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Abstract: Determination of evaporation (E) and transpiration (T) in tea fields separately is important
in developing precise irrigation scheduling and enhancing water use efficiency. In this study, the
Shuttleworth–Wallace (S-W) model was applied to simulate the variations of E and T based on the
data from 2015 to 2018 in a tea field in southeast China. The dual crop coefficient (D-K) method
recommended by FAO-56 was also applied to calculate E and T, using the same data set to compare
with the S-W model. The measured crop coefficient (Kc) ranged from 0.43 to 1.44 with the average
value was 0.90 during 1–150 DOY (days of year), and the measured Kc tended to be stable with the
average value of 0.83 during 151–365 DOY in 2015. The S-W model estimated ETc with root mean
square error (RMSE) and R2 of 0.45 mm d−1 and 0.97, while for the D-K method the values were
0.61 mm d−1 and 0.95. Therefore, both approaches could estimate the E and T separately in tea fields
in southeast China, however, the D-K method had a slightly poorer accuracy compared to the S-W
model in the estimation of ETc.

Keywords: Shuttleworth–Wallace model; dual crop coefficient method; evapotranspiration; tea field

1. Introduction

Tea, as one of the oldest (since 3000 BCE) and most popular nonalcoholic caffeine-
containing beverages, has been integrated into the social and daily life in China. At present,
tea is commercially cultivated in more than 3.80 million hectares of land on a continent-wide
scale, and 5.56 million metric tons of tea world-wide were produced annually in 2014 [1].
Irrigation is essential to ensure tea production in southeast China, and the appropriate
amount of irrigation water at the right time directly increases tea quality. However, most of
the tea farmers in southeast China are still using an empirically determined irrigation quota
due to lack of accurate irrigation basis for tea plants. Therefore, accurate determination of
tea evapotranspiration (ETc) is urgently needed to develop precise irrigation scheduling
and enhance water use efficiency in this region [2,3].

Single source models, such as the Penman–Monteith (PM) method [4,5] pan evapo-
ration method [6], Takakura method [7] and Priestley–Taylor method [8], are often used
to determine ETc for grain crop fields [9]. However, unlike grain crops, tea fields always
have wide row space (120 cm) between tea plants so that large soil surface is uncovered
by the tea plants. Hence, the above single source ETc models that do not consider inde-
pendently soil evaporation (E) are especially problematic because the soil evaporation
ratio (E/ETc) is large [10]. Many researchers have reported that the soil evaporation (E)
should not be neglected in estimating ETc and it accounts for 20–30% of the ETc for a cherry
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orchard [10], 25% of ETc for greenhouse tomato [11], 17.8–26.4% of ETc for a mulched green-
house hot pepper [9], and 7.75–21.87% of ETc for greenhouse cucumber [12]. Accordingly,
the two source Shuttleworth–Wallace (S-W) model [13] and the dual crop coefficient (D-K)
method [14], which can estimate transpiration (T) and E separately, have been validated to
estimate ETc in different ecosystems [11,15–19].

The S-W model is the first analytical model, combining T and E by formulating the
different media through which evaporative flux travels as resistances [20]. Three aerodynamic
resistances among different interface (bulk boundary layer resistance: ra

a, aerodynamic resis-
tance between mean canopy flow and reference height: rc

a, aerodynamic resistance between
soil surface and mean canopy flow: rs

a) are introduced simultaneously to regulate the transfer
between these surfaces and the atmosphere [11,21]. Canopy and soil surface resistances (rc

s
and rs

s) are introduced simultaneously into the S-W model to regulate the transfer of energy
from plants and soil, respectively [11]. Ortega-Farias et al. [22] and Zhao et al. [19] parameter-
ized the S-W model by adopting a Jarvis type rc

s formulation and power function between
rs

s and soil water content at the top layer to estimate vineyard ETc. Zhu et al. [17] parame-
terized the S-W model by adopting a Leuning type rc

s formulation and exponential function
between rs

s and soil water content to estimate alpine grassland ETc on the Qinghai–Tibetan
plateau. Huang et al. [12] parameterized the S-W model based on the measured stomatal
resistance and E, by adopting an exponential function between rc

s and net radiation and a
power function between rs

s and soil water content to estimate cucumber ETc in a Venlo-type
greenhouse. Previous studies indicated that the S-W model performed well in estimating
ETc of vineyard [19,22,23], paddy field [24], orchard [10,25], greenhouse tomato [11], and
maize [26,27], but it is challenging to parameterize the two resistances.

