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Abstract: Greenhouses, commonly used for vegetable production, are experiencing large nitrogen
(N) inputs in North China, which leads to soil acidification, increases soil N availability, and affects
microbial community structure and composition. However, it remains unclear how N enrichment
influences soil microbial functional activities in this region. In this study, we conducted a two-year
pot experiment in a greenhouse to evaluate the effects of four different rates of N addition (0, 334,
668, and 1002 kg N ha−1 year−1) on cucumber soil properties, extracellular enzyme activities, and
community level physiological profiles (CLPP). We found that high-N addition (1002 kg N ha−1)
caused a massive accumulation of inorganic nitrogen and soil acidification, which was not beneficial
to soil microbial activities. The color development (AWCD) values for the metabolism of microbial
carbon sources and the activities of soil extracellular enzymes also showed a significant decrease in
high N(N3) treatment. Additionally, the activity of leucine aminopeptidase (LAP) and polyphenol
oxidase (PPO) of N3 decreased by 36% and 50% compared to the N0 and could be a good predictor
for microbial functional diversity and microbial biomass carbon (MBC). Structural equation modeling
(SEM) confirmed that the reduction of microbial functional diversity is mainly coregulated by the
decline of soil pH and the change of cucumber BGB (belowground biomass) resulting from soil C
and N imbalance. Overall, excessive N-fertilizer amendment can be more dangerous to microbial
community functional diversity, especially for carbohydrate utilization which adversely affects
cucumber yield in current intensive management.

Keywords: nitrogen fertilization; soil acidification; community level physiological profiles (CLPP);
extracellular enzyme activity; microbial functional characteristics; structural equation model

1. Introduction

During the past few decades, the input of nitrogen through fertilizers and fossil fuel
burning by human activities has increased fourfold and has had a great impact on the
terrestrial biosphere [1,2]. As the most fundamental nutrient for crop growth, nitrogen (N)
with reasonable addition in an N-limited ecosystem can promote plant biomass and com-
munity diversity [3,4]. However, due to the pursuit of economic benefits, the phenomenon
of soil acidification caused by overusing nitrogen fertilizers has been particularly serious in
intensive agriculture cropping systems, resulting in the deterioration of soil fertility and in
yield reductions [5–7].

Microbes play a crucial role in nutrient cycling and material transformation of terres-
trial ecosystems [8]. A global meta-analysis showed N addition had a significant influence
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on microbial biomass and activity and was generally accompanied by a decline in pH [9].
As a fundamental soil property, soil pH not only affects other soil physicochemical prop-
erties but also regulates the soil-microbial-community structure, such as the contents of
actinomycetes, bacteria, and fungi based on phospholipid fatty acids (PLFAs) [10,11]. Fur-
thermore, N addition could also regulate soil C/N ratio by enhancing N availability, which
affects the acquisition of C, N by microorganisms, and plant C allocation belowground, in
turn altering soil microbial activity and community composition [12–14]. Nonetheless, there
is not enough data on how soil pH and N availability could affect soil microbial communi-
ties, and their relative contribution to microbe variation under N addition remains unclear.

Changes in the soil microbial biomass and community tend to shift their functional
activities [15]. Extracellular enzymes (including hydrolases and oxidases) are actively
involved in litter decomposition and soil nutrient cycling, which are closely related to
microbial function activity [16,17]. N-induced soil acidification has different effects on the
soil extracellular enzyme activity because enzyme activity is predominantly controlled
by soil pH, which affects enzyme kinetics through changes in substrate binding and
stability [18]. Generally, glycosidase and acid phosphatase (ACP) activities are enhanced
after low-nitrogen-level addition [16,19]. Excessive N addition has significantly reduced,
increased, or had no apparent impacts on the activities of β-1,4-N-acetyl-glucosaminidase
activity (NAG) and oxidase in different types of ecosystems [20–22]. Compared with
extracellular enzymes, the Biolog Eco-plates method is widely used to correct microbial
metabolic patterns, is considered essential to predict soil quality and can describe the
microbial functional process at the community level [23,24]. Kumar et al. [25] believed that
the decrease in soil pH, the alteration of the C/N ratio, and the increase in litter caused
by nitrogen input was the main reason for the variation in the microbial community-level
physiological profile. On a low-nitrogen-level grassland, nitrogen fertilization can alleviate
soil nitrogen limitation and promote microbial metabolic activity [26], while high nitrogen
often has inhibitory effects on microbial carbon source metabolism and functional diversity
indices [27–29]. In contrast, Cui et al. [30] reported that high-nitrogen deposition promoted
the Shannon index of an evergreen broad-leaved forest. From the above investigations,
we can infer that both extracellular enzymes and microbial metabolic patterns under N
addition were comprehensively affected by ecosystem, location-specific, and initial nitrogen
levels, which makes our understanding of their response mechanisms more uncertain.

