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Abstract: Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the
high demand for tea has led to an increase in the adulteration of superior tea grades. The procedure of
evaluating tea quality is difficult to assure the highest degree of tea safety in the context of consumer
preferences. In recent years, the advancement in sensor technology has replaced the human olfaction
system with an artificial olfaction system, i.e., electronic noses (E-noses) for quality control of teas to
differentiate the distinct aromas. Therefore, in this review, the potential applications of E-nose as a
monitoring device for different teas have been investigated. The instrumentation, working principles,
and different gas sensor types employed for E-nose applications have been introduced. The widely
used statistical and intelligent pattern recognition methods, namely, PCA, LDA, PLS-DA, KNN,
ANN, CNN, SVM, etc., have been discussed in detail. The challenges and the future trends for E-nose
devices have also been highlighted. Overall, this review provides the insight that E-nose combined
with an appropriate pattern recognition method is a powerful non-destructive tool for monitoring
tea quality. In future, E-noses will undoubtedly reduce their shortcomings with improved detection
accuracy and consistency by employing food quality testing.

Keywords: aroma; electronic nose; gas sensors; intelligent pattern recognition; tea quality

1. Introduction

Tea is one of the most popular and consumable non-alcoholic beverages globally. It
has been extensively explored due to its abundant health-benefiting compounds. Certain
chemical compounds in tea, such as amino acids, polyphenols, theanine, catechins, etc.,
may help to prevent oxidation, chronic gastritis, and cardiovascular disease [1,2]. These
compounds accumulate during the growing stage of fresh tea leaves and the tea processing
stage, which are responsible for distinctive features of tea flavor and internal tea quality [2].
Among them, polyphenols are the main bioactive substances in tea that indirectly affect
both the aroma as well as the volatility of flavor compounds in tea. In addition, polyphenol
content varies in different tea varieties and is regarded as an important marker for evalu-
ating tea quality. Recently, tea polyphenols have gained much attention in the scientific
community due to their diverse pharmacological effects, making quantitative extraction
as well as determination of tea polyphenol content particularly essential [3]. According to
reports, global tea market demand is expected to surpass USD 148.16 billion by 2027, with
a compound annual growth rate (CAGR) of 6.4% [4]. With the rapidly growing demand
for tea globally, the superior grades of tea are sold at higher prices in the market. The
intentional substitution of superior tea grades with inferior ones and the misappropriation
of geographical indications harm not only consumers’ interests but also tea producers’
profits [1,5]. As a result, these occurrences contribute to declining consumer confidence in
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the tea sector. Therefore, geographical discrimination and quality assessment of teas have
become essential for promoting tea drinking and consumption around the world [5].

Tea quality is affected by several parameters, including soil, climate, plucking season,
and different processing methods. Superior-quality teas are usually grown in favorable
conditions, harvested at certain times, and processed using specific methods. As a result,
the aforesaid considerations limited the supply of superior-quality teas [1]. In the tea
industry, the tea processing procedures involve withering, fixation (oolong tea, yellow tea,
and green tea), rolling, fermentation (black tea), post-fermentation (dark tea), drying, or
roasting. Following the processing steps, fresh tea leaves are categorized into six major
types: green tea (unfermented tea), yellow tea, white tea, black tea, oolong tea, and dark tea
(fermented tea). Among them, black tea is the most popular tea, comprising nearly 75% of
all tea types consumed globally [6]. The different grades of tea have distinct aromas, tastes,
and bioactive compounds [1,7]. However, due to the presence of numerous compounds in
tea, it is difficult for the average consumer to discriminate between teas of different quality
grades [2]. Hence, an efficient method for the accurate estimation of tea quality is required.

Usually, human sensory analysis is used to assess the quality of tea based on sensory
descriptors, namely morphological characteristics, tastes, aromas, texture, and colors [7,8].
The analysis requires professional panel evaluators to have their own perceptions about
various tea sensory attributes, which is difficult for consumers to understand. Besides,
the main problems of sensory analysis are the need for a large group of educated and
trained people (not always feasible) [9], long and constant training, harmonization of
vocabulary, and special technical conditions (such as room and lighting). In recent years,
numerous analytical techniques have been proposed for assessing tea quality: for example,
ultraperformance liquid chromatography (UPLC), high-performance liquid chromatogra-
phy (HPLC), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis
(CE), and plasma atomic emission spectrometry [7,8]. These methods, however, have
disadvantages in that they impose high operation costs, require highly skilled analysts
and time-consuming techniques, and cannot be applied for real-time monitoring of tea
quality [3,8,10]. Therefore, the higher expectations for quality control of products have
increased the requirements for rapid, reliable, and cost-effective analysis.

With the rapid advancement of multi-sensor and electronic technologies, accurate
results in fast food analysis have become possible. Electronic eye (E-eye), electronic nose
(E-nose), and electronic tongue (E-tongue) systems are composed of color, gas, and liquid
sensors that resemble human vision, olfactory, and gustatory systems. The sample detection
is fast, with no requirement for sample pretreatment [2]. An E-nose system has been
developed to identify and distinguish different odors [11]. An E-nose system’s sensor array
consists of some non-specific sensors, and an odor stimulus generates a fingerprint from
this array. Fingerprints or patterns from known odors are used to train a pattern recognition
model such that unknown odors can be classified and identified subsequently [9]. Recently,
the E-nose has been regarded as a powerful tool for tea quality monitoring. For instance,
wide applications in tea research include tea classification, tea fermentation methods,
tea components, tea grade quality, and tea storage [3,9]. The aforementioned studies
demonstrated the potential of the E-nose device to classify tea and monitor its quality. To
date, no systematic review has extensively explored various pattern recognition methods
coupled with E-nose technology, in particular for tea research. Specifically, this review
focuses on the recent advancements in the use of E-noses to assess tea quality. Therefore,
the purpose of this review is to disseminate to other researchers not only the advancements
in the tea research area but, more importantly, the common methodologies that can be
applied to address the problems with quality control in different areas. Hence, this review
will inform readers about how E-nose technology coupled with various pattern recognition
methods can be successfully employed in the field of food authentication.
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2. E-Nose Instrumentation