To simplify the parameterization process for modeling T and E separately, the Food
and Agricultural Organization of the United Nations (FAO) developed an indirect method,
named dual crop coefficient (D-K) method, to estimate ETc [14]. The D-K method, allows
the separation of E and T and divides crop coefficient (Kc) into basal crop coefficient
(Kcb) and soil evaporation coefficient (Ke) [11,19]. Due to its practical simplicity, the D-K
method is widely adopted to estimate ETc in different types of sparse crops and climatic
regions [26]. Despite the increasing relevance of using the D-K method for modeling crop
ETc, determination of Kcb and Ke is challenging [28]. The straightforward adoption of
generalized Kcb recommended by FAO-56 can lead to errors in the estimation of ETc and its
components, because the dividing of crop growth period and associated crop coefficients
are closely related to local climate and crop condition [19]. Zhao et al. [29] observed Kcb
for maize were 0.20, 1.10, and 0.45 (at the initial, mid, and end stage), respectively, in the
semiarid to sub-humid climate of the North China Plain. Contrastingly, Miao et al. [30]
reported that observed Kcb for maize were 0.10, 1.15, and 0.25 (at the initial, mid, and end
stage), respectively, in the desert climate of the Hetao irrigation district. Rosa et al. [31] also
reported the observed Kcb for maize were 0.07, 1.15, and 0.20 (at the initial, mid, and end
stage), respectively, in the dry sub-humid climate of southern Portugal.

While previous studies have reported that the S-W and D-K methods had different
performances for various crops grown in different regions, no study has been conducted to
assess and compare the performances of the S-W and D-K methods for estimating ETc for
perennial plants like tea in southeast China. Therefore, the purpose of this study was to
(1) parameterize the resistances and coefficients of soil-atmosphere and plant-atmosphere
interface of the S-W and D-K model based on detailed meteorological data from a tea field
in southeast China; (2) compare and evaluate the performances of the S-W and D-K method
in estimating ETc based on the measured ETc by Bowen ratio energy balance method, so as
to provide accurate estimation of ETc for tea fields in southeast China.

2. Materials and Methods
2.1. Field Observation

The experiment was conducted in a tea field located at Jiangsu province, China
(31◦65′ N, 119◦23′ E, 23 m a.s.l) from 2015 to 2018. The experiment site is located in
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a subtropical monsoon climate, average annual precipitation is 1058.8 mm, and about
750 mm occurs in spring and summer; mean, maximum, and minimum air temperatures
through the year are 15.2 ◦C, 36.6 ◦C, and −5.7 ◦C, respectively. The soil text in the study
area is medium loam and the field capacity is 28% [32].

Anji White tea, which is one of the cultivars of tea in China, was used for the experi-
ment. The size of the observation field was 55 × 58 m and was surrounded by other tea
fields, with the total area larger than 7000 m2 [32]. The tea plants were transplanted into the
field on 5 March 2014, with 120 cm spacing between the rows, and 52 cm spacing within a
row. According to the FAO-56 and the actual measurements of the tea plants, the period
from transplanting to the end of 2018 was seen as the initial growing stage of the tea plants,
and the average leaf area index (LAI) was around 2.5.

The latent heat flux of tea field was measured by a Bowen ratio energy balance system
installed in the center of field. The system consists of two layers of high-accuracy temper-
ature and humidity sensors, radiometers, a soil heat flux plate, a three-cup anemometer,
a solar power supply equipment, and a data logger. Two layers (1.5 and 2.0 m above the
ground surface) of air temperature (Ta) and relative humidity (RH) were measured with
sensors HMP155A (Vaisala, Finland) with high measurement accuracies (±0.2 ◦C from −10
to 40 ◦C for Ta,± 1 % from 0 to 90 % for RH). The absolute error between the two HMP155A
sensors was calibrated by setting them at the same height before the field observation. The
radiometers (CNR-4, Kipp and Zonen, Amsterdam, The Netherland), which can measure
downward shortwave/longwave and upward shortwave/longwave radiation separately,
were installed at 2.5 m above the ground. The calculations of longwave radiation com-
ponents were corrected as a thermal effect caused by instrument heating. Soil heat flux
was measured at 2 cm depth with a soil heat plate HFP01-L10 (Campbell Scientific, Logan,
UT, USA). Wind speed was measured with a three-cup anemometer A100L2 (MetOne,
New York, NY, USA) at 2.0 m above the ground. Soil volumetric water content and soil
temperature were measured by Hydra Probe sensors by setting the sensors at five different
depths within the soil layer (5, 10, 20, 50, and 70 cm). All the data were obtained every
1 s and recorded by a data logger CR3000-NB (Campbell Scientific, USA). Due to some
technical problems, the data 335-356 days of year (DOY) in 2016 and 193-300 DOY in 2017
were lost.