As one of the most common vegetable crops in Chinese greenhouses, cucumber
(Cucumis sativus L.) accounts for approximately 77% of global production. Due to its high
economic importance, planting cucumbers under excess N fertilizer has become an ex-
tremely universal phenomenon and a substantial threat to cucumber producers. It is
reported that the annual nitrogen fertilizer application rate of greenhouses has exceeded
2000 kg ha−1 which is several times higher than that of other cultivation systems, leading
to increased soil acidity and nutrient excessive accumulation [31,32]. In recent years, most
studies have focused on microbial community structures and the composition of field
crops. However, there are relatively few investigations on the effects of nitrogen-fertilizer
addition on the soil microbial function activities of cucumber growing systems with high
fertility requirements. Thus, we carried out a greenhouse pot experiment with four ni-
trogen addition levels combined with soil-plant properties, extracellular enzymes, and
function characteristics analysis, the primary goals were to (i) explore the response of soil
extracellular enzyme activities to N addition; (ii) evaluate the influence of N addition on
the microbial community level physiological profiles; (iii) explore whether pH was the
main driving factor affecting the alteration of microbial functional diversity and soil extra-
cellular enzyme activities following N addition under greenhouse cucumber cultivation.
This evidence provides a basis for maintaining soil ecosystem functions and developing
sustainable cucumber-intensive management.
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2. Materials and Methods
2.1. Study Site and Experimental Design

This experiment was executed at a greenhouse located at the experimental site of the
Shenyang Agricultural University of Liaoning Province, China (41◦48′ N, 123◦25′ E). Based
on the USDA (United States Department of Agriculture) soil taxonomy, the soils were
classified as brown loam. Soils were collected from the open field behind the greenhouse
and then sieved through a 1 cm screen to remove stone and plant residues. The N addition
experiment was initiated in August 2018. First, the soils were mixed homogeneously with
chicken manure compost which was added at a rate of 6.7 g kg−1 soil. Then four N-addition-
rate treatments with three replicates were designed: a control without N addition (N0),
334 kg N ha−1 year−1 (N1), 668 kg N ha−1 year−1 (N2), and 1002 kg N ha−1 year−1 (N3).
Twelve 27 cm wide and 30 cm high polyethylene plastic pots were filled with these soil
mixtures. Each pot was filled with 14 kg of soil. We used urea as nitrogen fertilizer.
Additionally, potassium sulfate and dipotassium phosphate were added to all the treatment
pots at the rates of 166 kg P2O5 ha−1 year−1 and 234 kg K2O ha−1 year−1 to satisfy cucumber
nutrient demands, which are calculated according to the actual production level of local
farmers. The chemical fertilizer was applied three times with water during the cucumber
growth period. “Jin You NO.30”, a widely grown cucumber breed in this area was cultured
in the pots which were randomly arranged and placed in the greenhouse. There were
two growth seasons each year for the continuous cucumber potting cropping method.

2.2. Soil Sampling and Chemical Analysis

After two years (four crop stubbles) of N addition, we used a five-point sampling
method to collect a mixed soil sample from each pot on 6 November 2020. Fresh soils
were passed through a 2 mm sieve to remove stones, pebbles, and coarse roots. The soil
samples were divided into two parts, one was sent to the laboratory for storage at 4 ◦C for
the extracellular enzyme and CLPP analysis, and the other was dried at room temperature
before the determination of chemical properties. Additionally, cucumbers were harvested
as fresh vegetables and biomass. Soil pH (deionized water: soil, 2.5:1) was measured
using a Thunder Magnetic pHS-25 pH Meter (INESA, Shanghai, China). Soil electrical
conductivity (EC) (deionized water: soil, 5:1) was determined by a Thunder Magnetic
DDS-307A EC Meter (INESA, Shanghai, China). Soil organic carbon (SOC) was determined
by the H2SO4-K2Cr2O7 titrimetric method [33]. Total nitrogen (TN) was determined using
an automatic Kjeldahl distillation–titration method [34]. The soil C/N ratio was calculated
based on the SOC and TN. The soil nitrate (NO3

