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Abstract: Animal pose estimation has important value in both theoretical research and practical
applications, such as zoology and wildlife conservation. A simple but effective high-resolution
Transformer model for animal pose estimation called DepthFormer is provided in this study to
address the issue of large-scale models for multi-animal pose estimation being problematic with
limited computing resources. We make good use of a multi-branch parallel design that can maintain
high-resolution representations throughout the process. Along with two similarities, i.e., sparse
connectivity and weight sharing between self-attention and depthwise convolution, we utilize the
delicate structure of the Transformer and representative batch normalization to design a new basic
block for reducing the number of parameters and the amount of computation required. In addition,
four PoolFormer blocks are introduced after the parallel network to maintain good performance.
Benchmark evaluation is performed on a public database named AP-10K, which contains 23 animal
families and 54 species, and the results are compared with the other six state-of-the-art pose estimation
networks. The results demonstrate that the performance of DepthFormer surpasses that of other
popular lightweight networks (e.g., Lite-HRNet and HRFormer-Tiny) when performing this task.
This work can provide effective technical support to accurately estimate animal poses with limited
computing resources.

Keywords: animal pose estimation; depthformer; multi-resolution representations; depthwise
convolution

1. Introduction

Ethology heavily relies on the observation and analysis of animal behavior in its
natural state [1]. For research into how social animals think, a precise estimation of animal
pose information is necessary [2]. Estimating an animal’s poses can assist in tracking,
protecting, and re-identifying the species [3]. The assessment of an animal’s pose and the
subsequent processing are also helpful in assessing an animal’s health and identifying
probable ailments [4]. Although extensive natural behavior recordings of mammalian
animals may be made with modern multi-media capabilities, pose estimation from these
recordings would be challenging to complete manually [1].

Deep learning has been used in recent years to estimate animal poses. ResNets and
deconvolutional layers are the two networks that DeepLabCut [5] cascades. One is used
to create spatial probability densities for the locations of body parts while the other is
pretrained on ImageNet. Stacked DenseNet was suggested by Graving et al. [6] as a
simple but effective software toolbox to increase robustness and speed up processing.
A brand-new, sizable open source dataset of keypoint labels for macaques in the field was
created by Rollyn et al. [7]. There is only one species in it, and it is used to train and test
deep learning models for macaque pose estimation. AP-10K [8], a large-scale benchmark
containing 23 animal families and 54 species for general mammal pose estimation, was
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proposed. The existing large networks such as HRNet [9] and SimpleBaseline [10] show
state-of-the-art performance on the large dataset.

Two-dimensional pose estimation is a difficult pattern recognition task in computer
vision. There are two types of recent primary pose estimation paradigms: bottom-up
methods and top-down methods. The bottom-up paradigm regresses joint positions from
the same body directly [11–13]. The steps are as follows: first, locate all of the joints and
then assign them to the appropriate body [14]. The top-down paradigm first uses an object
detector to find the body instance, then uses the bounding box region to get the body’s
joints [15,16]. With the use of bounding boxes, the method is typically less sensitive to
the scale variance of objects than the bottom-up paradigm [10,17]. The second method is
selected as our process because of the superior accuracy.

The Transformer, a powerful network model described by Ashish et al. [18], has at-
tained state-of-the-art performance in numerous Natural Language Processing applications.
When compared to convolution networks, the Vision Transformer (ViT) [19] applies the
Transformer to the computer vision task and has achieved significant progress in the classi-
fication task. By leveraging Transformer, DETR [20] has made significant progress in target
detection by adjusting on the basis of ViT. In order to further reduce the computational
load of the Swin Transformer [21], focal self-attention [22] was designed, which includes
local fine-grained and coarse-grained global interactions. However, MetaFormer [23] em-
phasizes how the power of Transformer stems from its well-designed structure rather than
self-attention. The study indicates that, while Pooling or even Identity alters self-attention,
the model still performs admirably.