The E-nose device is designed in such a manner as to identify and distinguish between
a variety of complex odors. This non-destructive device is composed of sensor arrays that
react to the vapors and gases the sample generates. Typically, the sensor array comprises
non-specific sensors that have been sensitized to various chemical substances; thus, each
element measures a distinct property of the chemical perceived [12]. When the odors
or volatile molecules react with the sensor array, subsequent changes in the electrical
properties, mainly conductivity, occur. As a consequence, pattern recognition algorithms
are used to characterize those detected changes to perform classification or discrimination
of samples [13]. As represented in Figure 1, the E-nose device consists of three main
parts: (1) sample handling system, (2) detection system, and (3) data processing system
and pattern recognition algorithms. A comparison of the basic analogies between human
olfaction (biological olfaction) and an E-nose (artificial olfaction) is represented in Figure 2.
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2.1. Sample Handling System

An important step in the sample handling system is transferring the volatile odor
molecules generated in the headspace (HS) to the E-nose sensor array. Prior to sample
detection, several variables must be optimized, including sample quantity, sample tempera-
ture, vial size, and equilibration time [14]. Different sampling methods have been explored
in the literature for applications in the food industry. These include solid-phase micro-
extraction (SPME), dynamic headspace (DHS), purge and trap (P&T), static headspace
(SHS), inside-needle dynamic extraction (INDEX), stir bar sportive extraction (SBSE), and
membrane introduction mass spectrometry (MIMS) [12,14,15]. Among these, SHS is the
most commonly used method due to its ease of use. However, this method presents a
drawback in providing low sensitivity because of the lack of a pre-concentration system
involved for volatile components [12]. In particular, for the advancement in tea analysis,
an innovative sample handling system was developed on the basis of the principle of
illumination-controlled heating coupled with physical raking to enhance the sensitivity of
the sensor array [15,16].

2.2. Detection System

The most sophisticated and important component of an E-nose detection system
is the gas/odor sensor array, which consists of various sensors with a wide range of
response characteristics and high cross-sensitivity towards varied gases/vapors. These gas
sensors convert gas concentrations into electrical signals, which are then used to perform
quantitative or qualitative analysis on the samples being monitored. In consideration of
improving the performance of an E-nose system for monitoring samples, the selection of
an appropriate gas sensor array is essential [14]. A vast variety of different gas sensors
have been devised, as shown in Table 1. Each sensor category has different types that are
sensitive to different gaseous molecules, and the individual selection of a sensor depends
on the gas exposure type [12]. Among them, metal oxide semiconductor (MOS), conducting
polymer (CP), and electrochemical (EC) sensors are the most popularly utilized sensors
for E-nose applications because of their rapid response, high sensitivity, high detection of
gases, and low cost [12,14,17].

The sensor array, constituting the most essential part, is made up of 10 MOS sensors,
each of which has a particular sensitivity to volatile substances. The 10 MOS sensors are
listed in Table 2, which also details their main applications [18]. Recently, applications
of MOS sensors have been explored in various food areas, including quality control and
monitoring and identification of geographical origin, aging, spoilage and contamination,
and adulteration [19]. The MOS sensors employed in commercial E-noses prevail from
different companies around the world. Ongoing research on enhancing the sensitivity
and selectivity is paving the way towards the advancement of these sensors [17]. The
E-nose instrument is typically integrated with a variety of sensing materials, such as quartz
crystal microbalance, CP, EC, MOS (e.g., tin, zinc, cobalt, nickel, titanium, and iron oxides)
sensors, etc. As a result, the material and sensor types employed impact the selectivity,
response time, sensitivity, and efficiency of each E-nose [20]. However, studies have proved
the potential of MOS sensors in food applications for long-term operation in continuous
mode [17]. For example, MOS sensors successfully discriminated the five different tea
categories, indicating the potential of the instrument to distinguish between flavors of the
different teas manufactured under various processing methods [19]. Another recent study
demonstrated that an E-nose device equipped with MOS sensors could classify complex
odors of volatile compounds present in food materials such as tea. Thereafter, it can be
used for discrimination purposes and the determination of quality changes [20].
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Table 1. Different types of sensors utilized in the design of E-noses and their sensing mechanisms.

Sensor Type Description Reference

Metal Oxide Semiconductor (MOS) Sensors

MOS sensors are the most widely used sensors in the beverage
and food industries. These detect the target volatile gas molecules
via oxidation–reduction reactions between the gas molecules and

the chemisorbed oxygen species on their sensing material
surfaces. These types of sensors offer the advantages of high

sensitivity towards hydrogen and unsaturated hydrocarbons or
solvent vapors containing hydrogen atoms, stability over time,

fast response, and ease of use. The main disadvantage is the
requirement to operate at a high temperature (150–400 ◦C), which

leads to considerable energy usage.

[13,21]

Conducting Polymer (CP) Sensors

CP sensors are the second most widely used gas sensors in the
food industry after MOS sensors. Their working principle is

based on the changes in electrical resistance due to the adsorption
of volatile gases on the sensing surface. These offer high

sensitivity to detect volatile gas molecules, fast response times,
and less energy consumption. The main disadvantage is their

high susceptibility to environmental humidity.

[13,22]

Surface Acoustic Wave (SAW) Sensors

SAW sensors are utilized in the food industry for the rapid
detection of spoilage and pathogens in food. These types of

sensors use acoustic (mechanical) waves that are transmitted
through the sensing surface on the sorption of volatile molecules.
As a result, changes in velocity or amplitude occur. These types of
sensors offer high sensitivity, fast response, and good precision.
However, they have poor signal-to-noise ratios and are affected

by humidity.

[13,22,23]

Metal Oxide Semiconductor Field Effect
Transistors (MOSFETs)

MOSFETs have been utilized in a variety of food-related analyses,
such as food cooking, production of juice, and fermentation. Any
reaction of volatile gas molecules changes the insulator properties

or metal gate, which alters the electrical properties of the
MOSFET sensors, resulting in a change in the drain current. High
sensitivity, low susceptibility to humidity, and small sensor size

are the advantages of MOSFETs. However, they require
environmental control, show baseline drift, and have low

sensitivity to carbon dioxide and ammonia.

