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Abstract: Cropland extraction has great significance in crop area statistics, intelligent farm machinery
operations, agricultural yield estimates, and so on. Semantic segmentation is widely applied to remote
sensing image cropland extraction. Traditional semantic segmentation methods using convolutional
networks result in a lack of contextual and boundary information when extracting large areas of
cropland. In this paper, we propose a boundary enhancement segmentation network for cropland
extraction in high-resolution remote sensing images (HBRNet). HBRNet uses Swin Transformer with
the pyramidal hierarchy as the backbone to enhance the boundary details while obtaining context.
We separate the boundary features and body features from the low-level features, and then perform
a boundary detail enhancement module (BDE) on the high-level features. Endeavoring to fuse the
boundary features and body features, the module for interaction between boundary information
and body information (IBBM) is proposed. We select remote sensing images containing large-scale
cropland in Yizheng City, Jiangsu Province as the Agricultural dataset for cropland extraction. Our
algorithm is applied to the Agriculture dataset to extract cropland with mIoU of 79.61%, OA of 89.4%,
and IoU of 84.59% for cropland. In addition, we conduct experiments on the DeepGlobe, which
focuses on the rural areas and has a diversity of cropland cover types. The experimental results
indicate that HBRNet improves the segmentation performance of the cropland.

Keywords: high-resolution remote sensing images; semantic segmentation; transformer; boundary
refinement; cropland extraction

1. Introduction

Appropriate planning area and geographical location of cropland is the potential for
increasing agricultural production and efficiency, as well as a fundamental initiative to
ensure national grain security [1,2]. Many important agricultural applications, such as crop
yield prediction, unmanned farm construction, and farm equipment path planning, require
the area and distribution of cropland.

The traditional way of manually measuring cropland is labor-intensive and time-
consuming [3–5]. Therefore, an intelligent way of cropland extraction is urgently de-
manded. By extracting cropland from high-resolution remote sensing images, we can
rapidly, distinctly, and intuitively capture the area of cropland and its distribution [6,7].
The classical image segmentation method to extract cropland requires manual design of
features, which is difficult and not universally applicable due to the feature diversity of
high- resolution remotely sensed images. The deployment of deep learning algorithms for
cropland extraction has witnessed some remarkable progress.
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Semantic segmentation algorithm is an essential technique to extract cropland from
remotely sensed images [8], primarily by classifying the pixels of images to predict the
distribution of cropland. In the procedure of extracting cropland, the boundary information
of cropland takes an active role. High-resolution images provide abundant image details,
which facilitates the acquisition of boundary information of cropland [9–11]. However, the
shape of cropland observed on remote sensing images is similar to that of artificial lakes
and small forests, and the local pixel information is similar to that of wasteland. In case
the cropland is present in areas with complex terrain such as hills, woodlands, and lakes,
it would be more challenging to extract. Hence, contextual information and boundary
information have a positive contribution to improve the accuracy of cropland extraction.

Semantic segmentation usually requires cropping and downsampling operations dur-
ing the training process of convolutional neural networks (CNNs). These operations will
result in the loss of context and details of the image. Limited by the receptive field size
of the convolutional kernel, CNNs only model local information of the image (e.g., local
color, texture) [12,13], while ignoring the global contextual information of the image [14,15].
Moreover, the multiple scales of objects can lead to a lack of context [16]. Hierarchical
pyramidal structure networks and attention mechanisms are commonly used to solve
feature aggregation [17–20]. Zheng et al. [13] applied Transformer to the semantic segmen-
tation algorithm. The local attention mechanism significantly improves computational
efficiency and achieves significant improvements semantic segmentation tasks [21,22]. Liu
et al. [23] proposed a hierarchical vision transformer with shifted windows, which can
effectively achieve the aggregation of context features. Swin transformer is a deep learning
method that differs from CNNs, in that it is based on a self-attention mechanism. Swin
transformer is quite a new approach, but it has been widely used in real-life applications
due to its ability to achieve promising results in semantic segmentation. The ability of the
Swin transformer to effectively tackle the challenge of extracting contextual information
in semantic segmentation tasks information, which motivates us to want to use it as a
backbone for extracting cropland. However, there is a drawback in the refinement of image
boundary details when applying Swin Transformer to cropland extraction.

The performance of high-resolution remotely sensed images semantic segmentation
is limited by spatial resolution and fuzzy boundary information [24–26]. Therefore, it is
extremely important to extract and refine boundary features in an accurate way [27]. There
are three main approaches for boundary refinement. First, a backbone network is proposed
for local detail refinement, which can reduce boundary artifacts and refine the mask profile
during the final high-resolution mask generation [28]. Second, the boundary refinement
for the generated prediction maps is performed to obtain clearer information about the
boundary features [29]. Third, it is designed as a discrete refinement module to improve
boundary accuracy [18]. The refinement module is usually a boundary refinement for
high-level features, as shown in Figure 1a, or a boundary refinement for low-level features,
as shown in Figure 1b. These methods of boundary enhancement based on single-level
features ignores the complementarity of effective features between different level features.
Optionally fusing different level features can help to obtain more boundary information.
Although the low-level features contain more boundaries due to their higher resolution,
there are cases where the boundaries are blurred and difficult to extract accurately. There-
fore, we propose a refinement module to refine the boundary of different level features.
As shown in Figure 1c, the boundary refinement module is first applied to the two level
features, and then the boundary-enhanced features are fused to obtain the prediction maps.
After completing the hierarchical boundary refinement, we combine two level features to
obtain clearer boundaries.
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Figure 1. Three boundary refinement structures. (a) The refinement of high-level features. (b) The
refinement of low-level features. (c) Module with hierarchical refinement (ours). “RM” indicates
refinement module.