There is a strong correlation between self-attention mechanism and convolution op-
eration [24]. It can be proved theoretically that self-attention mechanism can represent
any convolution layer [25]. Both dynamic convolution and lightweight convolution have
achieved performance equivalent to self-attention mechanism with shorter running time
on WMT ’14 English German translation and WMT’17 Chinese-English translation [26].
Convolution operation also has more advantages in pretraining [27]. Based on these works
in the field of NLP, Qi et al. [28] further explored the similarity between depthwise convo-
lution and self-attention mechanisms in computer vision tasks. This work provides a guide
for us to design a lightweight model.

Aiming at the pose estimation task, there are a number of works achieving state-
of-the-art performance, such as Hourglass [17], HRNet [9], HRFormer [29], PRTR [15],
and UniFormer [30]. These methods have shown a strong ability among large networks in
position-sensitive tasks, such as pose estimation and semantic segmentation. It is also worth
considering not only accuracy but also computation cost and the number of parameters.
In practical applications, models often run on platforms (e.g., hardware) with limited
computing resources. In order to deal with this issue, a series of lightweight networks
(e.g., MobileNet [31,32], ShuffleNet [33,34], Lite-HRNet [35]) have been proposed.

The keypoints in an image must be recognized in the pose recognition task.
High-resolution representation is helpful in enhancing the task’s effect. There are two
widely used methods for obtaining high-resolution representations. The first method
involves a cascaded encoder–decoder structure, which cascades various up-sampling
and down-sampling blocks to obtain high-resolution representations, such as Hourglass
Net and U-Net [36]. Second, throughout the entire process, the network maintains high-
resolution representation. There are numerous parallel branches in the network, each
with a distinct resolution. The parallel branches are permitted to interact after each stage.
In this manner, the low-resolution semantic data is combined with the high-resolution
representation, which may be more accurate in terms of space (e.g., HRNet, HRFormer,
Lite-HRNet, FastNet [37]). The first strategy involves frequent up- and down-sampling,
which results in information loss and poor performance. As a result, we use the second
strategy, which is to maintain high-resolution representation throughout the process.

Existing lightweight networks can be divided into two categories. One perspective
is to directly apply the networks used for classification tasks to pose estimation [31–34].
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The other is to mitigate the dilemma of spatial resolution and real-time computation speed,
such as in feature pyramid networks [38] and BiSeNet [39].

These studies are mainly related to human pose estimation, and a few studies focus
on animal pose estimation because there is a lack of datasets. Moreover, the fewer pay
attention to lightweight networks for the pose estimation task. Lite-HRNet maintains a
lightweight architecture and keeps high-resolution representations all the way through.
In light of this approach and combining the core of MetaFormer [23], we designed a novel
network for animal pose estimation.

Our main contributions are the following:

• We propose DepthFormer, which is designed by utilizing three-stage parallel branches
with the idea of multi-scale representation fusion. The network keeps rich spatial
information from start to end.

• Based on two similarities (sparse connectivity and weight sharing) between self-
attention and depthwise convolution, we rely on a structure with Transformer that
has strong power and representative batch normalization, which could strengthen the
representation of specific instances to design a new basic block. The purpose of this is
to reduce the quantity of parameters and calculation.

• For balancing the contradiction between the computation and performance of the
model, we add four PoolFormer blocks after the parallel network, improving perfor-
mance with minimal additional computing costs.

• DepthFormer is state-of-the-art in terms of computing cost and performance tradeoff
on the AP-10K benchmark, outperforming ShuffleNet, HRFormer-T, and Lite-HRNet.

2. Materials and Methods
2.1. AP-10K Dataset

The AP-10K dataset [8] consists of 10,015 images, including a total of 13,028 instances
from 23 families and 54 species of animals. Each labeled instance contains 17 keypoints
that are defined to illustrate animal poses, and the number of keypoints is the same as
COCO [40]. Specifically, the annotation format of AP-10K is also similar to COCO. The de-
tailed information is as shown in Table 1. The dataset is full of challenges for the many kinds
of mammalian animals with complicated backgrounds in wild environments. We follow
the official division of AP-10K, which is split into three non-overlapping parts, consisting
of the train, validation, and test sets, containing 7010, 1002 and 2003 images, respectively.

Table 1. Illustrating the definition of animal joints.