[12,22,24]

Electrochemical (EC) Sensors

EC sensors work on the principle of interaction between the
volatile gaseous molecules of interest and the sensing materials
that generate the electrical signals. In other words, EC sensors
work on the amperometry principle, which generates current

signals that are related to analyte concentration by Faraday’s law
and the laws of mass transport. These sensors require low power

consumption and are resistant to changes in relative humidity.
However, they do offer a limitation of cross-sensitivity to some of

the volatile compounds in the samples.

[22,25,26]

Optical Sensors

Optical sensors are based on the measurement of light
modulation characteristics, such as changes in wavelength, color,
and light absorbance, upon interaction with gaseous molecules.

The advantages include high signal-to-noise ratios and less power
consumption. Contrarily, these sensors offer less adaptability to

the environment and lower accuracy levels for
long-distance measurements.

[14,22,27]

Colorimetric Sensors

Calorimetric sensors are used in the meat industry to monitor the
freshness and spoilage of meat. The detection principle of these

sensors is based on color change and absorbance upon
interactions between the volatile gaseous molecules and

chromogenic materials. These are highly specific to oxidized
volatile compounds and give rapid response. However, they

require a high operating temperature and provide sensitivity only
to oxygen-containing volatile compounds.

[22,28]

Fluorescence Sensors

Fluorescence sensors are employed for detection of food
contaminants. These sensors are based on the detection of

fluorescent light emissions from the target gaseous molecules at a
lower wavelength.

[22,29]
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Table 2. List of MOS sensors in E-noses and their target gas sensitivity.

Sensor Number Target Gas

S1 Aromatic compounds
S2 Nitrogen oxides
S3 Ammonia
S4 Hydrogen
S5 Alkenes, less polar compounds, and aromatic compounds
S6 Methane broad range
S7 Sulphur compounds
S8 Alcohols and partially aromatic compounds
S9 Sulphur organic compounds and aromatic compounds

S10 High concentrations
Adapted from Zakaria et al. [18] and distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license.

2.3. Data Processing System

After collection of the data signals from the different sensor arrays, interpretation of
the complex data is accomplished [12]. The key criteria for the measuring systems are the
preprocessing of collected E-nose signals. For example, baseline processing, data compres-
sion (feature extraction or selection), and normalization are common signal preprocessing
techniques. Odor signal pretreatment has a significant impact on the E-nose performance,
which increases E-nose classification performance while reducing noise, complexity, and
recognition errors [14]. The majority of E-nose devices record the sensor’s raw response
over time. A number of factors influence sensor response, including pumping system
effectiveness, noisy gas sensor records, and sample aroma retention following the cleaning
stage. Therefore, raw data are first preprocessed using singular value decomposition (SVD)
or a difference model, where the change in sensor resistance relative to a reference gas is de-
termined, and then the data set of static change in sensor resistance, dR (dR = Rair − Rodor),
is normalized by maximum value to set the range to 0–1. Other studies reported the usage
of standard normal variate (SNV) for data preprocessing with E-nose devices [30]. More-
over, to identify and analyze the data, appropriate post-processing methods are required.
Several pattern recognition algorithms are used in post-processing techniques [15], which
are discussed in detail in Section 3.

3. Pattern Recognition Algorithms for E-Nose

Pattern recognition constitutes an important part in the development of an E-nose
instrument capable of detection, identification, and quantification of different complex
volatile compounds. These are typically classified as statistical and intelligent pattern recog-
nition methods [14]. The most widely applied pattern recognition techniques in E-nose
applications include linear discriminant analysis (LDA) and discriminant function analysis
(DFA), principal component analysis (PCA), multinomial logistic regression (MultiLR),
partial least squares discriminant analysis (PLS-DA), partial least squares regression (PLSR),
hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), artificial neural network
(ANN), convolutional neural network (CNN), decision trees (DT), random forest (RF), and
support vector machine (SVM) [14,31]. PCA and HCA are unsupervised learning algo-
rithms, while LDA and DFA, MultiLR, PLS-DA, PLSR, KNN, ANN, CNN, DT, RF, and SVM
are supervised learning algorithms [32]. These algorithms can be categorized into statistical
or intelligent pattern recognition methods based on linear or nonlinear approaches [13–15].

3.1. Statistical Pattern Recognition Methods
3.1.1. Linear Discriminant Analysis (LDA)

LDA, a dimensionality reduction technique, is a widely applied recognition method
for E-nose devices. This method identifies a linear combination of features that characterize
or distinguish between two or more classes of odors [33]. Suppose there are two classes of
odors in samples. LDA creates one hyperplane and projects the data in such a way that
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the separation of classes is maximized. The hyperplane is drawn based on minimizing the
distance within the same class and maximizing the distance between the classes [34]. The
purpose of LDA is to reduce the original dataset into a lower-dimensional space with high
sample discrimination, thus reducing the risk of overfitting and computing costs [35]. The
requirements of LDA include continuous quantities of the input independent variables for
given observations [33].

3.1.2. Principal Component Analysis (PCA)

PCA is a statistical method belonging to the factorial analysis group. PCA aims to use
a small number of factors to represent the variance in a dataset [36]. Using an orthogonal
transformation, it converts a set of observations of possibly correlated variables into a
set of values of linearly uncorrelated variables. These variables are known as principal
components (PCs) [33]. Iteratively calculated PCs retain as much variance as possible
from the original data, such that PC1 accounts for more data variance than PC2, and
PC2 accounts for more data variance than PC3, and so on. Because of this, a few PCs
account for the variability in a large number of original data sets. For PCA analysis, only
PCs having eigen values greater than 1 are considered significant based on the Kaiser
criterion. In contrast, Bartlett’s test of sphericity indicates the suitability of the raw data for
performing PCA [36].