In this paper, we use Swin Transformer with hierarchical structure as the backbone to
perform hierarchical boundary refinement for two level features. This hierarchical enhance-
ment improves the extraction of farmland boundaries and makes it easier to distinguish
between farmland and background. We designed a cross-detail module to realize the
interaction between local information and global information when recovering resolution
information. The interaction of global and local information is intended to better highlight
the distinguishing features between farmland information and background information. In
hierarchical network, low-level features tend to contain higher resolution, but extracted
context is missing, resulting in low-level features negatively affecting the overall prediction
results [9,30]. In contrast, high-level features undergo multi-scale transformations to obtain
richer context information [31,32]. The differences in resolution and processing modules re-
sult in different information being obtained for the features in different layers. The accuracy
of segmentation can be effectively improved by applying a unique feature enhancement
module to each layer of features separately and then performing feature fusion.

In order to maintain as many details as possible in the high-resolution features, the
boundary body separation module is used to extract the rich details from the low-level
features. We propose a boundary detail enhancement module (BDE) for enhancing the
boundary information of high-level features, which uses cross-convolution to obtain more
boundary information from both horizontal and vertical directions in parallel. Compared
with the traditional convolution network, cross convolution can obtain more detailed
information. After the boundary refinement is achieved in the high-level features, the
boundaries are combined with those in the low-level features to generate feature maps
with more details. In addition, the efficient way to combine the extracted boundary fea-
tures with the body features is also a crucial part. In order to share and complement the
information between the two features, we propose the module for interaction between
boundary information and body information (IBBM) to combine boundary information
and body features. IBBM is performed between the high-level feature map after bound-
ary enhancement and the body features extracted from the low-level feature map, and
feature fusion is realized through the IBBM. This interaction method mainly focuses on
the interaction of local information, which can effectively realize the effective combination
of boundary information and body features. Inspired by Walid et al. [33], we propose a
cross-detail module with cross-attention. Local features and global features have different
definitions, and basic concatenation would not interact between features [34]. To enhance
the interactivity and degree of association between global and local features, we embed
the cross-attention mechanism to refine the multi-layer perceptron (MLP). Contrary to
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unidirectional context acquisition, cross-attention achieves interaction between contextual
and global information, which leads to better recovery of high-resolution feature maps.

We conduct cropland extraction experiments on two datasets (Agriculture and Deep-
Globe [35]). Our method, the boundary enhancement segmentation network for cropland
extraction in high-resolution remote sensing images (HBRNet), achieves state-of-the-art
performances on two datasets (Agriculture and DeepGlobe). The main contributions of
this paper are as follows:

1. In order to better distinguish between cropland features non-cropland features, we
hierarchically refined the boundary information for multi-level network structures.
For high-level features, we implemented the enhancement of boundary features while
obtaining contextual information as much as possible. For low-level features with
higher resolution, we used boundary-body separation module to extract boundary
information and body information.

2. We designed a boundary detail enhancement module (BDE), which is applied to high-
level features that obtain more global information. This enhancement highlights the
information on the boundaries of the cropland more conducive to cropland extraction.
After completing the boundary feature enhancement, we proposed an information
interaction module (IBBM) for feature interaction between boundary features and
body features to obtain a more precise feature map.

3. We propose a cross-detail module by combining the cross-attention mechanism
with an improved multi-layer perceptron (MLP). We set up the detail branch to
the MLP layer, which makes it possible to enhance the detail information of the
extracted features.

2. Materials and Methods
2.1. Network Architecture

HBRNet mainly focuses on boundary refinement in different ways for each layer of
the output feature map in the backbone network. The backbone of the network is Swin
Transformer, and the two successive Swin Transformer blocks are shown in Figure 2.