Keypoint Definition Keypoint Definition

1 Left Eye 10 Right Elbow
2 Right Eye 11 Right Front Paw
3 Nose 12 Left Hip
4 Neck 13 Left Knee
5 Root of Tail 14 Left Back Paw
6 Left Shoulder 15 Right Hip
7 Left Elbow 16 Right Knee
8 Left Front Paw 17 Right Back Paw
9 Right Shoulder

2.2. Methods

This work concentrates on animal pose estimation among wild animals with high
accuracy under situations in which there are limited computing resources. The whole
structure of our network is shown in Figure 1. It adapts a top-down paradigm to detect the
joints of animals and maintains high-resolution representation at every stage.
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Figure 1. The illustration of the DepthFormer architecture.

2.2.1. Multi-Branch Neural Network

We employ a parallel structure, which is similar to HRNet, where the entire process is
divided into three phases and new branches with lower resolution are inserted into each
stage. Branches with various resolutions are dispersed in various phases concurrently.
While low-resolution representation includes more semantic information, which is crucial
for pose estimation tasks, high-resolution representation has advantages in recording
spatial information. To combine features from distinct branches between each of the two
stages, up- and down-sampling are utilized. This results in a high-resolution representation
that incorporates more semantic information when recording spatial features.

In order to make full use of the representation under different resolutions, the feature
fusion mechanism in HRNetV2 [9] is adopted. Up-sampling is used at the end of the
parallel structure to combine two low-resolution representations into the high-resolution
representation, which helps the model perform better. It’s important to note that we exclude
the fourth stage instead of duplicating the four stages structure. Following calculation
and comparison, it is determined that roughly 60% of the parameters for the entire model
are contained in the fourth stage. We chose a three-stage structure to reduce the size
of the model. The expense of the tailoring must be paid, and the model’s capacity for
representation should deteriorate. On the expectation that the model’s parameters and
calculation quantity are kept at a low level, four PoolFormer blocks (a yellow part in
Figure 1) are added to the tail of the parallel structure in order to partially bridge this
performance gap. In Section 2.2.4, the PoolFormer block’s structure will be presented.

2.2.2. Depthwise Convolution

Depthwise convolution, proposed in 2014 by Laurent Sifre [41] and further devel-
oped by Xception [42], has become more popular since it achieved a great performance.
For the above reasons, depthwise convolution is widely used in modern backbones such as
MobileNet, ShuffleNet and Horizontal Shortcut Connections (HSC) [43].

In the operator, every depth level of the input feature map X ∈ RH×W×C is extracted
by a two-dimensional filter applying a channel process only on one input channel [41].
The operator of each input channel can be described as:

X′DWC = Concat(Kn · Xn), (1)

where Kn is the filter of the nth layer and Xn is the nth channel of the input X.
Xception network [42] uses a structure made of residual connections, including layers
of depthwise convolution, which allows the efficient component to be implementated in
practice and shows it could be a cornerstone of deep learning.



Agriculture 2022, 12, 1280 1284 of 1292

2.2.3. DepthFormer Block

There are two residual sub-blocks of every single block. The input X ∈ RH×W is first
processed by Norm(), selecting representative batch normalization [44] (RBN) as our choice.
The specific function is:

Y = X + TokenMixer(Norm(X)). (2)

According to the traditional approach, TokenMixer() is always set to self-
attention [15,20,21,30,45]. The Swin Transformer [21] uses the idea of the sliding window
in convolutional neural networks to reduce the time complexity of the self-attention mecha-
nism to a linear proportion of the image size. Based on this idea, HRFormer [29] applies
the Swin Transformer to a high-resolution network structure. Figure 2 shows the structure
of the HRFormer block where the green part is the local-window self-attention (W-MSA).
The feature map X is cut into several parts and runs multi-head self-attention in each
part independently. Moreover, these parts do not overlap with each other in an image.
Each part includes M × M patches; the time complexity of a window based on h × w
patches of an image is [21]:

Ω(W-MSA) = 4hwC2 + 2M2hwC (3)

where the value of W is normally set as seven, hw is the number of patches and C is the
channels of a feature map. The algorithm is complicated and sophisticated, bringing about
huge difficulties when it is trained and worked.