−-N) and ammonium (NH4
+-N) were

extracted with 0.5 M K2SO4 and then quantified using a flow-injection autoanalyzer (Skalar
San++ CFA, Erkelenz, Germany) [35]. Total phosphorus (TP) and total potassium (TK)
were determined via the H2SO4-HClO4 digestion method [36]. The available phosphorus
(AP) was determined using the NaHCO3 leaching molybdenum antimony colorimetric
technique [37]. Soil-available potassium (AK) was extracted using 1 mol l−1 NH4OAc
solution and then analyzed using a flame photometer (iCE3000, Thermo Fisher Scientific,
Waltham, MA, USA) [38]. The microbial biomass carbon (MBC) was carried out with the
fumigation extraction method with 0.5 M K2SO4 and determined with a total organic C/N
analyzer (Multi N/C 3100/HT1300, Analytik Jena AG) [39].

2.3. Soil Extracellular-Enzyme-Activity Assays

Five hydrolytic enzymes involving β-1,4-glucosidase (BG) and cellobiohydrolase (CB)
for the C cycle, β-1,4-N-acetyl-glucosaminidase (NAG), leucine aminopeptidase (LAP) for
the N cycle, acid phosphatase (ACP) for the P cycle, as well as two oxidative enzymes
including polyphenol oxidase (PPO) and peroxidase (PER) were the extracellular enzymes
we investigated in this study. Enzyme assays were performed according to the protocol
described in previous studies by German et al. [40]. In brief, fresh soil (1.5 g) was added
to 125 mL of 50 mM sodium acetate buffer (pH = 6.0). Soil slurries and substrate were
contained in 96-well microplates and incubated at 25 ◦C for 2.5 h (hydrolytic enzymes) and
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4 h (oxidative enzymes). The quantity of fluorescence or absorbance was determined with a
microplate reader (Biotek Synergy 2, Winooski, VT, USA) at 360 nm excitation and 460 nm
emission for hydrolytic enzymes and read at 450 nm for oxidative enzymes (Table 1).

Table 1. Extracellular enzyme assayed in cucumber soil, their enzyme commission number, and the
corresponding substrate.

Enzyme Abbreviation EC Number Substrate

β-1,4-glucosidase BG 3.2.1.21 4-MUB-β-D-glucoside
Cellobiohydrolase CB 3.2.1.91 4-MUB-β-D-cellobioside

Leucine aminopeptidase LAP 3.4.11.1 Leucine-7-amino-4-methylcoumarin
β-1,4-N-acetyl-glucosaminidase NAG 3.1.6.1 4-MUB-N-acetyl-B-D-glucosaminide

Acid phosphatase ACP 3.1.3.2 4-MUB-phosphate
Peroxidase PER 1.11.1.7 L-DOPA

Polyphenol oxidase PPO 1.10.3.2 L-DOPA

2.4. Soil Community Level Physiological Profile (CLPP) Analysis

Soil microbial metabolism activity was indicated by the average well-color devel-
opment (AWCD). Soil microbial functional diversity was evaluated with the Shannon
and McIntosh indices. Specifically, the Shannon and McIntosh indices are affected by the
richness and evenness of microbial species, respectively [25,41]:

AWCD = ∑(Ci − R)/N, (1)

Shannon = −∑ (Pi × lnP) and Pi = (Ci − R)/∑(Ci − R), (2)

McIntosh =
√

∑(Ci − R)2 (3)

where Ci represents the absorbance in the microplate well, involving the ith C substrate; R
represents the absorbance in the control well, involving sterile water; N represents the total
quantity of C substrates included in a specific C group.

2.5. Statistical Analysis

The SPSS Software 22.0 (SPSS Inc., Chicago, IL, USA) was adopted to conduct statistical
analyses. Effects of nitrogen addition on soil biotic and abiotic parameters were estimated
by one-way analysis of variance (ANOVA). The test of least significant difference (LSD)
was employed and the difference of p < 0.05 was considered significant. The variations in
soil microbial metabolic characteristics and extracellular enzyme activities among the N
treatments were investigated using the principal component analysis (PCA) combined with
PERMANOVA. Redundancy analysis (RDA) and Pearson’s correlation analysis were used
to evaluate the relationships between microbial community diversity and enzyme activities.
In addition, the links among the function of the microbial community, soil enzyme activities,
and edaphic properties were determined by Mantel tests. The structural equation modeling
(SEM) was conducted in the AMOS 21.0 (SPSS Inc., Chicago, IL, USA) to explore the causal
relationships among soil properties, enzyme activities, and microbial C source utilization.