3.1.3. Multinomial Logistic Regression (MultiLR)

MultiLR is an extension of the logistic (binary) regression model. This method is used
when the dependent variable of a study has more than two categorical levels of outcome
variable. MultiLR, like binary logistic regression, employs maximum likelihood estimation
to determine the probability of categorical membership [37]. MultiLR is a classification
approach with a discrete random variable set of 1,2,3, . . . , K, where K is the number of
categories. The independent variable is either 0 or 1. Several studies have employed the
application of MultiLR to create classification models with good classification results [38].
MultiLR has gained much popularity because it does not require assumptions of normality,
linearity, and homogeneity of variance of independent variables. Hence, it is a more
commonly used method of analysis than discriminant function analysis since it does not
require such assumptions [39].

3.1.4. Partial Least Squares Discriminant Analysis (PLS-DA)

The PLS algorithm was earlier used for regression analysis and later developed into
the PLS-DA classification approach (PLS-DA). PLS-DA has been used in practice for both
predictive and descriptive modelling, as well as the selection of discriminative variables [40].
PLS-DA is a dimensionality reduction technique that is referred to as a supervised version
of PCA. It can be used for feature selection and classification as well. It seeks to find linear
transformations that transform data to a lower dimensional space with the least amount of
error via optimizing separation between samples of different groups [41]. Furthermore, PLS-
DA does not require the data to fit a specific distribution, making it more flexible compared
to other discriminant methods such as Fisher’s LDA. Several researchers have reported a
wide range of applications of PLS-DA modelling in food analysis and metabolomics [40].

3.1.5. Partial Least Squares Regression (PLSR)

The PLSR technique combines and generalizes the features of PCA and MLR (multiple
linear regression). Its aim is to predict a set of dependent variables from a set of independent
variables. This prediction is accomplished by extracting a set of orthogonal factors (known
as latent variables) from the predictors having the highest predictive ability. This technique
is especially useful when a dependent variable set needs to be predicted from a large
independent variable set [42]. The PLSR model finds the relationship between two data
matrices, X and Y. In addition, it goes beyond the traditional regression by modelling the
structure of X and Y. PLSR can analyze data in both X and Y with numerous, correlated,



Agriculture 2022, 12, 1359 8 of 19

noisy, and even incomplete variables. The precision of the model parameters improves
with the increase in the number of observations and relevant variables. As a result, PLSR
enables more realistic investigation of complex issues and data analysis [43].

3.1.6. Hierarchical Cluster Analysis (HCA)

HCA is a clustering algorithm that examines the organization of test samples within
and among groups in the form of a hierarchy. HCA results are typically presented in the
form of a dendrogram, which is a tree-like plot that depicts the organization of samples
and their relationships. In HCA, there are two main approaches to resolving the grouping
problem: agglomerative and divisive [36]. It basically allows the classification of variables
based on their similarities and differences, while taking previously assigned characteristics
into account [44]. Clustering is performed using the appropriate distance measure (Manhat-
tan, Euclidean, or Mahalanobis distance) and linkage criteria (single and average, complete,
or Ward’s linkage). HCA has been widely applied to assess the multivariate relationship
between bioactive substances and the bioactivity of beverages and foods [36].

3.2. Intelligent Pattern Recognition Methods
3.2.1. K-Nearest Neighbor (KNN)

KNN is one of the most popularly used algorithms in the food industry to solve classi-
fication problems. The “K” in KNN represents the number of the nearest neighbors being
included in the majority voting process [45]. KNN is classified by computing the distances
between different feature values. The idea is that if the majority of the K similar samples in
the feature space belong to a particular category, then the sample does as well belong to that
category, where k represents an integer no greater than 20. Moreover, the selected neighbors
in the KNN algorithm are all correctly classified objects. This algorithm only determines
which category the samples to be classified belong to, depending on the category of the
proximity of the samples in the decision-making of classification [46]. In this algorithm, the
Manhattan or Euclidean distance is usually used as the distance metric [46,47].

3.2.2. Artificial Neural Network (ANN)

An ANN is a supervised model inspired by the networks of biological neurons and
is commonly used in classification and regression problems. It comprises multiple layers
of nodes consisting of an input layer, one or more hidden layers, and an output layer [48].
The number of hidden layers is largely dependent upon the task to be achieved. The
activation of hidden layers is determined by the input layer and the weights between the
input and hidden layers. Similarly, the activation of the output layer is determined by the
hidden layers and the weights between them [23]. The functions of an ANN are determined
by the neuron activation function, the structure of the neuron pattern, and the learning
process [13]. There are three types of learning methods in ANN: supervised, unsupervised,
and reinforced learning. Recently, ANN modelling has shown the potential to model
nonlinear complex food engineering processes that are difficult to solve using traditional
approaches [49]. Several types of ANNs have been used to classify E-nose data and food
processing models. These include learning vector quantization (LVQ), Kohonen networks,
multi-layer perceptron (MLP), feed-forward backpropagation neural network (FFBPNN),
convolutional neural network (CNN), and long short-term memory (LSTM) network,
recurrent neural networks (RNNs), generative adversarial network (GAN), restricted
Boltzmann machine (RBM), and deep Boltzmann machine (DBM) [13,49].

3.2.3. Convolutional Neural Network (CNN)

CNN is a type of deep neural network like ANN that is a purely supervised learning
algorithm and is primarily applied for image recognition [13,49]. In brief, the image data
(such as RGB value and intensity) pass through a certain series of convolutional layers
that include filters (core or neurons), pooling layers, and fully connected layers before
generating the output. The filters apply convolutional operations to the input image data
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and extract high-level features such as edges from the input image. The pooling layers
then reduce the size of the image using the two common pooling methods, namely average
pooling and maximum pooling. Following the above process steps, the data are finally
fed to the fully connected layers, i.e., ANN, to perform classification [13]. In contrast to
traditional feature-based pattern recognition methods, CNN performs feature extraction
and selection automatically, hence the preprocessing of input data is not required. Recently,
CNN combined with E-nose has been identified as a useful tool in food and beverage
analysis, especially for the classification of liquors [23].

3.2.4. Decision Trees (DT) and Random Forest (RF)

A DT builds regression or classification models in the form of a tree-like architec-
ture. DT organizes the dataset progressively into smaller homogeneous subsets (sub-
populations), while also generating an associated tree graph. The internal nodes represent
the dataset features, branches represent decision rules, and leaf nodes represent the classi-
fication outcome [46,48]. The most common learning algorithms in this classification are
regression and classification trees, the iterative dichotomizer, and the chi-square automatic
interaction detector [48].