MHSA

MHSA

MHSA

MHSA

Local-window self-attention

1 × 1 conv. 3 × 3 DW conv. 1 × 1 conv.

Feed-Forward Network （FFN）

Figure 2. Illustrating the structure of the HRFormer block.

Qi et al. [28] suggest that depthwise convolution and self-attention have strong simi-
larities. Self-attention and depthwise convolution have two things in common. The first
is sparse connectivity, where each channel in depthwise convolution has a separate con-
volution kernel. They are sparsely connected on the channel and locally linked in space
because different channels are independent of one another. The second is weight sharing:
depthwise convolution (DWC) uses distinct aggregation weights for each channel while
using convolution kernels with the same weight for feature aggregation at each point [28].
In the operator, the time complexity is:

Ω(DWC) = CK2HW, (4)

where C is the number of channels and K is the kernel size. Specifically, due to using a basic
design for the Transformer, there is no down-sampling in each basic block, which maintains
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an identical feature map size of the input and ouput. For the purpose of designing a
lightweight model, we select depthwise convolution as our TokenMixer(), since it has small
parameters and is easy to train.

Then, in the FFN part, following the previous operation, the point convolution is
used to further integrate the depth information from the depth direction. After that,
a set of depthwise and pointwise convolutions is added to extract more information [32].
The blocks behind the second one of Figure 3 show the process of how 3× 3 depthwise
convolution and pointwise convolution are used to update features.

 3 × 3 DW conv. 1 × 1 conv.  3 × 3 DW conv. 1 × 1 conv.

Feed-Forward Network （FFN）

Figure 3. Illustrating the structure of our basic block.

2.2.4. PoolFormer Block

In order to balance the relationship between the effect and parameter quantity, four
PoolFormer blocks are added behind the parallel structure.

First the input X ∈ RH×W×C is reshaped into several flattened 2D patches xp ∈ Rp2×C,
where (H×W) is the original resolution of the feature map and (p× p) is the resolution of
every single image patch.

X′ = Embedding(X) (5)

Then, the embedding output is transferred into four repeated PoolFormer blocks.
Compared with the block introduced in the previous section, TokenMixer() processing is
substituted by a simple AvgPooling operator. The structure is shown in Figure 4. The red
component is the Pooling part. The time complexity is as follows:

Ω(AvgPooling) = HWCK2 (6)

where K is the size of a kernel in the Pooling operator. Pooling with the invariance of
translation, rotation and scale could keep the main features of the input and prevent
overfitting. The PoolFormer block removes the depthwise convolution operation in FFN in
order not to increase the amount of computation. How many blocks need to be added will
be discussed in the ablation study.

pooling

1 × 1 conv. 1 × 1 conv.

Feed-Forward Network (FFN)

Figure 4. Illustrating the structure of a PoolFormer block.
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2.2.5. Representative Batch Normalization

The dataset used for this task includes numerous animal families with various visual
characteristics. All of the images are separated into various batches for the training process.
We anticipate that effective reservation of the sample-specific instance representations will
be possible. Layer normalization is substituted in our network by representative batch
normalization (RBN) [44]. It has an easy-to-use feature calibration solution to improve the
instance-specific representations. The ability of the network model to represent features is
improved and the performance impact of inaccurate information is decreased when the
RBN calibration is centered. Through a scaling calibration, we achieve a feature distribution
that is more stable. RBN performs better than layer normalization, and the comparison of
the outcomes will be displayed in the ablation study.

2.2.6. Instantiation

We demonstrate the whole structure information of DepthFormer in Figure 1.
The number of blocks and modules of four stages are (2, 2, 2, 1) and (1, 1, 4, 4) corre-
spondingly. Additionally, the channels of the four stages are shown as (32, 64, 128, 32).
The first stage still follows the original structure of HRNet, with several bottleneck blocks
in the residual network [16,29]. The blocks of other stages maintain the basic design of the
Transformer [21,23].