In this study, the direction of the prevailing winds during the growing season were
westerly, the influence of fetch was not considered due to the similar coverage, and the
irrigation intensity for 200 m of upwind direction of the observation field [32].

2.2. Bowen Ratio Energy Balance Method

The latent heat flux can be determined by the Bowen ratio energy balance method
as follows:

LE =
Rn − G

1 + β
(1)

β = γ
∆T
∆e

(2)

where LE is the latent heat flux (W m−2), Rn the net radiation (W m−2), G is the ground heat
flux (W m−2), the ∆T and ∆e are the temperature (◦C) and vapor pressure (kPa) difference
between the two measurement layers, respectively, and γ is the psychrometric constant
(kPa ◦C−1).

2.3. Shuttleworth–Wallace (S-W) Model

The evapotranspiration (ETc), tea plants transpiration (T), and soil evaporation (E) can
be calculated by the following expressions based on the S-W model [13]:

ETc= T + E (3)
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T = Cc
∆A + ((ρ acpD− ∆rc

a As)/(r
a
a+rc

a))

∆ + γ(1 + (r c
s/(r a

a+rc
a)))

(4)

E = Cs
∆A + ((ρ acpD− ∆rc

a(A − As))/(r
a
a+rc

a))

∆ + γ(1 + (r s
s/(r a

a+rs
a)))

(5)

Cc =

[
1+

RcRa

Rs(R c+Ra)

]−1
(6)

Cs =

[
1 +

RsRa

Rc(R s+Ra)

]−1
(7)

where Cc is canopy resistance coefficient; Cs is soil surface resistance coefficient; ∆ is the slope
of the saturation vapor pressure curve at temperature (kPa ◦C−1); cp is specific heat of the
air at constant pressure (= 1013 J kg−1 ◦C−1); ρa is air density (kg m−3); D is water vapor
pressure deficit (kPa); rc

s is the canopy resistance (s m−1); rc
a is bulk boundary layer resistance

of the vegetative elements in the canopy (s m−1); ra
a is aerodynamic resistance between mean

canopy flow and reference height (s m−1); rs
a is aerodynamic resistance between soil surface

and mean canopy flow (s m−1); and rs
s is soil surface resistance (s m−1). The S-W model

adopts the concept of a bulk boundary layer resistance, rc
a, which controls transfer between the

surface of vegetation and the canopy air steam. Vertical transport is controlled by two further
aerodynamic resistances (ra

a and rs
a). ra

a is the transfer resistance between the hypothetical
mean canopy flow and the reference height above the crop. rs

a is the aerodynamic resistance
encountered by the energy fluxes leaving the substrate before they are incorporated into the
mean canopy flow [13]. For simplicity, it is assumed that the various aerodynamic resistances
are identical for sensible and latent heat. More detailed approaches that parameterize the
three aerodynamic resistances (rc

a, ra
a, and rs

a) can be found in [13].
Values of Ra, Rs, and Rc were calculated as follows:

Ra= (∆ + γ)ra
a (8)

Rs = (∆ + γ)rs
a+γrs

s (9)

Rc = (∆ + γ)rc
a+γrc

s (10)

A and As (W m−2) are the available energy leaving the canopy and soil surface,
respectively, and were calculated as

A = Rn − G (11)

As= Rns − G (12)

Rns is net radiation absorbed by soil surface and can be calculated using Beer’s law

Rns= Rn exp(−C LAI) (13)

where C is extinction coefficient of the crop for Rn, which was set to 0.7 in this study
according to the Lambert–Beer Law [33].

Estimation of Resistances

The canopy resistance (rc
s) computed from the inversed Equation (4) can be written as

Equation (14).

rc
s =

CC (∆A (ra
a+rc

a)+(ρ acpD− ∆rc
a As))

T γ
− ∆(ra

a+rc
a)

γ
− ra

a − rc
a (14)

One approach for modeling rc
s , suggested by Katerji and Perrier [34], was established

by a relationship between two ratios (rc
s/ra and r∗/ra) [32].
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By defining a climatic resistance given as

r∗ =
∆ + γ

γ

ρacp(e s − ea
)

∆(R n − G)
(15)

A climatic resistance is related to the isothermal resistance and first introduced by
Monteith [35] and represents the surface resistance for equilibrium evaporation. The value
mainly depends on climatic characteristics, although Rn and G are also influenced by the
characteristics of the vegetative surface [36]. Katerji and Perrier [34] presented a linear link
between rc

s/ra and r∗/ra. In this study, we adopted a non-linear functional relationship
between rc

s/ra and r∗/ra presented by Yan et al. [37]

rc
s

ra
= a × r∗

ra
+b ×

√
r∗

ra
+c (16)

The aerodynamic resistance (ra) can be calculated from Perrier [38,39]:

ra =
ln[(x− d) / (hc − d)] ln[(x− d) / z0]

uk2 (17)

where k is the Karman constant (=0.40); x is the reference height (=2 m); hc is the mean crop
height (m); d is the zero plane displacement (m); u is the wind speed at the reference height
(m/s); and z0 is the roughness length of the crop relative to momentum transfer (m). The z0
and d are defined as 0.63 and 0.13 of the canopy heights, respectively [32].