An RF is a combination of tree (decision) predictors, widely used as a predictor
and classifier for E-nose analysis. The value of a random vector determines a single tree
predictor individually as well as for the other trees with the same distribution [35,46].
This algorithm basically employs the rules to binary split data. The main rules used to
binary split data in classification problems are the towing rule, Gini index, and deviance,
among which the Gini index is the most commonly used [50]. Aside from high predictive
performance, RF analysis may indicate feature importance, revealing the contribution
of each feature to predictors and thus allowing a quantifiable comparison of different
structural features [51].

3.2.5. Support Vector Machine (SVM)

A SVM is a supervised learning algorithm that can be extensively employed for
statistical regression and classification analysis [52]. It is based on a method for finding a
particular type of linear model known as the maximum-margin hyperplane. In order to
visualize the maximum-margin hyperplane, consider a two-class dataset whose classes are
linearly separable, which means that a hyperplane in the input space correctly classifies
all training instances [53]. After being transformed by a nonlinear function, i.e., kernel
function, the algorithm process enables SVM to fit the n-dimensional feature space into a
K-dimensional hyperplane (K > n) [35]. SVM algorithms are frequently used in E-Nose
related applications [23]. Commonly used SVM algorithms include successive projection
algorithm-support vector machine, support vector regression, and least squares support
vector machine [48].

4. Applications of E-Nose in Tea Quality Evaluation

In the tea industry, tea quality management is considered a critical responsibility. As
a result, tea quality and nutrition throughout tea processing must be analyzed so as to
maintain the top quality of marketed tea products. However, due to the high cost of tea
items, adulteration is common, resulting in a flood of tea products bearing false brand
names in the market and unscrupulous vendors profiting from the awful fakes. As a result,
distinguishing between genuine and counterfeit products is difficult [54]. According to
numerous reports, E-nose is a potential technology for monitoring the authenticity of food
products [21]. Table 3 summarizes a set of E-noses utilized in combination with various
pattern recognition algorithms to assess the quality of varied tea types from the last 10 years.
E-nose devices were employed to categorize and differentiate different tea types according
to their origins, quality grades, adulteration degree based on the mix ratios, and drying
processes, and to monitor the smell variation of fermentation (Table 3).
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Table 3. Description of various E-nose configurations and pattern recognition methods used for tea quality evaluation.

S. No. Tea Variety Purpose of Analysis E-Nose Configuration Pattern Recognition
Methods References

1 Chaoqing Green Tea To differentiate green teas according to
its quality

E-nose system (developed by Agricultural Product
Processing and Storage Laboratory, Jiangsu
University, Zhenjiang, China) with 8 TGS gas
sensors (Figaro Co., Ltd., Osaka, Japan)

PCA, SVM, KNN, and ANN [9]

2 Longjing Tea To detect tea aroma for tea quality
identification

PEN3 (Airsense Analytics, Schwerin, Germany)
with 10 MOS sensors PCA, KNN, SVM and MLR [38]

3 Longjing Tea
To develop a multi-level fusion
framework for enhancing tea quality
prediction accuracy

Fox 4000 (Alpha M.O.S., Co., Toulouse, France) with
18 MOS sensors K(LDA), KNN [8]

4 Xihu-Longjing Tea To classify the grades of tea based on
the feature fusion method

Fox 4000 (Alpha MOS Company, Toulouse, France)
with 18 MOS sensors K(PCA), K(LDA), KNN [55]

5 Chinese Chrysanthemum Tea
To differentiate the aroma profiles of
teas from different geographical
origins

GC Flash E-nose (Alpha M.O.S. Heracles, Toulouse,
France) PCA [5]

6 Pu-erh Tea
To perform classification of two types
of teas based on the volatile
components

Fox-3000 (Alpha MOS, Toulouse, France) with
12 MOS sensors PCA [56]

7 Green and Dark Tea To assess the quality of tea grades PEN3 (Airsense Analytics GmbH, Schwerin,
Germany) with 10 gas sensors PCA, LDA [7]

8 Black Tea To investigate in situ discrimination of
the quality of tea samples

Lab-made E-nose with 8 MOS sensors (Figaro
Engineering Inc., Osaka, Japan)

PCA, LDA, QDA, SVM-linear,
SVM-radial [10]

9 Xinyang Maojian Tea To evaluate the different tastes of tea
samples

PEN3 (Win Muster Airsense Analytics Inc.,
Schwerin, Germany) with 10 MOS sensors MLR, PLSR, BPNN [57]

10 Black Tea, Yellow Tea, and
Green Tea

To evaluate polyphenols of
cross-category teas

PEN3 (Win Muster Air-sense Analytics Inc.,
Schwerin, Germany) with 10 MOS sensors RF, Grid-SVR, XGBoost [3]

11 Pu-erh Tea
To discriminate between the aroma
components of teas from varying
storage years

PEN3 (Airsense, Schwerin, Germany) with 10 MOS
sensors LDA, PCA [58]

12 Herbal Tea
To investigate bio-inspired flavor
evaluation of teas from different types
and brands

PEN3 (Win Muster Airsense Analytics Inc.,
Schwerin, Germany) with 10 MOS sensors LDA, SVM, KNN, and PNN [18]

13 Pu’er Tea
To devise a rapid method for
determining the type, blended as well
as mixed ratios of tea

PEN 3 (Airsense Inc., Schwerin, Germany) with
10 MOS sensors LDA, CNN, PLSR [59]



Agriculture 2022, 12, 1359 11 of 19

Table 3. Cont.