2.3. Evaluation Indicators and Experimental Environment
2.3.1. Evaluation Metric

In our work, the standard evaluation metric based on Object Keypoint Similarity (OKS)
is confirmed:

OKS =
∑i e

−d2
i

2s2k2
i δ(vi > 0)

∑i δ(vi > 0)
(7)

where di is defined by the L2 norm, which describes the distance between a predicted joint
and the ground truth of itself; vi illustrates whether the joint could be seen, s is the scale of
the object, and a constant ki is described to control the decay of each keypoint. We report
the standard average precision and recall scores: AP (the mean of AP scores at ten positions,
OKS = 0.50, 0.55,. . . , 0.90, 0.95), AP50 (AP at OKS = 0.50), AP75 and AR [14].

2.3.2. Experimental Settings

We use data augmentation which mainly consists of randomly flipping animal key-
points horizontally, randomly keeping only the upper body or the lower body, as well
as scaling [0.5, 1.5] and rotating [−80◦, 80◦]. In the selection of the input size, we use a
square box instead of a general rectangular box, because different animals have large body
differences, and the square box can better adapt to various situations. The input size of each
image is 192× 192 or 256× 256, and the heat map size is 48× 48 or 64× 64 correspondingly.
We change the optimizer from Adam to AdamW and set the learning rate as 5× 10−4

with the weight decay set as 0.01. In order to compare the differences between models,
the same settings are used for the keypoint head and loss functions in all experiments.
All the experiments start from scratch. Each experiment runs on a NVIDIA GeForce RTX
3090 (24G) GPU under a Pytorch 1.8.0 framework with a batch size of 58 and 210 epochs.

3. Results
3.1. Results on the Val Set

Table 2 summarizes the performance on the AP-10K val set. DepthFormer arrives
at an AP of 65.4, which surpasses all the backbone networks. We select SimpleBaseline
as the benchmark, using the main structure of ResNet and adding several connections
of the cross-scale. Additionally, the depth of the net is 18. Although it is a simple net,
it is always efficient and has a great performance. The result of our work outnumbers
that of SimpleBaseline by 3.0 AP and 6.9 AP with input sizes of 256× 256 and 192× 192,
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respectively. Note that the parameters of the baseline are approximately five times as many
as that of ours. HRFormer-Tiny uses four-stage high-resolution architecture combining
multi-scale outputs and makes good use of the Swin Transformer block, which makes it
achieve good results in many vision tasks.

Table 2. Comparison on the AP-10K val set. The volume of parameters and FLOPs for the animal
pose estimation network are measured without animal detection and the keypoint head.

Methods Input Size #param. GFLOPs AP AP50 AP75 APM APL AR

SimpleBaseline-18 192 × 192 11.17 M 1.33 56.6 87.2 59.6 45.4 56.9 60.3
SimpleBaseline-18 256 × 256 11.17 M 2.37 62.4 89.3 66.4 37.0 62.9 66.6

ShuffleNetV2 192 × 192 1.25 M 0.10 47.1 82.6 45.3 33.2 47.5 52.0
ShuffleNetV2 256 × 256 1.25 M 0.19 53.2 85.3 54.0 38.3 53.5 59.1
MobileNetV2 192 × 192 2.22 M 0.22 49.5 84.0 48.0 40.3 49.8 53.9
MobileNetV2 256 × 256 2.22 M 0.40 56.1 86.4 56.6 50.0 56.4 61.3
Lite-HRNet 192 × 192 1.76 M 0.30 58.0 89.0 61.1 52.1 58.2 62.3
Lite-HRNet 256 × 256 1.76 M 0.54 60.7 90.1 63.3 53.7 61.0 65.5

HRFormer-Tiny 192 × 192 2.49 M 1.03 61.7 90.9 65.9 55.8 62.0 65.6
HRFormer-Tiny 256 × 256 2.49 M 1.89 62.2 91.6 67.8 47.8 62.6 67.1
DepthFormer 192 × 192 2.27 M 1.50 63.5 91.0 67.5 51.5 63.8 67.3
DepthFormer 256 × 256 2.27 M 2.67 65.4 92.2 70.6 52.9 65.8 70.0

In this challenging dataset, our network shows a more powerful ability to handle the
task. Compared with HRFormer-Tiny, DepthFormer overtakes it by 3.2 and 1.8 score of AP
with input sizes of 256× 256 and 192× 192, respectively, at the same level of parameters.
The table also reports other state-of-the-art lightweight networks. The performance of
DepthFormer shows great advantages in both AP and AR.