The soil surface resistance (rs
s) was calculated using the Ortega-Farias [22] power

model, which is expressed as follows:

rs
s= 19 (

θsat

θswc
)3.5 (18)

where rs
s is soil surface resistance (s m−1); θswc is volumetric soil water content in the top

layer of soil at 10 cm depth; θsat is saturated volumetric soil water content at 10 cm depth
(0.40 m3 m−3).

In this study, the E was assumed to be negligible during spring shoots with low
moisture content in 2015, so the measured T was replaced by the measured LE from March
to May in 2015 to parameterize rc

s by solving Equation (14). The rc
s sub-model was integrated

into S-W model for predicting LE and the model’s accuracy was validated by comparing
the predicted and measured LE based on the data from 2016 to 2018.

2.4. Dual Crop Coefficient (D-K) Method

In the dual crop coefficient method, the ETc is defined as the product of crop coeffi-
cient (Kc) and reference evapotranspiration (ET0), and Kc is divided into soil evaporation
coefficient (Ke) and basal crop coefficient (Kcb) [14].

ETc= Kc × ET0 (19)

T = Kcb × ET0 (20)

E = Ke × ET0 (21)

2.4.1. Reference Evapotranspiration

The ASCE-EWRI [40] standardized the PM method for grass reference ET0 with a
condensed, simplified form from the original PM method:

ET0 =
0.408∆(Rn − G)+γ 900

Ta+273 u(e s − ea

)
∆ + γ(1 + 0.34 u)

(22)



Agriculture 2022, 12, 1392 6 of 17

where ET0 is reference evapotranspiration in mm d−1 for daily time steps, Rn and G are net
radiation at the crop surface and soil heat flux density at the soil surface in MJ m−2 d−1 for
daily time steps, and Ta is the daily air temperature at 2.0 m height (◦C). The meteorological
data in Equation (22) was obtained in the Bowen ratio energy balance system installed in
the center of the tea field.

2.4.2. Basal Crop Coefficient (Kcb) and Soil Evaporation Coefficient (Ke)

Based on the FAO-56 [14], Kcb can be expressed as:

Kcb = Kc min+(K cb full − Kc min ) × [1 − exp(− 0.7 × LAI)] (23)

Kcb full= min(1.00 + 0.1h, 1.2) + [0.04(u − 2)− 0.004(RHmin − 45)]
(

h
3

)0.3
(24)

where Kc min is the minimum value of basal crop coefficient for bare soil (= 0.1), Kcb full is the
basal crop coefficient when crops have nearly full ground cover, h is the tea plant height.

Ke can be expressed as:

Ke= Kr(Kc max − Kcb) ≤ f ewKc max (25)

Kc max= max

({
1.2 + [0.04(u− 2)− 0.004(RHmin − 45)]

(
h
3

)0.3
}

, {Kcb+0.05}
)

(26)

where Kc max is the maximum value of Kc following rain or irrigation, few is the fraction
of the soil that is wetted (=0.5) for irrigation, Kr is the evaporation reduction coefficient
dependent on the cumulative depth of water depleted from the soil surface, which is
expressed as follows [14,41]:

Kr =
TEW− De

TEW− REW
=

1000(θSWC − 0.5θwp)Ze
TEW− REW

(27)

where TEW is total evaporable water (mm), which is the maximum depth of water that
can be evaporated from the soil when the soil surface has been initially completely wetted;
De is the cumulative depth of evaporation (depletion) from the soil surface layer (mm);
REW is the readily evaporable water, which is the maximum depth of water that can be
evaporated from the soil surface without restriction; θswc is the actual surface volumetric
soil water content and θwp is the surface soil water content at wilting point (=0.12 m3 m−3

in this study); Ze is the depth of the surface soil layer that is subject to drying by way of
evaporation (=0.10 m in this study).