Swin Transformer segments the input image into non-overlapping patches and con-
sider each patch as a “token”. We employed a patch size of 4 × 4 as described in [23],
thus calculating a feature dimension of 48 for each patch. Apply a linear embedding layer
to the raw-valued features, projecting it to an arbitrary dimension (denoted as C). The
Swin Transformer contains 4 main levels, each level with a different number of transformer
blocks. The patch merging merges tokens to generate different numbers of tokens and
thus combines them into different resolution features. Several modified transformer blocks
are applied to these patch markers and their self-attention computations are performed.
Each group concatenates features from 2 × 2 of the neighboring patches to produce a
4C-dimensional feature series. The 4C-dimensional tandem features are passed through a
linear layer to generate the first patch merge layer. After that, the token is reduced by a
factor of 4 according to the downsampling rate of the resolution, then the output dimension
can be set to 2C. The resolutions of the feature map output from Stage 2, 3, and 4 after
feature transformation blocks are H/8 × W/8, H/16 × W/16, and H/32 × W/32. In
this paper, we denote the output features of Swin Transformer from the first stage to the
fourth stage as {L1, L2, L3, L4}. In this paper, the Swin-Tiny variation network (Swin-T)
is used as the backbone, where the dimension C is 96, the numbers of Swin Transformer
blocks in each stage are {2, 2, 6, 2}. As shown in Figure 2, the two consecutive Swin Trans-
former blocks are mainly composed of window-based multi-head self-attention and shifted
window-based multi-head self-attention. It is obvious from the figure that a multi-head
self-attention module is included between every two Layer Norm layers.
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Figure 2. Two transformer blocks in Swin transformer in succession. MLP stands for multi-layer
perceptron.

We utilized the agricultural cropland image as our image input. Firstly, we generated
the feature maps for the different layers according to the four stages in the backbone,
i.e., Figure 3. Secondly, we applied different processing methods to the different layers of
features. Thirdly, by combining the features of each layer, we obtained an extracted image
of the cropland with more boundary detail. It is worth mentioning that the processing we
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specify for the different layers of features is customized, taking into account the unique
characteristic of each layer of in the module. Therefore, the fusion of the final features
allows the results of each layer to complement each other and thus retain more detailed
information when extracting the cropland.

Figure 3. Overall structure of HBRNet. The figure shows the main modules for processing high-level
features and low-level features. After inputting the original map, two level features are output
through a hierarchical structure, and the feature map is processed separately. The output features
of Swin Transformer from the first stage to the fourth stage as {L1, L2, L3, L4}. Fbody stands for body
features. Fedge stands for boundary features. F′high represents the features obtained after the BDE
(a) for the high-level features. Fr represents the features generated by the combination of boundary
features and F′high. P1 represents the features generated after the low-level feature processing. P1

represents the features generated after the low-level features processing. P2 represents the features
generated after the high-level features processing. F-Norm stands for feature normalization. ReLU
stands for rectified linear unit. Cross-Conv stands for cross-convolution.

As shown in Figure 3, we upsampled features L2 and combined it with features
L1 to obtain low-level features Flow. Then, we upsampled features L4 and combined
it with features L3 to obtain high-level features Fhigh. The boundary body separation
module is used for the Flow. The IBBM for boundary information extracted from features
enhanced by BDE (a). The combination of boundary information and body features can
compensate for each other’s loss of spatial information, thus obtaining accurate high-
resolution feature maps.

The BDE (a) is used to refine the boundary of the features Fhigh. We combine the
boundary information of L3 after BDE (a) and the boundary information in L4 after BDE (a).
After that, we use BDE (b) to achieve boundary information fusion. A cross-detail module
is used to interact with the global and contextual information to obtain a predictive feature
map that retains both context and details.



Agriculture 2022, 12, 1284 7 of 22

2.2. Boundary and Body Separation Module (BBS)

We propose a boundary body separation module (BBS) that separates boundary fea-
tures from body features using high and low frequency information [36]. The BBS decom-
poses the semantic segmentation low-level features into two parts: boundary features Fedge
and body features Fbody. From the decomposition of the high-resolution low-level features
into body features and edge features, the main structure of the BBS is shown in Figure 4.
From Figure 4, we can learn that after feature fusion of feature map L1 and feature map
L2, the boundary features and body features are then obtained by the BBS. The boundary
features Fedge get clearer boundary information, while the information boundary of the
feature map obtained in the body features Fbody can retain most of the global information.

Figure 4. Main structure of boundary and body separation. We upsampled features L2 and combined
it with features L1 to obtain low-level features Flow. F f

low is obtained by downsampling with Flow.

F f
up is obtained by upsampling with F f

low. Fedge represents the edge features. Fbody represents the
body features.

Two parts are required to obtain the body features: flow field generation and feature
distortion. The body feature refers to the part of the flow that points to the center of the
feature Flow throughout the flow field generation process. In order to create a flow that
mainly points to the center of the object, we focused on the features of the central part of
the object.

The low-frequency feature map F f
low is first generated by downsampling the feature

Flow and then the low-frequency feature map F f
low is upsampled to the same size F f

up.

The three feature maps (Flow, F f
low, F f

up) are concatenated and compressed by using the
convolutional layer to obtain the prediction map M.

The feature warping is performed to reassign a new coordinate position pi + M(pi)
to each pixel point at position pi on the original standard image. Each pixel point px in
the body features Fbody can be approximated by a micro-bilinear sampling mechanism [37].
The adopted microscopic bilinear sampling mechanism is formulated as follows:

Fbody(px) = ∑
n∈NP(pi)

mnFlow(n) (1)

NP represents the set of 4 nearest neighbor pixel points of pi, and mn is the bilinear
kernel weight on the distorted space grid, computed by predicting the prediction map M.
After the wrapping process, the edge features Fedge are acquired through the subtraction of
the feature map Flow from the acquired body features Fbody.