3.2. Results on the Test Set

Table 3 reports the results of the AP-10K test set. Our method is significantly better
than low-resolution networks such as MobileNet and ShuffleNet. Our network can benefit
from increasing the input sizes from 192× 192 to 256× 256, which gains 2.5 AP, and others
also show the same trend. Although the computation of DepthFormer is larger than other
models with higher resolution at the same input size, our performance is eye-catching.
It is worth noting that the performance of our model under an input size of 192× 192
exceeds that of other models under an input size of 256× 256. In other words, DepthFormer
achieves better results with smaller input sizes and smaller GFLOPs.

Table 3. Comparison on the AP-10K test set. The volume of parameters and FLOPs for the animal
pose estimation network are measured without animal detection and the keypoint head.

Methods Input Size #param. GFLOPs AP AP50 AP75 APM APL AR

SimpleBaseline-18 192 × 192 11.17 M 1.33 54.9 86.2 56.6 38.7 55.5 59.4
SimpleBaseline-18 256 × 256 11.17 M 2.37 60.3 88.5 63.0 48.1 61.1 65.2
ShuffleNetV2 192 × 192 1.25 M 0.10 46.2 79.1 45.1 36.7 46.8 51.0
ShuffleNetV2 256 × 256 1.25 M 0.19 51.3 83.7 50.3 38.7 52.0 57.4
MobileNetV2 192 × 192 2.22 M 0.22 48.1 81.0 47.6 40.3 48.6 53.0
MobileNetV2 256 × 256 2.22 M 0.40 55.1 86.3 55.8 43.8 55.7 60.5
Lite-HRNet 192 × 192 1.76 M 0.30 56.4 87.1 59.2 47.7 56.9 60.9
Lite-HRNet 256 × 256 1.76 M 0.54 60.2 88.7 62.7 50.0 60.8 65.3
HRFormer-Tiny 192 × 192 2.49 M 1.03 60.6 88.8 65.7 48.0 61.3 65.1
HRFormer-Tiny 256 × 256 2.49 M 1.89 61.5 90.0 66.6 47.3 62.2 66.9
DepthFormer 192 × 192 2.27 M 1.50 62.1 89.1 67.0 51.9 66.7 66.3
DepthFormer 256 × 256 2.27 M 2.67 64.1 89.5 69.3 55.4 64.7 69.0
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For example, our approach arrives at an AP score of 62.1 with 1.50 GFLOPs under
an input size of 192× 192, outnumbering both HRFormer-Tiny with 1.89 GFLOPs and
SimpleBaseline-18 with 2.37 GFLOPs under an input size of 256× 256 by 0.6 AP and 1.3 AP,
respectively, as reported in Figure 5. Our model could work better than others with low-
resolution images captured from the wild environment. At the same time, the parameters
of SimpleBaseline and HRFormer are higher than those of our model. When the input
size is 256× 256, our model outperforms HRFormer (which is in second place) by 2.6 AP.
Some visual results are shown in Figure 6. DepthFormer could detect the keypoints of
animals accurately in most cases, but in the case of occlusion among animals, the detection
effect is limited.
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(b) Input size of 256× 256.

Figure 5. Demonstration of the AP and parameters of the lightweight networks on the AP-10K test
set with inputs of different sizes.

Figure 6. Example qualitative results of the AP-10K animal pose estimation test, including multiple
animals and changes in viewpoints.
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3.3. Ablation Study

Table 4 shows the results of the ablation study under an input size of 192 × 192.
We select the PoolFormer block as a basic block of the parallel structure. First of all, we test
the performance of the network with only three stages, which is a baseline to test whether
the improvements are valid. In addition, the pooling operator is replaced by depthwise
convolution, which also exerts a positive influence on performance. These changes brought
about a small increase in parameters and GFLOPs, with a 0.4 increase in the AP score.