2.5. Evaluation of Models’ Performance

Statistical indices included a liner regression with 0 interception between observed
and simulated values, root mean square error (RMSE), mean absolute error (MAE), index
of agreement (d), and Bias were calculated for validating the accuracy of the models:

RMSE =

√
∑N

i=1(Ei −Oi)
2

N
(28)

MAE =
1
N ∑N

i=1|Ei −Oi| (29)

d = 1− ∑N
i=1(Ei −Oi)

2

∑N
i=1
(∣∣Ei −O

∣∣+ ∣∣Oi −O
∣∣)2 (30)

Bias =
∑N

i=1(E i −Oi

)
∑N

i=1 Oi
(31)
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where N is number of observations, Ei and Oi are estimated and observed values, and O
is the mean observed value, respectively. A perfect model fit will have d = 1 and Bias = 0;
positive values of Bias indicate model overestimation, and negative values of Bias indicates
model underestimation [9,42].

3. Results
3.1. Interannual Variability of Climatic Factors at the Tea Field

The variations of annual climatic factors (i.e., Rn, Ta, VPD, and u) at the tea field during
2015–2018 are shown in Figure 1. The daytime Rn varied from 0 to 590 W m−2 with an
average value of 243, 230, 238, and 290 W m−2 in 2015, 2016, 2017, and 2018, respectively.
The daytime air temperature (Ta) changed from −7.1 to 36.1 ◦C with a mean of 17.9 ◦C
during the four years, while the Ta of 2018 was the highest with a value of 19.6 ◦C and that
of 2017 was the lowest with a value of 15.3 ◦C. Compared with Ta, VPD showed a similar
interannual trend. It had a highest average value of 0.9 kPa in 2018, a minimum average
value of 0.7 kPa in 2017 among the four years. The daytime wind speed (u) at height of
2 m varied from 0 to 7.5 m s−1, with an average value of 2.7, 2.4, 2.5, and 2.2 m s−1 in 2015,
2016, 2017, and 2018, respectively.
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3.2. Parameterization of rc
s

Diurnal variation of experimental values of rc
s/ra and r∗/ra is shown in Figure 2, with

a quadratic polynomial relationship being found between rc
s/ra and (r∗/ra)0.5. The coeffi-

cients a, b, and c in Equation (16) in this study were 1.37, −0.18, and −0.17 (with R2 = 0.84,
RMSE = 0.30) for tea plants. Previous studies have been conducted to commonly express
rc

s/ra and r∗/ra as a linear function in alfalfa, grass, maize, and canola fields [34,43,44], but
in this study we found a best-fit nonlinear relationship corresponded to a dependence of
rc

s/ra on the square root of r∗/ra. The same function type was also reported in several stud-
ies, but the coefficients a, b, and c were different from the presented values (He et al. [45]:
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wheat field, 0.88, 0.82, and −1.95 in arid regions; Yan et al. [37]: maize field, 2.74, −5.9, and
7.04 in semiarid regions, and buckwheat field, 0.73, 1.25, and −0.28 in humid regions) as
shown in Figure 1. As pointed out by Rana et al. [46], the coefficients of those relationships
depended on the type of crop, its phenological state, and soil water status. Even for the
same crop, the differences in coefficients among studies may exist due to different climatic
regions [32,36].
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3.3. Crop Coefficient (Kc), Basal Crop (Kcb), and Soil Evaporation Coefficient (Ke)

Figure 3a shows the variations of local measured Kc and the volumetric soil water
content (θswc). Both Kc and θswc followed almost the same pattern along with DOY, for
which the Kc values ranged from a minimum value of 0.43 in the 107 DOY to a maximum
value of 1.44 in the 26 DOY. The measured Kc varied greatly and ranged from 0.43 to
1.44 with an average value of 0.90 during 1–150 DOY, while the Kc tended to be stable with
an average value of 0.83 during 151–365 DOY. This may be due to a number of factors, for
example; (1) the LAI dramatically changed for collecting tea during the spring and summer
seasons; (2) the θswc varied more in the rainy season (Figure 3a), which usually occurred
during the spring and summer seasons. Can the local Kc values estimate by the θswc for
perennial plants like tea plants? Figure 3b shows the correlation between the local Kc and
θswc in 2015, it was surprisingly found that there was a good consistency between the local
Kc and θswc (R2 = 0.92, Pearson correlation coefficient = 0.96 and p value = 0.000476 < 0.01).
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The calculated basal crop coefficients (Kcb) of tea plants by Equation (23) based on
the data from 2015 to 2018 are shown in Figure 4, together with the recommended Kcb by
FAO-56 and the soil evaporation coefficient (Ke) calculated by Equation (25). The FAO-56
recommended Kcb for tea plants were 0.90 at initial stages, respectively [14], while the corre-
sponding values of calculated Kcb were 0.89 at the initial stage (2015–2018). Figure 4 shows
that the average calculated Kcb was close to, but lower than, the FAO-56 recommended
values in 2015, while the average calculated Kcb was 0.95, 0.98, and 0.96 in 2016, 2017,
and 2018, close to but more than the FAO-56 recommended values of 0.95. According to
Allen et al. [14], Kcb are related to the local conditions, cultural practices, or crop varieties,
but local values of Kcb should not be expected to deviate by more than 0.2 from the recom-
mended values. For Ke, it was generally affected by surface soil water content and canopy
coverage ratio [47]. The average value of Ke was 0.32 for 2015, higher than the value of 0.28
for 2016, 0.25 for 2017, and 0.23 for 2018, mainly due to the differences in canopy coverage
ratio. From the Figure 4, values of Ke were close to 0 during DOY 240–260 in 2016 and
DOY 275–285 in 2018, while values of θswc were close to 0 with an average value of 0.04
and 0.07 cm3 cm−3 at the corresponding dates.
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3.4. The Performance of Two Methods in ETc Simulation

