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Abstract: For the efficient selection of high-quality rice varieties, the near-infrared spectroscopy
(NIRS) technique has been widely applied to detect constituents in single rice kernels. Compared
with other constituents, amylose content (AC) and fat content (FC) are the key parameters that can
affect the quality of rice. Based on two modified AC and FC trace detection methods, two NIRS
methods to detect AC and FC in single rice kernels were developed. Using the proposed methods,
the AC and FC in two groups of rice kernel datasets were measured. The datasets were collected on
two spectrometers with different sample movement states (static and dynamic) and measurement
modes (diffuse reflectance (NIRr) and diffuse transmission (NIRt)). By optimizing the pre-treatment
method and spectral range, the determination coefficients of cross-validation (R2

cv) and prediction
(R2

p) of the NIRS models under different measurement conditions were all above 0.6. The results
indicated that the proposed methods were applicable to the rapid, non-destructive detection and
sorting of individual rice seeds with different AC and FC, and it was shown that these methods can
meet the requirements of the rough screening of rice seed varieties.

Keywords: single rice kernel; near-infrared spectroscopy; amylose and fat content; seed sorting

1. Introduction

Rice is the main food crop worldwide. With the continuous increase in rice yield, the
demand for breeding high-quality and nutritious rice varieties has grown extensively [1,2].
Amylose content (AC), protein content (PC), and fat content (FC) are important quality
indicators in rice, and they have significant impacts on the eating quality, storage quality,
and processing quality of rice [2,3]. According to the literature, high-quality rice usually
possesses low PC and high FC [4,5]. In addition, due to the close correlation with rice
quality, the AC of rice varieties favored by consumers in different regions worldwide
varies greatly [2,6]. Therefore, the rapid detection and selection of rice seeds with specific
constituents will help seed breeders select eligible varieties in the early generations of rice
breeding, significantly shortening the breeding cycle and improving the breeding efficiency.
Compared with traditional chemical detection methods, the near-infrared spectroscopy
(NIRS) technique has the advantage of being a rapid and non-destructive method. In
addition, to obtain and breed new varieties with specific traits, the NIRS based rice quality
analysis should be conducted at the level of individual seeds. The analysis of the quality
traits of individual seeds can help breeders understand the crop’s genetic characteristics
and screen and isolate seeds with desired qualities [7]. Based on the single-kernel NIRS
analysis technique, the intelligent, highly efficient detection and selection of rice seeds can
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be accomplished by integrating multiple quality trait analysis models, high-throughput
spectral acquisition equipment, and seed-sorting accessories.

At present, the accurate obtainment of the reference value is the main limitation of
single-kernel NIRS analysis. The mass of a single rice kernel is often too small to meet
the minimum sample mass requirement of the reference method. Although the PC in a
single rice kernel can be determined using the combustion method (each sample requires
0.004 g) [8], the minimum sample mass required when using the iodine colorimetric
method (AC determination, 0.1 g) [9] and the Soxhlet extraction method (FC determination,
0.2 g) [10] still far exceeds the mass of an individual rice seed. Our previous study achieved
the NIRS prediction of the PC of a single rice kernel based on the combustion method [11].
However, few studies have focused on the determination of the AC and FC of a single rice
kernel based on the NIRS analysis method. More optimization strategies are required to
make the NIRS analysis of these two parameters possible. In the two proposed NIRS-based
methods for predicting AC and FC in a single rice kernel, two modified wet-chemical
methods were applied to obtain accurate reference values.

For the accurate detection of AC in a single rice kernel, a half-grain method was
introduced by Yang et al. [12]. In this method, each rice kernel was cut into two halves, and
then the AC of one half without embryos was determined using the iodine colorimetric
method, while the other half with embryos could be used for breeding. Wu et al. [13]
used this method as the reference to achieve the NIRS prediction of AC in a single rice
kernel and a single brown rice kernel. In addition, Dai et al. [14] introduced a modified
iodine colorimetric method. This method reduced the sample mass required for detection
to approximately 0.01 g, which could enable AC detection in a single rice kernel. Com-
pared with the half-grain method, the mass of each sample used in the modified iodine
colorimetric method is larger, which indicates that the mass deviation between samples
has less potential to interfere with the results. Therefore, in the current study, the modified
iodine colorimetric method was used as a reference in the NIRS analysis of AC in single
rice kernels.