Fedge = Flow − Fbody (2)
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2.3. Boundary Detail Enhancement Module (BDE)

The BDE is used to refine the boundary information of edge features in different
level features. The module mainly contains two parts: module a and module b. First,
module BDE (a) is applied to the refinement of features L3, L4, and then BDE (b) is applied
to integrate the feature information of different level features. The detail enhancement
module is mainly composed of cross-convolution [38]. The cross-convolution is different
from the ordinary convolution, which obtains more feature information by crossing from
two directions, horizontal and vertical, in a different order, as shown in Figure 5a. After
sending the feature map to the cross-convolution, the corresponding two convolution
kernels perform feature extraction according to the vertical and horizontal directions, and
the arrows in the Figure 5a indicate the gradient direction of the pixels.

Figure 5. (a) Cross-convolution obtains more feature information by taking more information from
both horizontal and vertical directions. (b) The structure of cross-convolution. Fcro

in represents cross-
convolution input features and Fcro

out represents cross-convolution out features. 1× t Conv stands for
convolution kernel size of 1× t. t× 1 Conv stands for convolution kernel size of t× 1.

The structure of cross-convolution is shown in Figure 5b and consists of two asym-
metric vertical filters k1×t and kt×1 with a receptive field size of 1× t for filter k1×t and
t× 1 for filter kt×1. Assuming the cross-convolution input features Fcro

in , the output features
Fcro

out consists of the convolution of the input features Fcro
in and the vertical filter plus the

deviation b. The formula is calculated as follows:

Fcro
out = k1×t ⊗ Fcro

in + kt×1 ⊗ Fcro
in + b (3)

Instead of extracting features in one direction, cross-convolution focuses on extracting
features crosswise in the vertical and horizontal directions, compared to normal convolu-
tion layers. This parallel design mode preserves more details and also focuses more on
boundary information.

As shown in Figure 3, BDE (a) consists of two cross-convolutions, with the feature
map first passing through the first cross-convolution, followed by the RELU layer, then the
second cross-convolution, and finally the feature normalization (F-Norm) [39].

F-Norm is a feature normalization method starting from the feature channel. Assuming
that different channels contain different information, F-Norm designs different channels
to process the information in parallel, thus reducing the parameters and computational
complexity. This parallel processing of normalized features can also effectively prevent
the missing details caused by cross-channel information fusion. The F-Norm is calculated
as follows:

f j
out =

(
gj × f j

in + bj

)
+ f j

in (4)
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where j is the channel index, f j
out is the output feature channels, f j

in is the input channels. g
is a convolutional kernel, and b stands for bias. In order to retain more contextual feature
information at higher levels, the pre- and post-normalization features were appended to
the output.

Feature map L3 and feature map L4 were feature fused into one feature map after
going through BDE (a) operation. After that, the feature map was upsampled to get
feature map F′high sized as the L3. The feature fused feature map is feature enhanced using
module BDE (b) to obtain feature map P2. BDE (b) mainly consists of a combination of
cross-convolution and channel attention mechanism [40], which can ensure that the fused
feature maps can achieve the integration of global and local information. We average the
channel dimension and convert it to one dimension for visualization. Figure 6a shows
the original image, Figure 6b shows the visualization of features after BDE(a) operation,
and Figure 6c visualization of features after BDE(a) operation and BDE(b) operation. As
shown in Figure 6, the boundary information of the feature map becomes more distinct
after BDE (b).

Figure 6. (a) The original image, (b) Visualization of features after BDE (a) operation, (c) Visualization
of features after BDE (a) operation and BDE (b) operation.

The feature map F′high is the same size as the features Flow. After connecting F′high and
Fedge, the feature map Fr is calculated as follows:

Fr = Fedge + F′high (5)

The obtained feature map Fr contains more boundary information. Fr needs to interact
with the boundary subject information with the body feature map Fbody, which is extracted
from the feature, Flow, to obtain the prediction map P1.

2.4. The Module for Interaction between Boundary Information and Body Information (IBBM)

We propose IBBM for the interaction of boundary features and body features, as
shown in Figure 7, which is used to fuse features from the feature map Fr and the body
features Fbody extracted from the low-level features. There are various ways of information
interaction, but the main objective is to enable more efficient feature fusion. We design the
function to calculate the interaction information as follows:

E(x1, x2) = α× x1 + β× x2 (6)

where α and β are the learnable scalar weights of the input body information x1 and
boundary information x2.
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Figure 7. The structure of the interaction between boundary features and body features. α, β, α′, and
β′ are the learnable scalar weights of the input body information. The boundary features Fr and the
body features Fbody have the same size. The boundary features Fu

r and the body features Fu
body have

the same size.