S. No. Tea Variety Purpose of Analysis E-Nose Configuration Pattern Recognition
Methods References

14 Green Tea To evaluate the quality grades of
different teas

PEN3 (Airsense Analytics GmbH, Schwerin,
Germany) with 10 MOS sensors

PCA, LDA, RF, SVM, PLSR,
KRR, SVR, MBPNN [60]

15 Jasmine Tea To examine the differences in aroma
characteristics in different tea grades

ISENSO (Shanghai Ongshen Intelligent Technology
Co., Ltd., Shanghai, China) with 10 MOS sensors PCA, HCA [61]

16 Xihu Longjing Tea To detect teas from different
geographical indications

PEN3 (Airsense Analytics GmbH, Schwerin,
Germany) with 10 MOS sensors

PCA, SVM, RF, XGBoost,
LightGBM, TrLightGBM,
BPNN

[62]

17 Congou Black Tea
To investigate the aroma characteristics
of tea during the variable-temperature
final firing

Heracles II ultra-fast gas phase E-nose (Alpha
M.O.S., Toulouse, France) PLS-DA [63]

18 Longjing Tea To determine the different quality
grades of green teas

PEN2 (Airsense Company, Schwerin, Germany)
with 10 MOS sensors PCA, DFA, PLSR [64]

19 Pu-erh Tea To rapidly characterize the volatile
compounds in tea

Heracles II gas phase E-nose (Alpha M.O.S.,
Toulouse, France) OPLS-DA [65]

20 Longjing tea To determine the tea quality of
different grades

PEN3 (Airsense Corporation, Schwerin, Germany),
with 10 MOS sensors PCA, MDS, LDA, LR, SVM [1]

21 Mulberry Tea

To develop a rapid and
non-destructive method for visualizing
the volatile profiles of different leaf tea
samples of various grades

Fox 4000 (Alpha M.O.S., Toulouse, France) with 18
MOS sensors PCA, LDA [66]

22 Green Tea
To propose a multi-technology fusion
system based on E-nose to evaluate
pesticide residues in tea

Fox 4000 (ALPHA MOS, Toulouse, France) with 18
MOS sensors PLS, SVM, ANN [67]

23 Fuyun 6 and Jinguanyin
Black Tea

To investigate the aroma differences of
tea produced from two different tea
cultivars

E-nose (Shanghai Ongshen Intelligent Technology
Co., Ltd., Shanghai, China) with 10 sensors LDA, PCA, HCA, OPLS-DA [68]

24 Green Tea
To investigate the changes in volatile
profiles of tea using different drying
processes

Heracles II gas phase E-nose (Alpha M.O.S.,
Toulouse, France) PLS-DA, PCA [69]

25 Dianhong Black Tea To investigate the quality of tea
infusions

Heracles II fast GC-E-Nose (Alpha M.O.S.,
Toulouse, France) PLS-DA, FDA [70]

26 Oolong Tea
To discriminate between the smell of
tea leaves during various stages of
manufacturing process

E-nose with 12 MOS sensors (Figaro USA, Inc.,
Arlington Heights, IL, USA and Nissha FIS, Inc.,
Osaka, Japan)

LDA [71]

27 Shucheng Xiaolanhua Tea To enhance the performance of tea
quality detection

PEN3 (Airsense Analytics, Schwerin, Germany)
with 10 MOS sensors K(PCA), KECA, SVM [72]
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Several E-nose systems have been developed to distinguish different teas in terms
of authenticity, discrimination, and quality assessment. For example, instead of human
sensory analysis, the scientists developed an E-nose system consisting of eight MOS gas
sensors to distinguish green tea quality. A PCA was conducted for feature extraction.
Non-linear classification approaches, such as KNN, ANN, and SVM, were applied to
build discriminative models. The results demonstrated that the E-nose technique, coupled
with the SVM model, showed better discrimination for green tea quality when compared
to the other models [9]. Furthermore, a rapid detection method using both E-nose and
computer vision system (CVS) was developed for the identification of Longjing tea quality
grades. The feature and decision-level strategies, namely, PCA, KNN, SVM, and MLR, were
introduced for classification modelling. Based on a decision-level fusion strategy, the SVM
classification results combining both E-nose and CVS showed great performance, i.e., 100%
for both training and testing sets. This study highlighted the usage of E-nose and CVS in
combination with a decision-level fusion algorithm as a quick tea quality detection tool [38].
In another investigation [8], a multi-level fusion strategy was proposed using both E-nose
and E-tongue for evaluating four grade levels of Longjing tea. Two distinct features, namely,
frequency-domain and time-domain based features, were extracted from sensor responses
of both E-nose and E-tongue. The merged features were analyzed for feature selection
using non-linear kernel linear discriminant analysis (KLDA), a dimensionality reduction
algorithm. The results obtained by the KNN classifier from both the systems were fused,
providing an efficient decision fusion algorithm. Using a multi-level fusion system, the
KLDA-KNN model showed better classification ability for most of the graded tea samples,
with improved recognition accuracy. As a result, this work provided a framework for
combining features and decisions, which is critical to consider for better identification
of tea quality. Dai et al. [55] introduced a feature fusion method to study the quality
classification of four grades of Xihu-Longjing tea, via E-nose. They found that non-linear
kernel-based algorithms (KPCA and KLDA) showed better classification results than linear
algorithms (PCA and LDA). The fused features yielded a 100% identification rate with the
KLDA-KNN model, compared to single features. This analysis revealed the superiority
of fused features in reflecting signal properties, indicating that E-nose could be utilized to
successfully classify Xihu-Longjing tea grades.

