figure 9 shows the
comparison of the control effects of the three controllers under the unit step response.

The dynamic performance index was used to evaluate the control effect of the con-
troller, where the rise time indicates the time when the system is excited by the step signal
and reaches the steady-state value for the first time; the peak time indicates the time when
the system is excited by the step response and reaches the peak; the regulation time indi-
cates the time required for the system to reach stability, i.e., to enter the error tolerance
range; the maximum overshoot reflects the controller control process stability. The dynamic
performance of the three controllers is shown in Table 1.
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Table 1. Dynamic performance of the three controllers.

Controller Type Rise Time(s) Peak Time (s) Regulation
Time (s)

Maximum
Overshoot

PID 12.41 13.62 25.07 58.53%

BP-PID 14.69 16.73 19.68 20.74%

PSO-BP-PID 11.97 12.31 11.77 3.19%

From Figure 9 and Table 1, it can be seen that the conventional PID controller produced
larger oscillation and overshoot, with 58.23% overshoot and longer regulation time although
the rise time was shorter; compared with the conventional PID controller, the BP-PID
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controller had a longer rise time and peak time but the overall response was relatively
stable and the overshoot was reduced to 20.74%; the PSO-BP-PID controller compared with
the other two controllers, the dynamic performance has been significantly improved, not
only were the rise time and regulation time shortened to 11.97 s and 11.77 s, respectively,
but also the overshoot amount was 3.19%, and the response was more rapid and smooth.

3.2. Precision Fertilizer Control System Flow Regulation Test
3.2.1. Testing Device and System Design

To verify the practical performance of the PSO-BP-PID algorithm, a corresponding flow
rate regulation test platform was built for this paper. Using the STM32F103ZET6 microcontroller
as the control element, the signal from the flow sensor received at the I/O port was calculated
inside the microcontroller and converted into a variable voltage signal to adjust the output
frequency of the inverter and finally changed the fertilizer flow rate at the outlet of the mixing
tank. The maximum conveying flow of the hose pump is 1 m3/h, rated power is 1.5 kW, and
rated voltage is 380 V. The frequency converter is rated at 2.2 kW, with an output frequency
between 0 and 400 Hz and a rated voltage of 380 V. The flow sensor was selected from the
stainless-steel electromagnetic flowmeter of Meacon China, model LDG-MIK, with an accuracy
of 0.5%. The volume of liquid in the mixing tank was kept at 50 L during operation. The flow
rate regulation test platform is shown in Figure 10.
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The USB-1252A data collector from Smacq was used to collect the data needed in the
test. The collector has an advanced measurement and control system with 16 analog input
channels, 12-bit vertical resolution, and up to 500 kSa/s analog acquisition capability. The
schematic diagram of the data acquisition and control system is shown in Figure 11.
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3.2.2. Analysis of Test Results

The fertilized crop in this paper is cotton, and since the fertilizer flow rate is determined
by the fertilizer demand of the crop, the fertilizer demand of cotton is different in different
growing periods. The flow rate of the hose pump at the outlet of the mixing tank was set
to 0.4 m3/h, 0.6 m3/h, and 0.8 m3/h in turn, and the performance of the three controllers
was tested. The test results are shown in Figures 12–14, and the performance indexes of the
three controllers are shown in Tables 2–4.
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Table 2. Comparison of the dynamic performance of three controllers at fertilizer application flow
rate of 0.4 m3/h.

Controller Type Rise Time (s) Peak Time (s) Regulation
Time (s)

Maximum
Overshoot

Root Mean
Square Error

PID 21.33 34.97 90.51 61.95% 0.058

BP-PID 54.88 87.47 43.10 9.55% 0.015

PSO-BP-PID 46.27 68.37 31.36 4.08% 0.004

Table 3. Comparison of the dynamic performance of three controllers at fertilizer application flow
rate of 0.6 m3/h.

Controller Type Rise Time (s) Peak Time (s) Regulation
Time (s)

Maximum
Overshoot

Root Mean
Square Error

PID 21.22 36.05 115.86 65.27% 0.084

BP-PID 50.13 77.97 112.52 13.15% 0.028

PSO-BP-PID 37.53 53.36 30.85 6.23% 0.014

Table 4. Comparison of the dynamic performance of three controllers at fertilizer application flow
rate of 0.8 m3/h.

Controller Type Rise Time (s) Peak Time (s) Regulation
Time (s)

Maximum
Overshoot

Root Mean
Square Error

PID 20.80 34.97 155.83 80% 0.125

BP-PID 43.50 74.94 131.46 23.75% 0.070

PSO-BP-PID 32.76 48.64 61.30 8.75% 0.027

The results in Tables 2–4 showed that the performance of the three controllers also
changed with the increase in fertilizer flow rate. The conventional PID controller had
the fastest rise time at all three fertilizer flow rates, but the overshoot was large and the
flow rate had large fluctuations and could not reach the desired value quickly; the BP-PID
controller had significantly less overshoot compared with the conventional PID controller,
but the response speed was slower; the PSO-BP-PID controller had the minimum overshoot
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and root-mean-square error at all three fertilizer flow rates, and could balance the response
speed and stability of the control process at higher flow rates with good robustness to meet
the control requirements in practical applications.

In recent years, the need to improve water use efficiency in irrigated agriculture has
attracted a great deal of attention from researchers. The PSO-BP-PID controller developed
in this paper uses a closed-loop intelligent irrigation feedback control strategy to greatly
improve the efficiency of irrigation water use in the field and provide ideas for future
water sustainability.

4. Conclusions

In this paper, the precision fertilizer control system was studied, its mathematical
model was fitted, and the transfer function of the system was obtained. Based on the BP
neural network PID adaptive control, a PSO optimization algorithm was added to optimize
the initial weights of the neural network, and a BP neural network PID controller based
on PSO optimization was designed, and the dynamic performance of the three controllers,
PID, BP-PID, and PSO-BP-PID, were compared and analyzed.

The test results showed that the PSO-BP-PID controller was significantly better than
the other two controllers in terms of control accuracy and adjustment time. At the fertilizer
application flow rate of 0.4 m3/h, 0.6 m3/h, and 0.8 m3/h, respectively, the set value was
reached quickly with an average maximum overshoot of 6.35% and an average adjustment
time of 41.17 s. Among them, the shortest adjustment time was 30.85 s when the fertilizer
application flow rate was at 0.6 m3/h. This indicates that the controller has the best control
of irrigation fertilization at this flow rate.

The BP neural network PID control algorithm based on PSO optimization can adjust
the PID parameters online according to changes of the environment, which improves the
decision making of the controller. The algorithm reasonably determines the initial weights
of the BP neural network; it solves the problems that the BP neural network easily falls into
local minima and converges slowly; and not only approximates the control target faster,
but also has a shorter response time; thus providing a feasible method for the control of
nonlinear time-lag systems.
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