As shown in Figure 7, we first interacted with the information of body features
Fbody and boundary features Fr, and generated feature maps Fu

body by nearest-neighbor
interpolation of the feature maps obtained from the interaction. The specific calculation
formula is as follows:

E
(

Fbody, Fr

)
= α× Fbody + β× Fr (7)

We performed nearest-neighbor interpolation on the boundary features to obtain
the features Fu

r . After that we interacted with the information of body features Fu
body and

boundary features Fu
r . The specific calculation formula is as follows:

E
(

Fu
r , Fu

body

)
= α′ × Fu

r + β′ × Fu
body (8)

where α′ and β′ are the learnable scalar weights of the input body information Fu
body

and boundary information Fu
r . When interacting with boundary information and subject

information, each information interaction is done according to the corresponding position
pixel and then find the neighboring pixels in the same position for interaction. After
implementing the boundaries and body information interact with each other between the
two feature maps, the feature map P1 is generated.

2.5. Cross-Detail Module

We designed a cross-detail module, which can fully guarantee the interaction of con-
textual and global information while achieving the preservation of more detailed and local
information. The cross-detail module is mainly composed of the Cross-Attention [33,41]
and the improved MLP. The cross-detail module is shown in Figure 8a.
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Figure 8. (a) The structure of cross-detail module, FC stands for fully-connected, Norm stands for
Layer Normalization, and k means keys, v means values, and q means queries. (b) The structure of
multi-layer perceptron (MLP). GELU stands for Gaussian Error Linear Unit, which is an activation
function. F-Norm stands for feature normalization. ReLU stands for rectified linear unit.

The module obtains the high-level features P1, P2 and category information from the
backbone network cls1, cls3, where clsi =

[
c1

i , c2
i , . . . , cNc

i
]
∈ RNc×D, Nc is the count of

classes, ck
i is the k-th class of stage i. The features P1, P2 corresponds to tokens z1, z2. These

tokens are transformed into corresponding keys k, values v by linear change, and cls1, cls3
into queries q by linear change. The main operations of the Cross-Attention layer are
as follows:

k = ziWk, v = ziWv, q = clsiWq

CA = so f tmax( qkT√
D
h

)v + clsi
(9)

It is noted that Wk, Wv, Wq ∈ RD×(D/h) are learnable parameters, D stands for embed-
ding dimension, and h stands for the count of heads. The Cross-Attention operation is
mainly to obtain more context and is efficiently computational. The module is mainly used
to find the relevant information needed and integrate it into the existing features. In this
paper, cross-detail module is mainly used to search for more contextual information while
maintaining the class information.

The MLP structure is shown in Figure 8b, which consists of two fully connected layers,
and an intermediate layer of activation function GELU. FC layer is used in the conventional
feedforward layer implements pixel-by-pixel propagation, which results in the inability to
learn cross token information. The cross-convolution changes the original fully connected
layer with a single information interaction by extracting information from two directions in
parallel. We set up the detail branch to the MLP layer, and the detail branch consists of two
cross-convolutions. The design MLP layer is calculated as follows:

x1 = FC(xin, θ1)
xout = FC(σ(x1 + CS(x1)), θ2)

(10)

where xin denotes the input features, xout denotes the output features, CS denotes the
added cross-convolution module branches, θ1 and θ2 denote the optional parameters, FC
means full connectiVity layer, σ represents the active layer. The output feature map P3 is
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obtained from P1 with the cross-detail module, and the output feature map P4 is obtained
from P2 with the cross- detail module. The final output prediction map is obtained by
connecting the P3 and upsampling P4 of the hierarchical refinement of boundary features.

3. Results and Discussion
3.1. Datasets
3.1.1. Agriculture Dataset

The dataset used Google Maps as the source of high-resolution images with a resolu-
tion of 0.3 m. The Agriculture dataset is mainly from the remote sensing images of Yizheng
City, Yangzhou City, as shown in Figure 9. Most of the obtained images are cropland subdi-
visions, and the whole dataset is divided into two categories: Cropland and Background.
We perform precise semantic segmentation labeling on the obtained remote sensing images.
As shown in Figure 10a, we crop the images, and the cropped image size was 1456 × 1456,
with 1280 images in total. After that, we crop the image to a random size of 325 × 325
for training purposes. We randomly select random copping, adjust contrast and random
rotation for data enhancement.

Figure 9. Large area of cropland extraction results in Yizheng City, Yangzhou City, Jiangsu Province.
(a) Cropland results extracted from high-resolution remote sensing images, (b) true color image in
the blue box in (a), (c) ground truth of semantically segmented cropland in (b).

Figure 10b contains some images and the label of the Agriculture dataset, where the
label in green represents the cropland and the label in white represents the background area.
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Figure 10. (a) The main steps of data processing. The figure shows several data enhancement
methods, including random copping, adjust contrast, and random rotation. These methods are
random selection in order. (b) Original images of some of the cropland and the labeling of the
cropland areas.