3. Results
3.1. Soil and Plant Properties

The levels of NH4
+-N and soil electrical conductivity (EC) increased significantly

with an increase in nitrogen addition rate, whereas soil pH decreased significantly. Under
N2 and N3 treatment, MBC content was significantly lower than that of the control (N0)
(p < 0.05; Table 2). The content of NO3

−N, available potassium (AK), total nitrogen (TN),
and total phosphorus (TP) were markedly higher at medium-high levels of the nutrient
amendment (N2 and N3) compared with a low level of N amendment (N1) and the control
(N0). Soil organic carbon (SOC) content in the N1 and N2 treatments was significantly
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higher than N0. However, the content of soil-available phosphorus (AP) only exhibited a
significant increase in the N2 treatment, and the C/N ratio was significantly lower (p < 0.05)
in the N3 treatment compared with the N0 treatment. Cucumber yield was significantly
higher in N1 compared to N0 after 2 years of N addition and then gradually lowered by
66% from N1 to N3.

Table 2. Soil properties, microbial biomass, and cucumber yield in different N addition treatments.

Environmental
Attributes N0 N1 N2 N3

pH 7.01 ± 0.11 a 6.38 ± 0.34 b 5.83 ± 0.09 c 5.49 ± 0.11 c
EC (ms cm−1) 0.33 ± 0.11 c 0.57 ± 0.12 bc 0.7 ± 0.3 b 1.45 ± 0.11 a

NH4
+-N (mg kg−1) 1.98 ± 0.57 c 5.51 ± 2.06 c 34.72 ± 4.07 b 62.25 ± 1.83 a

NO3
−N (mg kg−1) 2.57 ± 0.61 b 29.67 ± 13.06 b 177.94 ± 66.87 a 199.57 ± 16.09 a

TN (g kg−1) 1.37 ± 0.1 c 1.7 ± 0.03 b 2.01 ± 0.22 a 2.03 ± 0.18 a
AP (mg kg−1) 236.18 ± 14.54 b 225.48 ± 7.17 b 304.21 ± 8.19 a 240.38 ± 0.62 b
AK (mg kg−1) 721.05 ± 90.91 b 839 ± 109.99 ab 1031.69 ± 182.27 a 1001.66 ± 83.9 a

TP (g kg−1) 1.09 ± 0.12 b 1.24 ± 0.02 b 1.45 ± 0.05 a 1.46 ± 0.17 a
TK (g kg−1) 25.67 ± 1.7 a 23.53 ± 0.52 a 22.93 ± 1.36 a 24.96 ± 3.5 a

SOC (g kg−1) 24.21 ± 1.4 b 28.56 ± 2.6 a 29.39 ± 1.8 a 26.8 ± 2.4 ab
MBC (mg kg−1) 396.8 ± 26.03 a 402.06 ± 7.07 a 241.52 ± 13.4 b 121.08 ± 10.59 c

Soil C/N 17.7 ± 2.01 a 16.79 ± 1.47 ab 14.74 ± 2.16 ab 13.24 ± 1.61 b
Yield (kg plant−1) 0.66 ± 0.06 b 1.16 ± 0.38 a 0.76 ± 0.04 ab 0.39 ± 0.2 b

Note: EC, electrical conductivity; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; TK, total
potassium; NO3

−-N, nitrate nitrogen; NH4
+-N, ammonium nitrogen; AP, available phosphorus; AK, available

potassium; Soil C/N, the ratio of SOC and TN; MBC, microbial biomass carbon; Yield, cucumber yield; All data
are presented as mean ± SD (n = 3). Different letters in the same edaphic factor indicate significant (p < 0.05)
differences between all treatments. N0, N1, N2, and N3 treatments represent the applied N rates of 0, 334, 668,
and 1002 kg ha−2 y−1, respectively.