Figure 5 showed the variations of estimated daily ETc by the S-W and D-K method and
the measured values by Bowen ratio energy balance method in the tea field in 2016–2018.
Results showed that both approaches had good performance in the estimation of ETc,
except some overestimation of the D-K method at some unspecified date, e.g., 130 DOY
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of 2017 and 129 DOY of 2018 (Figure 5). From the regression analysis based on four years
data (Figure 6), the average a and R2 were 1.07 and 0.97 for the S-W model, while the
corresponding values were 0.97 and 0.95 for the D-K method, indicating that both methods
had high correlations with the measured ETc. Table 1 showed the measured ETc varied
from 2.01 to 2.40 mm d−1 with a mean of 2.21 mm d−1 during the four years, while the
measured ETc of 2017 was the lowest with an average value of 2.01 mm d−1. It can be
explained that the most data (193–300 DOY) was lost in 2017. More statistical indices for
evaluation of the accuracies of two approaches are shown in Table 1. The RMSE, MAE,
and d were 0.45, 0.30 mm d−1, and 0.98 for the S-W model, while the corresponding values
were 0.61, 0.43 mm d−1, and 0.96 for the D-K method. Moreover, the biases were 0.06 and
−0.03 for the S-W model and D-K method, respectively. The statistical indexes showed
both approaches could accurately estimate the daily ETc in tea fields in southeast China,
but the D-K method had a slightly poorer accuracy compared to the S-W model.
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Table 1. Statistical analysis of measured and estimated daily evapotranspiration (ETc, mm d−1) by
the S-W and D-K method in 2016–2018.

Year Model ETc-Mimulated ETc-Measured a R2 RMSE MAE d Bias

2016
S-W 2.33

2.22
1.07 0.98 0.42 0.27 0.98 0.05

D-K 2.17 1.00 0.95 0.59 0.43 0.96 −0.02

2017
S-W 2.16

2.01
1.08 0.97 0.51 0.34 0.97 0.07

D-K 1.95 0.96 0.93 0.67 0.47 0.94 −0.03

2018
S-W 2.58

2.40
1.06 0.98 0.43 0.28 0.98 0.07

D-K 2.31 0.95 0.96 0.58 0.39 0.97 −0.04

Average S-W 2.36
2.21

1.07 0.97 0.45 0.30 0.98 0.06
D-K 2.14 0.97 0.95 0.61 0.43 0.96 −0.03

Note: a is the coefficients of regression; R2 is the coefficient of determination; RMSE is the root mean square error
(mm d−1); MAE is the mean absolute error (mm d−1); d is the index of agreement.

To further explore the differences of the S-W and D-K method in a separate estimation
of T and E, the ratio of E to ETc simulated based on two methods was compared (Table 2).
The simulated T were 1.89 mm d−1 in 2016, 1.69 mm d−1 in 2017, and 2.05 mm d−1 in 2018
by S-W model, while the corresponding E were 0.59, 0.47, and 0.52 mm d−1 for the three
years, respectively. The E/ETc simulated by the S-W and D-K method were 21.93 % and
20.85 %, respectively. The E/ETc was declining year by year, and the highest value was
23.79 % in 2016. It can be explained that soil evaporation was related to the fraction of
ground coverage when a smaller fraction of the soil surface was covered by the tea plants
during the initial stage, which created a large wetted soil surface area that was exposed to
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sun radiation, and consequently higher soil evaporation. It is noteworthy that the difference
between the E/ETc simulated by the S-W and D-K method was small (around 1%).

Table 2. Models simulated values of tea plants transpiration (T) and soil evaporation (E) in 2016–2018.