3.1.2. DeepGlobe Dataset

This public dataset is a total of 80 satellite images with a spatial resolution of 0.5 m and
a pixel size of 2448 × 2448 for each image in the dataset. The DeepGlobe dataset focuses
on the geographic types of rural areas and needs to be partitioned into seven classes. The
DeepGlobe dataset, derived from an open challenge, is satellite imagery with a resolution
of 0.5 m, with a focus on rural areas. Overall, 56.76% of the pixel classes in the dataset
are agricultural land. The dataset is divided into a high number of categories and a dense
distribution of categories, containing a large amount of mountainous woodland. The total
area of the dataset is equivalent to 1716.9 km2. In this paper, we discard the “Unknown”
category and split the sample into six classes, namely Urban, Agriculture, Rangeland,
Forest, Water, and Barren. We divided the dataset according to the method proposed in
the literature [29], with 455 training sets, 207 validation sets, and 142 test sets. We crop the
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image to a random size of 512 × 512 for training purposes. We randomly select random
copping, adjust contrast, and random rotation for data enhancement.

3.2. Implementation Details

The learning rate size for the initial training is set to 8 and a “poly” learning rate
strategy is used. The initial learning rate was set to 1e-3 and the power to 0.9. We use
AdamW with a weight decay of 1e-2. For the DeepGlobe dataset, we trained 80K iterations.
For the Agriculture dataset, we trained 160 K iterations. All experiments are performed
on a Tesla V100. We employed the overall accuracy (OA) and the mean Intersection over
Union (mIoU) to evaluate model performance.

OA =
∑N

k=1 TPk

∑N
k=1 TPk + FPk + TNk + FNk

(11)

mIoU =
1
N

N

∑
k=1

TPk
TPk + FPk + FNk

(12)

where TPk is the true positive for class k, FPk is the false positive for class k, TNk is the
true negative for class k, and FNk is the false negative for class k. Figure 11 shows the
loss reduction curve of the two datasets, respectively. The loss curves all fall slowly and
smoothly, with the end result being convergence.

Figure 11. Training plots for the cropland extraction network in the dataset: (a) training decreasing
loss curves in the Agriculture dataset, (b) training decreasing loss curves in the DeepGlobe dataset.

3.3. Semantic Segmentation Results and Analysis

The existing semantic segmentation algorithms HRNet [42], PSPNet [17], DeeplabV3 [43],
DeeplabV3+ [44], DPT [45], Vit [13], IsaNet [46], Unet [47], ApcNet [48], SegFormer [49],
and Segmenter [50] have achieved excellent performance in semantic segmentation. In
this paper, we compare HBRNet with the above semantic segmentation networks in the
same network framework and setup. HRNet effectively improves the accuracy by the
network structure that keep the high resolution of the features. DeepLabV3 and PSPNet are
also multi-layered structures with multi-scale feature fusion modules, which also achieve
effective improvement in semantic segmentation. Vit is the breakthrough in the application
of transformer mechanism to image semantic segmentation, which can obtain contextual
information well. Table 1 shows the experimental performance on the Agriculture dataset.
HBRNet achieves the highest mIoU of 79.61% and OA of 89.4% when the backbone is Swin.
Our proposed method HBRNet improves the mIoU of CropLand by 1.18% on this dataset
of Agriculture compared to Vit network with attention mechanism.
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Table 1. Results on the Agriculture dataset test set (the result with the highest value is bolded). We
employed the overall accuracy (OA), Intersection over Union (IoU) of Per Category and the mean
Intersection over Union (mIoU) to evaluate model performance.

Method Backbone
IoU Per Category (%)

mIoU (%) OACropLand Background

HRNet W32 81.99 70.92 76.46 87.49
PSPNet ResNet50 82.70 71.52 77.11 87.94
IsaNet ResNet50 82.66 71.40 77.03 87.90

UNet + FCN UNet-S5 79.08 69.00 74.08 85.74
ApcNet ResNet50 82.55 71.38 76.97 87.84

DeeplabV3 ResNet50 81.73 70.84 76.28 87.34
Deeplab V3+ ResNet50 82.58 71.60 76.87 87.82

Swin-MLP Swin-T 83.70 73.20 78.45 88.72
SegFormer MIT-B0 82.89 72.86 77.92 88.32

Segmenter-Mask Vit-T_16 83.47 72.93 78.20 88.56
DPT Vit-b16 83.62 72.17 78.17 88.60

Vit-upernet Vit-b16 83.60 73.12 78.36 88.66
HBRNet Swin-T 84.59 74.64 79.61 89.40

Table 2 shows the experimental results on the DeepGlobe dataset, where our proposed
method has the highest mIoU of 75.15% and OA of 90.16%. HBRNet improves the mIoU
metric by 6.73% and the OA metric by 2.42% compared to HRNet, a high-resolution
semantic segmentation network with convolution as the main structure. As shown in
Tables 1 and 2, the head of Vit is upernet [51]. Compared with the existing hierarchical
structure networks (such as PSPNet and DeepLabV3), our proposed HBRNet applies
attention mechanism to obtain more contextual information. The boundary information is
enhanced by fusion of hierarchical information, which effectively improves the accuracy
of segmentation.