3.2. Soil Enzyme Activities

N addition had significant effects on oxidase and hydrolase activities (p < 0.05;
Figure 1). Polyphenol oxidase activity increased in the N1 treatment and then gradu-
ally decreased with the increasing of N addition rate (from N1 to N3) compared to the
control (N0) (p < 0.05; Figure 1G). However, peroxidase activity increased under medium
treatment and significantly decreased under high-N addition (N3) (p < 0.05; Figure 1F).
All hydrolases except acid phosphatase showed a similar trend (Figure 1 A–E). Compared
to the N0 treatment, the N2 treatment significantly enhanced β-1,4-glucosidase (BG) and
β-1,4-N-acetyl-glucosaminidase (NAG) activity by 61.23% and 210.57%, and N3 treatment
significantly suppressed cellobiohydrolase (CB) and leucine aminopeptidase (LAP) activity
by 50.37% and 36.21%, respectively. Acid phosphatase activity was significantly higher
(p < 0.05) than the control in all the N-addition treatments, but there was no significant
difference among them. The PCA result demonstrated the differences between C-, N-,
and P-cycling enzymes following different N addition treatments. The first two principal
coordinates explain 41.4% and 28.0% of the total enzyme activities variation. The horizontal
axis separates enzyme activities by N addition. N0, N1, and N2 treatments are distributed
along the right side of the Y axis, whereas the N3 treatment is on the left side. A statistical
test showed that the addition of different N levels had a significant effect on enzyme activity
(Figure 2A, PERMANOVA test, p = 0.001).
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3.3. Microbial Functional Characteristics (CLPP)

After N addition, a negative effect on the diversity and richness of soil microbial com-
munity function was found in our study (Figure 3). Total AWCD, Shannon, and McIntosh
indices decreased with the increase of N-addition rates, where a significant difference was
found in the N3 (high-level) treatment. Similarly, the PCA result demonstrated that there
was a distinct separation between N0, N1, and N3 treatments of total AWCD after 168 h
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incubation (Figure 2B, PERMANOVA test, p= 0.009), although there was no significant
difference between N1 and N2 treatments. In addition, polymers (0.30–1.41, range of
AWCD in all treatments) were abundantly utilized by soil microorganisms, followed by
amino acids (0.35–1.19), carboxylic acids (0.40–1.09), carbohydrates (0.17–1.00), and pheno-
lic compounds (0.07–0.75), while amines (0.03–0.99) were rarely utilized. For these different
primary C groups, the microbial utilization of amino acids, amines, carbohydrates, and
polymers also showed a declining trend with N addition and had a significant effect on N3
treatment compared with the control except phenolic acids and carboxylic acids, (p < 0.05,
Figure 3B–G). The phenolic acids utilized by soil microbes in N2 had a higher value than
N1, mainly because of the highest level of D-glucosaminic acid and D-galacturonic acid.
Likewise, an increase in 2-hydroxybenzoic acid utilization explained the rise of phenolic
acid utilization in N2 treatment. It is worth noting that across 31 different carbon sources,
only pyruvic acid methyl ester, D-xylose, and 2-hydroxybenzoic acid utilization after N
input were higher than the control (Figure 4).

3.4. Links among Soil Extracellular Enzyme Activities, Microbial C Sources Utilization, and
Physicochemical Properties

Pearson’s correlation analysis explained the relationships between microbial function
characteristics and extracellular enzyme activities in N-enriched soil (Figure 5A). The activ-
ities of N-acquisition enzymes and oxidases were significantly correlated with six group
carbon sources after 2 years of N-addition experiments. Soil PPO and LAP activities showed
a significantly positive correlation with the total AWCD, Shannon, and McIntosh indices.
Similarly, soil PER activity was positively correlated (p < 0.05) with the total AWCD and
McIntosh index. Conversely, the activity of soil NAG was negatively correlated (p < 0.05)
with the total AWCD, Shannon, and McIntosh indices. Redundancy analysis (Figure 6)
revealed that two N-acquisition enzymes LAP and NAG explained 59.7% and 20.1% of
the variation in CLPP, respectively (Figure 6). The links between enzyme activities, C
sources utilization, and edaphic properties were tested using the Mantel test (Figure 5B).
We observed that the soil enzyme activities significantly correlated with pH, TN, and TP
(p < 0.05), and the microbial C sources utilization was significantly correlated with pH,
NH4

+-N, NO3
−N, TN, TP, and the C/N ratio.
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(including soil TOC, TN, C/N, NH4
+, NO3