Year Model T (mm d−1) E (mm d−1) E/ETc

2016
S-W 1.89 0.59 23.79%
D-K 2.47 0.71 22.33%

2017
S-W 1.69 0.47 21.76%
D-K 2.35 0.64 21.40%

2018
S-W 2.05 0.52 20.23%
D-K 2.59 0.6 18.81%

Average S-W 1.88 0.53 21.93%
D-K 2.47 0.65 20.85%

4. Discussion
4.1. Parametrization of S-W Model

Previous studies have highlighted the fact that the canopy resistance is the most
sensitive factor compared to the other resistances in the S-W model due to its compre-
hensive consideration of meteorological factors, crop characteristics, and soil moisture
conditions [10,11,22,48,49]. Therefore, accurate determination of the canopy resistance is
particularly important in accurate estimation of ETc. Bao et al. [49] optimized a canopy resis-
tance (rc

s) sub-model of the S-W model and used a modified Ball–Berry model, including the
empirical parameters estimated by the Monte Carlo algorithm for mobile dunes in China’s
Horqin Sandy Land, with R2 and RMSE between the measurements and simulations as
0.83, 0.32 mm d−1, respectively. Liu et al. [50] improved the Jarvis-type rc

s sub-model by
incorporating a term of effective leaf area index and a function to reflect the influence of the
specific soil moisture, to improve the accuracy of the S-W model for rice ETc in the Taihu
lake region of China, with the R2 and RMSE were 0.945, 0.934 mm d−1, respectively. In this
study, we optimized KP-type rc

s sub-model by a quadratic polynomial relationship based
on the measured daily ETc in a tea field, with the R2 and RMSE at 0.97 and 0.45 mm d−1,
respectively. Compared to the previous studies, the S-W model parameterized by the
present study achieved a higher accuracy. The main reason is that the KP-type rc

s sub-model
in this study was optimized with a best-fit quadratic polynomial relationship, not a linear
function, which is more adaptive to the tea field.

4.2. Prediction of Crop Coefficients

As for perennial plants, the average Kc values (0.86) found for the tea plants in this
study were lower than that reported by Pinho Sousa et al. [51] for acai palm (=1.08),
Meijide et al. [52] for palm oil (=1.03), and Flumignan et al. [53] for coffee trees (=1.28 for
ET0 < 3 mm d−1, 0.98 for ET0 > 3 mm d−1). The possible reason for this is that the Kc in
this study was determined using the dataset in 2015, while the tea plants were transplanted
into the field in March 2014, which means the values of Kc were at the initial stage of the
tea plants. Many researchers found that the Kc was significantly related to LAI [54–56].
For example, Wang et al. [56] presented a linear relationship between the Kc and LAI
with a good result (R2 ≥ 0.78, p < 0.01) in a grapevine ecosystem in the Nanhu Oasis of
northwestern China. Singh Rawat et al. [55] reported that the Kc and LAI were in a strong
relationship (second order polynomia, R2 = 0.98) in a semi-arid environment. Guo et al. [54]
presented a cubic polynomial function, which was the best for simulating the relationship
between the Kc and LAI for spring maize in the arid region of Northwest China. In this
study, due to the slight variations of daily LAI of tea plants and the difficulties in the
measurement, the LAI was not considered to simulate the changes of the Kc. Instead, it was
found that the θswc was significant correlated to the daily Kc (R2 = 0.92, p < 0.01).
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4.3. Comparison of Model Performance

The calculated statistical indices showed that the S-W and D-K method can estimate
daily ETc with good accuracy, except some big discrepancies of the D-K method some
days. It can be explained that there are some irregular days for collecting tea, which
may affect the daily Kc. Gharsallah et al. [26] compared the S-W model and D-K method
in a surface irrigated maize agro-ecosystem in Northern Italy, and showed that the S-W
model provided good results for the entire agricultural season, including initial growing
stage, while the D-K method with generalized crop coefficients overestimated the ETc,
especially during the middle growth stage. Jiang et al. [27] compared the D-K and the S-W
model in predicting daily ETc and its components of maize, and reported that daily ETc
estimated by the S-W model was closer than by the D-K method to observed ETc by the
eddy covariance system at whole growing stage, while the D-K method overestimated
daily ETc at the initial and development stage in the arid region of northwest China. The
principal reason for the poorer performance of the D-K method is that the tabulated Kcb
adjusted with local data used for the simulations overestimated the actual, site-specific
Kcb. Indeed, Gharsallah et al. [26] found that the Kc in mid-stage, even if adjusted to
consider local conditions, was approximately 15% larger than the value derived from eddy
covariance observations for maize grown in Northern Italy. However, Zhao et al. [19]
showed that an opposite result to the D-K method performed better in in partitioning ETc
than the S-W model, while the S-W model significantly underestimated E, especially around
wetting events of a vineyard in an arid region of northwest China. Gong et al. [11] also
showed that the D-K method performed better compared to the S-W model in estimating
daily tomato ETc in greenhouses, while the S-W model overestimated ETc by 17.9% at
initial stage and underestimated ETc by 16.6% at mid-stage in Henan province, China.
The possible reasons for the S-W model having performed poorly are: (1) the rc