Table 2. Results on the DeepGlobe dataset test set (the result with the highest value is bolded). We
employed the overall accuracy (OA), Intersection over Union (IoU) of Per Category and the mean
Intersection over Union (mIoU) to evaluate model performance.

Method Backbone
IoU Per Category (%)

mIoU (%) OAUrban Agriculture Range Forest Water Barren

HRNet W32 72.57 88.08 36.02 80.64 82.57 62.59 70.41 88.03
PSPNet ResNet50 73.28 88.66 38.25 81.38 83.36 64.10 71.50 88.51
IsaNet ResNet50 78.05 88.09 34.30 78.55 78.28 68.39 70.94 88.47

UNet + FCN UNet-S5 72.73 86.97 33.15 79.99 81.64 57.46 68.66 86.94
ApcNet ResNet50 72.42 89.02 41.58 83.55 83.45 61.08 71.85 88.75

DeeplabV3 ResNet50 71.99 88.57 35.27 81.46 81.65 63.64 70.43 88.19
Deeplab V3+ ResNet50 72.93 88.55 34.98 81.27 84.05 61.99 70.63 88.24
Swin- MLP Swin-T 75.00 89.85 44.32 83.74 85.44 66.35 74.12 89.60
SegFormer MIT-B0 74.66 89.22 42.99 84.16 83.47 63.84 73.06 89.25
Segmenter Vit-T16 74.68 89.41 43.11 83.16 84.10 66.50 73.49 89.32

DPT Vit-b16 73.22 88.80 40.91 82.98 82.60 65.96 72.29 88.73
Vit- upernet Vit-b16 72.55 89.19 44.48 83.02 80.10 66.96 72.72 88.92

HBRNet Swin-T 76.28 90.37 47.93 84.36 84.67 67.37 75.15 90.16

The results visualized on the Agriculture dataset are shown in Figure 12, which
illustrates that the present method achieves more significant fine feature representation
results than other methods. The results of the image segmentation on the DeepGlobe
dataset are displayed in Figure 13. From Figure 12, we can observe that HBRNet improves
the accuracy of the cropland extraction. The distribution of labels in the red box is worth
being focused on, where HBRNet performs with greater attention to details in the extraction
of the cropland compared to the other algorithms. First, consider the top half of Figure 12.



Agriculture 2022, 12, 1284 16 of 22

Figure 12a shows the original image, Figure 12b shows the correctly segmented label
information, Figure 12c shows the output of our method, and the remainder show the
output of the comparison experiment. From the red box in Figure 12, we can see that there
is a white border across the correctly segmented labels. This border is partially segmented
by our algorithm, but other algorithms such as DeepLabV3, HRNet, and PSPNet do not
identify it, while the DPT algorithm identifies a few white dots. Next, consider the bottom
half of Figure 12. Similar to the top half, Figure 12k shows the original image, Figure 12i
shows the correctly segmented label information, Figure 12m shows the output of our
method, and the remainder shows the output of the comparison experiment. We can
observe the segmentation in the red box. For correctly segmented label information, the
lower part of the green label inside the box does not meet the other green. In other words,
there is a boundary. We find that several segmentation results in the fourth row do not
identify this boundary well, and in the third row the DeeplabV3 image and the DeepLabV3
recognition results differ from the label information at the boundary by a large result.
Although our method does not fully identify the boundary, it achieves more promising
results compared to other algorithms.

Figure 12. Visualization of results on the Agriculture dataset. The green represents the distribution
of cropland and the white is the background. We can focus on comparisons of the details in the red
boxes when observing the figure of the experimental results.
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Figure 13. Visualization of results on the DeepGlobe dataset. We have marked some detailed
information in the experimental results section with red boxes, and by comparing this information
we can see which algorithms achieved better results.

We chose two images as examples, and from Figure 13, we can observe that HBRNet
network achieves satisfactory performance in both overall segmentation of multiple classes
of objects and segmentation of small objects. In particular, for cropland segmentation with
some detailed information, HBRNet segmented cropland has more delicate boundaries
compared to other algorithms.

To further illustrate the effectiveness of our network, we generate the probability heat
map of cropland in the final layers of Segmenter, DPT, Vit, Swin, and HBRNet. As shown
in Figure 14, the features are normalized between (0,1). The degree of distinctness of an
area of cropland corresponds to the shade of color—the more red areas and the darker the
color, the more likely it is to be cropped. We can see from the heat map that our algorithm
is more aware of contextual information and is better able to extract ploughing features.

Figure 14. The probability heat map of cropland. The redder the red represents the greater likelihood
that the section is arable land and indicates that the experimental results are closer to the true results.