The quality evaluation and origin identification of chrysanthemum flower teas are
essential to promote their consumption globally. In this regard, a combination of GC-MS
and E-nose was used to categorize 15 chrysanthemum flower teas from five different origins.
The PCA for volatile profiles accounted for 86.82% of total variance, separating the teas into
five groups. These agreed with GC-MS results, demonstrating the effectiveness of E-nose
in the quality control of chrysanthemum flower teas [5]. Ye et al. [56] developed a rapid
discrimination method for Pu-erh tea types as an alternative to sensory analysis. They
successfully applied the E-nose system coupled with PCA to identify raw Pu-erh tea from
matured ones. This study contributed to preventing counterfeit problems associated with
the quality and economic significance of ripened Pu-erh teas. Yuan et al. [7] demonstrated
that E-nose coupled with PCA and LDA could be rapidly applied to categorize the tea
products, i.e., varied storage periods of Pu-erh tea and various priced Xi-hu Longjing tea
samples. Using E-nose, the authors identified specific aroma characteristics for wet and dry
samples of Pu-erh tea and Xi-hu Longjing tea. More interestingly, alcohols, methane, and
nitrogen oxides are regarded as key components that add to the aromas of different priced
Xi-hu Longjing teas, whereas amines, nitrogen oxides, and aromatic compounds contribute
to the aromas of Pu-erh teas with varying storage years. Hidayat et al. [10] studied the in
situ ability of E-nose to differentiate between different black tea quality levels using feature
extraction (PCA) and classification models (LDA, QDA (quadratic discriminant analysis),
SVM-linear, SVM-radial). The results showed that E-nose with the SVM-linear model was
the most accurate, allowing 100% correct recognition rates for the tea samples according to
quality levels.
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Tea polyphenols, amino acids, and caffeine are responsible for forming the astringency
and bitterness of tea. Even though many methods have been developed to evaluate tea’s
taste, this task has always been challenging. In this regard, a rapid and feasible method
was established using E-nose and mathematical modelling to identify the bitterness and
astringent taste of green tea samples. The findings revealed that the BPNN model was more
reliable than the PLSR and MLR models in examining the bitterness and astringency of
tea infusions [57]. Yang et al. [3] used E-nose and hyperspectral imaging (HSI) focused on
the fusion features method to estimate polyphenols of cross-category tea (e.g., yellow tea,
green tea, and black tea). Three models, namely grid support vector regression (Grid-SVR),
extreme gradient boosting (XGBoost), and random forest (RF), were constructed. SVR is a
dimensionally transformed linear regression. The values of the SVR parameters greatly
influence the SVR evaluation performance, and a grid algorithm is used to enhance the
model’s accuracy. XGBoost is a lifting tree-based integrated method that improves weak
learners’ integrated tree approach by using the gradient descent architecture (typically a
classification and regression tree). It was demonstrated that fusion features were more
accurate than single sensor features. Additionally, the XGBoost (R2 = 0.998 and adjusted
R2 = 0.995 for calibration, R2 = 0.90 and adjusted R2 = 0.75 for validation) model showed
the best performance among other models, providing a technical basis for quantitative
measurement of the tea polyphenol content of cross-category tea. Xuemei et al. [58] studied
E-nose to assess the aromas of Pu-erh tea from 10 different storage periods. However, PCA
was effective in discriminating the aromas between infused leaves, tea infusions, and dry
tea samples, while LDA successfully discriminated dry tea and tea infusion aromas. This
approach could be practically implemented for building the aroma fingerprint profiles
for the identification of teas based on their storage years. Furthermore, to investigate bio-
inspired flavor evaluation of herbal tea, Zakaria et al. [18] introduced a data fusion method
using both E-nose and E-tongue with four classification approaches (LDA, SVM, KNN, and
probabilistic neural network (PNN)). They found that the KNN classifier performed best
for assigning tea samples according to different types, brands, and concentrations, while
PNN outshined the other classifiers for flavor masking agents.

Similarly, Xu et al. [59] conducted an investigation into the usage of E-nose and a
visible/near-infrared spectrometer to provide a fast and intelligent detection method for the
type, blended ratio, and mixed ratio of Pu’er tea. The results of the PLSR and LDA analyses
revealed that CNN had better detection capability, acquiring more local features compared
to the traditional method of feature extraction. In another study, characterization and
quality assessment of different grades of organic green tea were carried out by Liu et al. [60]
via electronic nose. For the classification task, all three models (RF, SVM, and MBPNN)
displayed outstanding performance. For the regression task, MBPNN displayed the best
performance among SVR and kernel ridge regression (KRR). According to this study,
MBPNN was capable of classifying and grading the teas as well as predicting their prices.
Wang et al. [61] analyzed the variations in aroma characteristics of several Jasmine tea
grade samples with E-nose. The E-nose results, along with PCA and HCA, demonstrated
that E-nose was effective at differentiating tea grade differences caused by volatile organic
compound (VOC) concentrations. Since then, one of China’s most valuable teas, Xihu
Longjing (XHLJ), has been adulterated with some low-quality teas and sold on the market.
In this regard, Wang et al. [62] investigated XHLJ tea samples to detect their geographical
indications using E-nose. The experimental findings demonstrated that the TrLightGBM
model outperformed the other five models (RF, SVM, XGBoost, LightGBM, and BPNN) in
terms of identifying different harvesting times and producing areas.

Processing technology is crucial in providing the distinctive flavor of black tea, in-
cluding withering, rolling, fermentation, and drying processes. Yang et al. [63] employed
E-nose to examine the volatile profile of Congou black tea, as well as the changes in the
aroma features across the different variable-temperature final firing processes. The applied
PLS-DA clearly differentiated the tea samples by different drying conditions. Likewise,
categorization and prediction of green tea were performed by Wang et al. [64] using fusion
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approaches combining E-nose and E-tongue. The PCA and DFA separated the different
grades of tea samples. The PLSR findings showed that the integrated use of E-nose and
E-tongue was more efficient compared to their separated usage for the prediction of flavor
and volatile compounds. According to Yang et al. [65], at present, the evaluation of Pu-erh
tea’s quality is totally dependent upon human sensory perception. However, they suc-
cessfully conducted a fast characterization of the volatile compounds in Pu-erh tea using
E-nose and the orthogonal partial least squares discriminant analysis (OPLS-DA) model,
providing an important basis of reference for quality monitoring of Pu-erh tea. Another
quality evaluation of different Longjing tea grades was conducted by Xu et al. [1] by apply-
ing E-nose. The outcomes revealed that LDA outperformed PCA and multi-dimensional
scaling (MDS) in both SVM and logistic regression (LR) models. Moreover, LDA-SVM
accounted for 100% of the recognition rate.