s in the
S-W model was normally parameterized by the Jarvis approach or the modified Jarvis
approach, the effect of water stress was not considered in the rc

s sub-model; (2) the rs
s in

the S-W model was parameterized using the θswc at certain range (20–40%), while θswc
deviated from the range especially before or just after the wetting events, the rs

s would not
be parameterized by θswc accurately. Gong et al. [11] reported that the overestimation of
S-W model at the initial stage was mainly due to the underestimation of rc

s under the soil
water stress condition. Additionally, many studies have proved that the rc

s was the most
sensitive variable compared to the other resistance in the S-W model [10,11,19,22].

4.4. Implications of the Modeling

As stated above, the establishment of the parameter sub-model played a crucial role in
determining the performance of the S-W and D-K method [11]. The parameter sub-model
should combine effects of local meteorological elements, crop growth conditions, and soil
water status [19,22]. In this study, the parameter of rc

s and Kc sub-models were recalibrated
by combining the influence of the meteorological elements and soil water status in the
tea field. By integrating the rc

s and Kc sub-models into the S-W and D-K method, both
methods had good performances in estimating ETc of the tea field. However, how the effect
of tea plants growth on the performance of the S-W and D-K methods can be integrated
still needs to be further investigated.

In agricultural ecosystems, the fractions of E and T in ETc are affected by soil and
water management practices, and they have been used as indicators of crop water use
efficiency (WUE) [57,58]. In this study, the range of E/ETc in the tea field simulated by the
S-W and D-K method was 22.33–23.79%, 21.40–21.76%, 18.81–20.23% in 2016, 2017, 2018,
respectively. Some researchers have used in situ techniques (e.g., lysimeter method, eddy
covariance, heat pulse sensors, and sap flow methods) to obtain the fraction of E in ETc,
and Wang et al. [58] obtained an E/ETc value of 19% using sap flow gauges (to measure T)
and the weighing lysimeter (to measure ETc) in a maize field; Sauer et al. [59] observed a
E/ETc range of 8 %–12 % in a narrow-row soybean field using the eddy covariance system
(to measure ETc) and sap flow stem gauges (to measure T); Wagle et al. [60] collected high
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frequency (=10 Hz) time series eddy covariance system observations over a rainfed alfalfa,
and reported that the average E/ETc was approximately 18–23% in central Oklahoma,
USA. Compared to the reported values of E/ETc from previous literatures, there is still
space to minimize E loses in the tea fields. Hence, based on the results simulated by the
constructed S-W and D-K methods in this study, reducing a proper amount of irrigation
water to decrease the soil evaporation at the growing season of tea plants is an advisable
way for improving water use efficiency, especially at initial stages in 2016.

5. Conclusions

In this study, we evaluated the S-W and D-K method in estimating daily evapotranspi-
ration (ETc) and its components of a tea field, using the measurements of ETc by Bowen
ratio energy balance system for four years (2015–2018) in southeast China. The canopy
resistance (rc

s) in the S-W model was parameterized by a climatic resistance r∗, with a
quadratic polynomial relationship between rc

s/ra and square root of r∗/ra. The soil surface
resistance (rs

s) in the S-W model was parameterized by the soil water content (θswc) at the
top layer. The measured crop coefficient (Kc) was defined as the ratio of measured ETc to
ET0, basal crop coefficient (Kcb), and evaporation coefficient (Ke) in the D-K method was
determined based on the measured meteorological data, LAI, and θswc data in the tea field.

Both the S-W and D-K method had good performances in estimating ETc of the tea
field, with an average RMSE and R2 of 0.53 mm d−1 and 0.96, while the S-W model
performed slightly better than the D-K method. The measured and simulated average
daily ETc of the tea field was 2.21 mm d−1 (Bowen ratio energy balance), 2.36 mm d−1, and
2.14 mm d−1 (S-W model and D-K method, respectively). The average ratios of E to ETc
simulated by the S-W and D-K method were 21.93 % and 20.85 %, respectively. The above
results indicated that the E should be estimated independently for tea fields to improve the
accuracy of ETc modeling.
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