Table 4. Influence of selecting 3 × 3 depthwise convolution (DWC) as the TokenMixture() and
representative batch normalization (RBN). We show #param, GFLOPs, AP and AR on AP-10K val.

No. Baseline DWC RBN 2 Blocks 4 Blocks 6 Blocks #Param. GFLOPs AP AR

1
√

2.197 1.352 60.2 64.7
2

√ √
2.216 1.363 60.6 65.1

3
√ √

2.197 1.357 60.5 64.9
4

√ √ √
2.216 1.368 61.6 65.9

5
√ √ √ √

2.259 1.466 61.7 65.9
6

√ √ √ √
2.275 1.502 62.1 66.3

7
√ √ √ √

2.292 1.543 61.8 66.1

Then, a layer normalization is changed by representative batch normalization and
there is a clear increase in the AP with this change, which brings only a minimal increase
in GFLOPs. After that, both depth-wise convolution and representative batch normal-
ization are utilized in this network. The results are better than only using a single one
(61.6 AP vs. 60.6 AP and 60.5 AP), illustrating that there is synergy between the two of them.
Based on the first two changes, several PoolFormer blocks are added at the tail of the paral-
lel structure. Obviously, it is not the case that the greater the number of blocks, the better.
In a series of experiments, we add two, four, and six blocks to conduct experiments to
evaluate the best effect of adding several blocks. When adding two blocks, the effect is
slightly improved, and the AP is increased by 0.1. When the number of blocks becomes
four, it increases the AP to 0.5 compared with not adding blocks. However, when six
blocks are added, there is a marginal effect, and the performance does not increase but
clearly decreases.

As a result, our network benefits from depthwise convolution and representative batch
normalization, and adding four blocks at the tail is the most suitable method for us.

4. Discussion

In this work, to solve a problem of developing an efficient method for animal pose
estimation, a lightweight, high-resolution and depthwise convolution network is proposed.
The basic block of DepthFormer is designed with depthwise convolution, following the
whole structure of Transformer, where there are two similarities between depthwise convo-
lution and self-attention, with less inference time. The results of a series of experiments
show that architecture of Transformer has strong power, although TokenMixer() is set as
Pooling. Depthwise convolution could extract feature effectively and bring a great perfor-
mance, with a few parameters. Moreover, a feature fusion operation is used at the end of
a three-stage parallel branch, making good use of the representation with different reso-
lutions. The models that can get rich multi-scale representation such as ours, Lite-HRNet
and HRFormer-Tiny show obvious superiority in this task. The RBN is used to maintain
instance-specific representations of samples, retaining the other advantages of batch normal-
ization. With the help of the characteristic, our model could get an obvious improvement.
It is important that RBN and depthwise convolution have strong synergistic effect.

To make up for the deficiency of the three-stage model in terms of feature extraction,
four PoolFormer blocks are added at the end and is demonstrated in ablation experiments
to improve performance positively. The performance of our model with a small input size
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exceeds that of other models with a large input size. In other words, our DepthFormer could
get a better performance with a fewer GFLOPs and parameters than other state-of-the-art
lightweight models (HRFormer-Tiny and SimpleBaseline-18). Repeatable experiments
with good results show that the proposed lightweight model has strong reliability in this
challenging vision task. This research provides effective and reliable technical support for
accurately estimating animal poses with limited computing resources.

Although the overall performance of our method is good and far better than that
of other models, it requires a little more GFLOPs than MobileNet [32], ShuffleNet [34]
and Lite-HRNet [35]. In the future, these problems will be solved by more efficient net-
work structures. Additional development will be launched on edge devices and applied
in practice.

5. Conclusions

In this paper, a lightweight, high-resolution and depthwise convolution network is
proposed for animal pose estimation. Relying on the well-designed structure of Transformer
with strong power, our DepthFormer makes good use of multi-branch architecture to
extract high-resolution representations and RBN to obtain instance-specific representations.
A series of repeatable and accurate experimental results show that our model could get a
greater performance than other lightweight models with a smaller input size. The model
will be improved by lighter designs and more efficient structures.
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