−). Black and red arrows represent significant positive
and negative pathways, respectively. Arrow width corresponds to the path coefficient (numbers on
the arrows). R2 near the observed parameters denotes the proportion of the variance explained by
other variables in the model. *** p < 0.001, ** p < 0.01, * p < 0.05.
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4. Discussion

This study evaluated the effect of nitrogen addition on soil microbial function activities
by altering soil and plant properties in the greenhouse. Consistent results between C-,
N-, and P-cycle enzyme activities and microbial metabolic function (CLPP) in response
to pH and C/N imbalance across four different N-fertilizer-addition rates indicated that
the soil acidification and plant belowground biomass distribution might be the direct
reason for the decrease in soil microbial functional diversity under an intensive cucumber
cropping system.

As a vital regulation index, soil pH decreased by 0.63–1.52 units from the initial
measurements, which was mainly caused by the release of protons during the oxidation of
ammonium from the urea we applied as the nitrogen fertilizer [42]. Under N3 treatment, the
soil EC reached 1.45 ms·cm−1 (Table 2, p < 0.05). Higher ion concentration caused by excess
N addition has severely restricted the growth of cucumbers and changed the composition
of the rhizosphere microbial community [43]. In general, N-induced soil acidification leads
to a loss of base cations, such as K+, Ca2+, Na+, and Mg2+ [44,45]. We noticed that the
content of AK rose gradually with the increase of the N-addition rate, this might be related
to the low molecular weight organic acids secreted by the roots, which increased the net
negative charge on the surface of the variable charge soil, thereby increasing the absorption
of potassium ions in the soil [46]. The content of the soil AP was significantly higher
under N2 treatment (Table 2), suggesting that phosphorus limitation appeared in cucumber
soil. Therefore, more available phosphatase was produced to supply plant absorption and
utilization [47]. We further observed that the MBC content had a close linear relationship
with cucumber root biomass and N availability (Figure S1), which implied that microbial
activity was greatly impacted by soil nutrient level [9]. Under medium-high N-addition
treatment (N2 and N3), the decrease of MBC is possibly due to the accumulation of toxic
osmotic potential caused by soil acidification and secondary salinization [48].

Extracellular activities (involving carbon [C]-, nitrogen [N]- as well as phosphorus [P]-
acquiring enzymes) are sensitive indicators for detecting modifications due to management
practices [49]. Therefore, figuring out their response mechanism to N addition can help us
better comprehend microbe nutrient demands and migration of soil elements. The results
showed two N-acquisition enzymes (LAP and NAG) exhibited their respective response
trends to N addition (Figure 1C,D). LAP activity decreased significantly with the increase
in the N-addition rate. When soil nutrients were abundant, nitrogen input could reduce the
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acquisition of N by microbes due to the decline of the DOC:DON ratio [50]. Furthermore,
LAP was susceptible to environmental changes, and a strong positive correlation between
the C/N ratio and LAP activity (p < 0.05) (Figure S1) further confirmed this view. In
contrast, the activity of NAG remained higher under high nitrogen input (N3) treatment,
which was well illustrated by the significantly negative correlation with soil pH (Figure S1;
p < 0.05). NAG is an acid hydrolase which is involved in catalyzing the decomposition
of chitin. Enhanced NAG activity following N addition might reflect factors other than
N demand, such as fungal biomass, uptake of ions, and plant pathology [51,52]. For C-
acquisition enzymes, BG and CB are related to the decomposition of labile C substrates such
as carbohydrates, hemicellulose, and cellulose [53]. At N2 treatment, BG activity reached
its highest (p < 0.05, Figure 1B). The emergence of mild carbon limitation induced by N
availability might promote microbes investing more energy to acquire C sources. In forest
and grassland ecosystems, Jing and Schleuss [21] found that enhanced BG activity is closely
related to the increase in the abundance of C-degrading functional genes (endoglucanase,
bglx, and bglb) under the addition of low and medium nitrogen. In addition, we also
observed that cucumber belowground biomass of a low–medium N level was significantly
higher than in high-N treatment. Under this suitable nutrient condition, BG and CB might
be stimulated by root exudates as the substrate from the rhizosphere which in turn was
beneficial to cucumber root growth and metabolism [54]. Unsimilar to the response of soil
C- and N-cycle enzymes, the activity of ACP was significantly higher in all N-addition
treatments and had a significant positive correlation with soil pH (p < 0.05, Figure S1).
According to soil enzyme stoichiometry and vector analysis, we found that vector A
values were less than 45 degrees, suggesting that acidification could induce microbial P
limitation [55]. To meet the demand for phosphorus, microbes and plant roots devote
more energy to producing acid phosphatase (Table 2 and Figure 1) [47,56]. Distinct from
hydrolases, oxidases are mostly produced by fungi which are vital to the breakdown of
resistant organic matter [57]. Oxidases (PPO and PER) activities were significantly inhibited
under 1002 kg N ha−1 year−1 nitrogen addition (Figure 1). Structural equation modeling
(SEM) results showed that PPO, was significantly influenced by MBC due to the C/N
imbalance rather than the soil pH (Figure 5B). Compared with bacteria, fungi community
composition and structure generally had a high tolerance for acidity, and the response to N
availability appeared to be more intense [58]. Hence, compared to hydrolase, a relatively
lower C/N ratio has been more likely to suppress the activities of oxidases such as PPO
(Figure 5B), which might slow down the decomposition of SOC (Table 1; Figure S1) [59].