In the literature, investigations into the aroma profiles and quality parameters of
herbal teas, especially mulberry teas, are scarce. In this context, a study was undertaken to
characterize the volatile profiles for quality assessment of mulberry leaf teas using a rapid
and non-destructive E-nose technology. The experimental results showed that PCA and
LDA successfully separated three mulberry cultivars into their respective groups based
on their volatile profiles. Overall, Buriram 60 (BR) samples presented clear separation
from Khunphai (KP) and Sakonnakhon (SK) samples [66]. On the other hand, pesticide
residues in tea have been a long-time concern in the tea quality assessment process, as
they pose health hazards even at extremely low levels. To determine chlorpyrifos (CPS)
pesticide residues in green tea, Sanaeifar et al. [67] developed a data fusion approach
combining confocal Raman micro spectroscopy (CRM) and E-nose. The merged E-nose and
CRM responses improved the prediction model’s performance. It is also important to note
that the developed PLS, SVM, and ANN models performed admirably well in prediction
analyses. However, for both individual and fusion datasets, the ANN model predicted the
CPS residues most effectively. This study suggests an alternate method for quick and safe
control of pesticide residues in tea. Likewise, Yan et al. [68] employed E-nose to examine the
fragrance chemical components and differences between Fuyun 6 and Jinguanyin black teas
produced from two tea cultivars. The applied PCA and HCA achieved good differentiation
of the two tea cultivars. Additionally, the OPLS-DA model proved to be reliable, indicating
that four sensors, namely S2 (sulfide and hydrogen sulfide), S6 (biogas, hydrocarbons, and
methane), S7 (combustible gases), and S10 (combustible gases and alkanes), contributed
the most to discriminating between the two cultivars. Additionally, LDA achieved a 100%
correct classification rate for species discrimination. Similarly, Yang et al. [69] studied the
changes in green tea samples dried at various temperatures and times with gas phase E-nose
(GC-E-nose). The results indicated the validity of the PLS-DA model, thus differentiating
the drying process into three clusters. The PCA also clearly distinguished the samples by
varying drying temperatures. Further, Chen et al. [70] investigated the quality assessment
of Dianhong black tea (DBT) infusions with GC-E-nose. The findings revealed that PLS-
DA (78.6%) had a lower prediction accuracy rate than Fisher discriminant analysis (FDA;
95.2%). In addition, stepwise-MLR also successfully predicted the fragrance quality score
of tea infusions.

To assure that E-nose could be successfully employed in tea factories, Tseng et al. [71]
investigated the variation in smell of Oolong tea leaves at various steps of the manufac-
turing process. The LDA categorized the smell into three groups (before the first shaking
(BS1), before the shaking group, and after the shaking group). The E-nose finding was
similar to that of tea practitioners, implying that the E-nose possesses the potential to
eventually replace human sensory perception. In another study on tea quality control,
Wang et al. [72] proposed a feature reduction method coupled with SVM to improve
quality detection performance for Shucheng Xiaolanhua tea using E-nose. The grey wolf
optimization-support vector machine (GWO-SVM) classification performance for variable
importance of projection-kernel entropy component analysis (VIP-KECA) achieved a 98%
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accuracy rate. This study suggested the usage of the feature reduction method to enhance
the performance ability of E-nose, which might be a useful tool for tracking tea quality.

5. Challenges and Future Perspectives

The E-nose device, resembling the human olfactory system, is a well-studied area of
research for classifying volatile aromas in non-alcoholic beverages such as tea. The results
using the traditional method for tea evaluation always vary and are inconsistent due to the
psychological parameters of tasters and a lack of pre-defined standard protocols. However,
defined odor characteristics are necessary to assess the quality of tea, which could be
possible using E-nose technology. The various gas sensors used in E-nose are extremely
sensitive to vapor concentration, temperature, moisture, pressure, and gas velocity, which
poses a substantial challenge to, and effect on, the detection of targets. E-nose assessment
requires systematic control of sample preparation and sampling conditions with high re-
peatability and precision [73]. Other challenges include its inability to understand the target
gas and the identification of a specific chemical compound aroma. The E-nose device’s
detection levels and accuracies are still lacking, and more research is required. Even though
there are numerous types of odor sensors, their applications are limited, necessitating the
development of novel odor sensors. Furthermore, developing new pattern recognition
algorithms will aid in the acquisition of more accurate detection results. However, in the
future, the integration and development of emerging E-nose hardware and data processing
techniques will be decisive steps for improving detection accuracy, enhanced recognition,
and decision-making processes for agricultural and food products [74].

Similarly, the advancements in new sensing materials with greater sensitivity and
accuracy for detecting specific volatile substances might minimize the sample handling
process and reduce its environmental impact. Although there is no commercial E-nose
available to analyze all volatile components in food materials, experts are demanding this
type of application. The use of nano gas sensors in combination with many gas sensors can
improve the capability of E-nose to differentiate distinct odors. Another development for E-
nose is the employment of artificial intelligence and big data. For instance, a smart interface
is required for a collaborative online library that collects data from users around the world
via standardized E-noses. In short, E-noses will have more widespread applications and be
more user-friendly, smaller in size, and invariant in monitoring the environment [13].

In the future, commercial E-nose devices with optimal settings will be required to
improve the capability for identification of volatile compounds and minimize errors in food
analysis. The continuous growth in demand for E-noses in numerous industrial applications
requires the integration of multi-function features of E-noses with maximum usage. Existing
nanotechnology will play a vital role in developing hybrid E-noses and could expand the
potential applications for E-noses for real-time analysis of volatile substances in the food
industry, such as early detection of food quality, particularly for food control and human
consumption [75]. In this context, researchers should focus on developing appropriate
approaches to integrate E-nose applications in order to certify real-time analysis and
production practices in situ.

6. Conclusions

This review revealed advancements in the application of E-noses in the tea sector. The
E-nose instrumentation and working principles were introduced, and different types of
gas sensors employed in E-noses were discussed. The commonly employed statistical and
intelligent pattern recognition algorithms, such as LDA, PLS-DA, KNN, ANN, CNN, and
SVM, in the literature for different tea evaluations were also discussed in detail. Overall, this
review demonstrates the potential application of E-noses coupled with pattern recognition
methods as a powerful non-destructive tool for monitoring tea quality. However, the
relatively poor repeatability and comparability of E-nose measurements, as well as data
processing, are remaining challenges that must be addressed. As discussed in this review,
the continuous use of E-noses will undoubtedly contribute to reducing the technology’s
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shortcomings. As a result, the future trend will be marked by growth in demand for
the utilization of advanced E-noses with improved detection accuracy and consistency,
employed for food quality testing.
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