3.4. Ablation Study

We performed ablation experiments on the Agriculture dataset and the DeepGlobe
dataset, and the experimental results are shown in Tables 3 and 4, respectively. As shown
in Tables 3 and 4, “swin” indicates Swin-T as the backbone. Specifically, four sets of
experiments were implemented to evaluate the performance of the Cross Detail Module
(CDD), the Boundary Detail Enhancement (BDE), and the Interaction Between Boundary
Features and Body Features Module (IBBM).
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Table 3. The ablation experiments on the Agriculture dataset evaluated by mIoU (%) and OA (%)
about the methods. We employed the overall accuracy (OA), Intersection over Union (IoU) of Per
Category and the mean Intersection over Union (mIoU) to evaluate model performance.

Method
IoU Per Category (%)

mIoU (%) OACropLand Background

Swin + mlp 83.7 73.2 78.45 88.72
Swin + CDD 83.78 73.67 78.73 88.85

Swin + BDE + mlp 84.03 73.85 78.94 88.99
Swin + IBBM + mlp 83.81 73.91 78.86 88.9

Swin + BDE + IBBM + CDD 84.59 74.64 79.61 89.4

Table 4. The ablation experiments on the DeepGlobe dataset evaluated by mIoU (%) and OA (%)
about the methopds. We employed the overall accuracy (OA), Intersection over Union (IoU) of Per
Category and the mean Intersection over Union (mIoU) to evaluate model performance.

Method
IoU Per Category (%)

mIoU (%) OAUrban Agriculture Range Forest Water Barren

Swin + mlp 75.00 89.85 44.32 83.74 85.44 66.35 74.12 89.60
Swin + CDD 74.54 90.18 47.24 84.18 85.62 67.84 74.93 89.95

Swin + BDE + mlp 75.45 90.27 45.30 82.72 86.96 67.73 74.74 89.76
Swin + IBBM + mlp 75.33 90.08 46.89 83.79 86.44 67.57 75.02 89.85

Swin + BDE + IBBM + CDD 76.18 90.37 47.93 84.36 84.67 67.37 75.15 90.16

Details of the implementation of these four sets of experiments are as follows. In
experiment 1, Swin-T is the backbone and multi-layer perceptron (MLP) is the head. In
experiment 2, Swin-T is the backbone and CDD is the head. The cross-detail module is
added as head to compare whether the cross-detail module we design is helpful to improve
the segmentation performance. We use CDD for the output features, respectively, and
get two output prediction maps. The final prediction is obtained by fusing the features
of the two output prediction maps. In experiment 3, we use Swin-T as the backbone and
MLP as the head. We add BDE for high-level features and use CDD for low-level features.
After we use BDE for high-level features, we use CDD. The output features of different
features after CDD are fused to obtain the final output prediction map. In experiment 4,
we use Swin-T as the backbone and MLP as the head. The specific details are as follows.
Firstly, BBS is used for low-level features to obtain boundary features and body features.
Then, the features obtained by feature fusion of boundary features and high-level features
are used as the input of IBBM. Another input feature of IBBM is the body features. From
the results of the ablation experiment, we can reveal that Swin + CDD + BDE + IBBM
improve the performance of the backbone method dramatically. From the observation
of the experimental results, we can conclude that all four main modules in HBRNet are
effective in advancing cropland extraction.

In order to further reveal the role of CDD, BDE, and IBBM, we visualize the results on
the Agriculture and DeepGlobe datasets after adding CDD, BDE, and IBBM on backbone in
Figures 15 and 16. As shown in the third, fourth, and fifth columns of Figure 15, these meth-
ods lack the processing of boundary information. Comparing the sixth column in Figure 15,
HBRNet contains enhanced boundary features. From the Figures, we can observe that each
module plays a positive role in the acquisition of boundary and contextual information.



Agriculture 2022, 12, 1284 19 of 22

Figure 15. Visualization of the results on the Agriculture dataset after adding different modules
on Swin-T.

Figure 16. Visualization of the results on the DeepGlobe dataset after adding different modules
on Swin-T.

4. Conclusions

Accurately extracted cropland helps to achieve precision agriculture and promotes
the maintenance of grain security. In this paper, we used semantic segmentation algorithm
to extract cropland from high-resolution remote sensing images. We propose a hierarchi-
cal boundary enhancement semantic segmentation method (HBRNet), which tackles the
problem of boundary information degradation during cropland extraction. In addressing
the issue of cropland extraction, we have made three key findings. Firstly, HBRNet uses
the boundary body separation module (BBS) to extract the boundary information. This
approach focuses more on the high-resolution feature maps and thus is more beneficial
for extracting cropland. Secondly, in order to obtain a feature map with more details, the
module for interaction between boundary information and body information (IBBM) is
proposed. Thirdly, we conducted experiments on a cropland dataset containing large-scale
cropland in Yizheng City. Experiments on the Agriculture dataset and the DeepGlobe
dataset show that our algorithm is effective in compensating for poor boundary informa-
tion on cropland extraction. Compared with some algorithms, HBRNet achieves the best
results in cropland extraction, achieving 84.59% in IoU on Agriculture dataset. In future
work, we will consider the fusion of multiple sources of data for the extraction of cropland,
including earth surface temperature images, hyperspectral images, multispectral images,
nearing infrared images, etc.
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