Our study confirmed that N addition had a significant effect on the CLPP of cucumber
soil. The total AWCD and function diversity indices gradually decreased and reached a
significant level under high N treatment (Figure 3), which was distinguished from previous
studies [25,27,58]. For example, Zhang et al. [60] found increasing AWCD and Shannon
index values at a low N-addition rate but decreasing when the rate was greater than
160 kg N ha−1 year−1. However, due to the high nutrient demand of vegetable crops in
the greenhouse, the minimum addition rate we conducted was 334 kg N ha−1 year−1,
which was much higher than other agroecosystems. Therefore, no upward trend in total
AWCD and functional diversity indices were observed in all three N-addition treatments.
According to the Mantel test, we found that pH and N availability (NH4

+, NO3
−) had

a significant influence on microbial functional diversity (Figure 5B). There are two main
reasons for this: (1) Wan et al. [61] reported rhizosphere bacteria community function and
structure of greenhouses were significantly affected by the degree of soil acidification and
identified a pH 5.5 as the limit value. In our experiment, the soil pH of N3 treatment was
5.37 which was classified as more acidic soil. The toxicity of hydrogen ions and aluminum
ions caused by N-induced acidification inhibited the biomass and community composition
of microorganisms, which in turn affected microbial functional metabolism [7,62]; (2) In
addition, the input of high nitrogen led to a severe C/N imbalance in the soil (Table 2),
which could restrict the underground distribution of plant photosynthetic products, and
weaken the ability of microorganisms to acquire carbon sources [14]. The reduction of
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MBC and total AWCD was confirmed by the reduction of root exudate and cucumber root
biomass in our unpublished data.

We assessed how microbial function activities were influenced by N addition and
its key drivers in N-enriched soils based on SEM model analyses (Figure 5C). The results
showed that soil pH had a direct impact on microbial functional diversity and explained
38.8% of the variation in total AWCD. In contrast, a C/N imbalance indirectly decreased
total AWCD by affecting cucumber belowground biomass. Meanwhile, the utilization
rates of the other four C sources decreased gradually with the increase of the addition
rate except for carboxylic acids and phenolic acid after two years of the field experiment.
It is worth noting that N addition not only had a significant influence on the ability of
soil microorganisms to utilize the six major C groups but also changed the consumption
of single carbon sources [63,64]. The carbon source utilization gradually decreased with
the increase of the N-addition rate. However, under low–medium N level, the utilization
of D-Cellobiose, N-acetyl-D-glucosamine, D-Xylose, and pyruvic acid methyl ester by
microorganisms remained higher in the cucumber soil compared to N0 (Figure 4). This
could be explained by the activity of CB and NAG which had a relatively higher activity
at a reasonable N input (Figure 1) and the accumulation of them was beneficial to the
decomposition of D-Cellobiose and N-acetyl-D-glucosamine [65]. Therefore, microbes
might prefer to use carbohydrates and carboxylic acids to balance the C/N ratio under
low–medium situations [66]. Unlike N1 and N2 treatments, the microbial community
in high N treatment (N3) might simultaneously suffer acid inhibition and strong carbon
limitation [67]. Arshad and Ahmad [68] found the relative abundance of the Nitrospirae
phylum and Bacillus genus involved in nitrogen and phosphorus cycling changed when
the pH decreased significantly. Shifts in rhizosphere bacterial community composition
might lead to changes in their function characteristics. Several specific N- or acid-sensitive
bacteria and fungi competed with each other and exhibited a preference for some phenolic
and amino acids such as 2-hydroxybenzoic acid and L-serine (Figure 4) from soil and
root exudates to alleviate adverse environmental conditions although their AWCD values
dropped [69]. It is worth noting that the yield of cucumber was positively correlated
with the utilization of carbohydrates by the microbial community, which implied that
certain microbial taxa associated with carbohydrate metabolism might play a vital role
in evaluating the formation of cucumber yield (p < 0.05; Figure 7) [70]. However, the
Biolog Eco-plates method only supports the analysis of the activity of the cultivatable
microbial community [71] and it did not clearly reveal the regulatory mechanism of the
microorganisms underlying the N-addition effect. Therefore, we need to investigate more
methods to determine clear evidence in the future.

Agriculture 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

low–medium situations [66]. Unlike N1 and N2 treatments, the microbial community in 
high N treatment (N3) might simultaneously suffer acid inhibition and strong carbon 
limitation [67]. Arshad and Ahmad [68] found the relative abundance of the Nitrospirae 
phylum and Bacillus genus involved in nitrogen and phosphorus cycling changed when 
the pH decreased significantly. Shifts in rhizosphere bacterial community composition 
might lead to changes in their function characteristics. Several specific N- or acid-sensitive 
bacteria and fungi competed with each other and exhibited a preference for some phenolic 
and amino acids such as 2-hydroxybenzoic acid and L-serine (Figure 4) from soil and root 
exudates to alleviate adverse environmental conditions although their AWCD values 
dropped [69]. It is worth noting that the yield of cucumber was positively correlated with 
the utilization of carbohydrates by the microbial community, which implied that certain 
microbial taxa associated with carbohydrate metabolism might play a vital role in 
evaluating the formation of cucumber yield (p < 0.05; Figure 7) [70]. However, the Biolog 
Eco-plates method only supports the analysis of the activity of the cultivatable microbial 
community [71] and it did not clearly reveal the regulatory mechanism of the 
microorganisms underlying the N-addition effect. Therefore, we need to investigate more 
methods to determine clear evidence in the future. 

 
Figure 7. Correlation between the cucumber yield and carbohydrate utilization based on CLPP. 

5. Conclusions 
In this study, we demonstrated that excessive N addition decreased the microbial 

functional diversity through pH reduction and increased carbon limitation. Polymers, 
carbohydrates, and phenolic acid were sensitive carbon sources for the variation in 
microbial community-level physiological profiles. Furthermore, pH was the determinant 
driving changes in soil extracellular enzyme activities. Our results not only contributed 
towards improving the understanding of pathways that mediate soil microbial function 
activities but also provided theoretical guidance to farmers for sustainable production. 
Under greenhouse cultivation, low–medium level N (334 kg N ha−1 year−1, 668 kg N ha−1 
year−1) addition can be a good strategy to increase cucumber yield. However, to gain more 
insights into the plant–soil–microbe C-, N-, and P-cycle functions, further investigation of 
molecular biology approaches such as definite root metabolic pathways and microbial 
functional genes (as determined by metagenomic sequencing) with different N-addition 
rates is necessary. 

  

Figure 7. Correlation between the cucumber yield and carbohydrate utilization based on CLPP.



Agriculture 2022, 12, 1366 12 of 15

5. Conclusions

In this study, we demonstrated that excessive N addition decreased the microbial
functional diversity through pH reduction and increased carbon limitation. Polymers, car-
bohydrates, and phenolic acid were sensitive carbon sources for the variation in microbial
community-level physiological profiles. Furthermore, pH was the determinant driving
changes in soil extracellular enzyme activities. Our results not only contributed towards
improving the understanding of pathways that mediate soil microbial function activities
but also provided theoretical guidance to farmers for sustainable production. Under green-
house cultivation, low–medium level N (334 kg N ha−1 year−1, 668 kg N ha−1 year−1)
addition can be a good strategy to increase cucumber yield. However, to gain more in-
sights into the plant–soil–microbe C-, N-, and P-cycle functions, further investigation of
molecular biology approaches such as definite root metabolic pathways and microbial
functional genes (as determined by metagenomic sequencing) with different N-addition
rates is necessary.
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