Few reports can be found regarding the detection of FC in a single rice kernel.
Janni et al. [15] used nuclear magnetic resonance (NMR) to determine FC in single corn
kernels for NIRS calibration. However, as corn kernels are larger than rice kernels and the
range of FC in corn kernels varies more easily than in rice kernels, the feasibility of using
NMR to detect FC in single rice kernels needs to be verified further. Armstrong et al. [16]
achieved NIRS predictions of constituents in single corn kernels and single soybean kernels
by using bulk reference values and mean spectra. A similar strategy was used in our study
when analyzing the FC in single rice kernels.

The ultimate goal of single-kernel NIRS analysis is automatic high-throughput seed
sorting, while seed sorting requires the samples to be measured and analyzed at a certain
speed. Therefore, in this study, the proposed method was verified on two instruments with
different sample movement states (static (ST) and dynamic (DY)). The ST and DY conditions
simulated the movement state of samples in manual laboratory detection and automatic
seed sorting. In addition, the samples were also measured using these instruments with
different measurement modes (diffuse reflectance (NIRr) and diffuse transmission (NIRt)).
The purpose of this study was: (i) to verify the effectiveness of the proposed methods by
comparing the prediction results under various conditions and (ii) to explore the optimal
measurement conditions for the NIRS analysis of AC and FC in single rice kernels.

2. Materials and Methods
2.1. Sample Collection and Preparation

One hundred and fifty-two rice varieties with a gradient distribution of AC were screened
from the rice mutant library constructed in our laboratory to constitute the rice AC dataset. The
mutant library was composed of the mutant offspring of rice varieties ‘9311’ and ‘Wuyunjing 7’,
which were irradiated with low-energy heavy ions and cultivated for multiple generations.
For each rice variety, one full and intact seed was used for analysis. Thirty-nine rice varieties
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with a gradient distribution of FC were selected from the rice fat germplasm repository [3] that
was shared by Professor Yuqing He from Huazhong Agricultural University. These varieties
were collected after one generation of cultivation to constitute the FC dataset. For each rice
variety, 15 full and intact seeds were selected for analysis.

2.2. Near-Infrared Spectroscopy

Before spectral acquisition, the rice samples were placed in an incubator at an ambient
temperature of 25 ◦C and relative humidity (r.h.) of 50% for 24 h. NIRr and NIRt spectra
were obtained using a MPA Fourier transform near-infrared spectrometer (Bruker, Ettlingen,
Germany) under ST conditions, while NIRr spectra were obtained using a Luminar 3076
SeedMeister AOTF-NIR Analyzer (Brimrose, Baltimore, MD, USA) under DY conditions.
The schematic diagrams of the three types of spectral acquisitions are shown in Figure 1.
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Figure 1. Schematic diagram of diffuse transmission (a) and diffuse reflection (b) spectral acquisition
under static conditions and diffuse reflection (c) spectral acquisition under dynamic conditions, and
the schematic diagram of rice kernels moving on the conveyor belt (d). (Note: In c,d, each rice kernel
moved horizontally with the conveyor belt. The original spectra were collected continuously when
the rice kernels passed through the detection window.).

2.2.1. Spectral Acquisition of Single Rice Kernels under Static Conditions

The MPA spectrometer was used for the spectral acquisition of single rice kernels
under ST conditions. It included two measurement modes: diffuse reflection and diffuse
transmission. For the measurement of the spectrum of each rice kernel under ST and NIRt
conditions (ST-NIRt spectrum), first, a circular aluminum sheet with a 2 mm-diameter hole
in the middle was fixed in the detection window; thereafter, the rice kernel was placed
horizontally in the middle of the aluminum sheet, as shown in Figure 1a; finally, the ST-NIRt
spectrum was obtained by scanning both sides of the kernel in the diffuse transmission
mode once and taking the average values. The ST-NIRt spectra were acquired in the range
of 5793–12,489 cm−1 (800.7–1726.2 nm) with a resolution of 16 cm−1 and 64 repeat scans.
After each rice kernel was placed on the detection window, the spectrum of the rice kernel
under ST and NIRr conditions (ST-NIRr spectrum) was obtained by scanning the front and
back of the rice kernel in the diffuse reflection mode once and taking the average values, as
shown in Figure 1b. The ST-NIRr spectra were acquired in the range of 4000–12,000 cm−1

(833.3–2500 nm) with a resolution of 16 cm−1 and 32 repeat scans.
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2.2.2. Spectral Acquisition of Single Rice Kernels under Dynamic Conditions

The AOTF spectrometer was used for the spectral acquisition of single rice kernels
under DY conditions. It was equipped with a grain counter, a conveyor belt, six sorting
channels, and the SNAP! 2.03 spectral acquisition software (Brimrose, Baltimore, MD, USA).
The rice kernels were sequentially arranged on the conveyor belt using the grain counter
and passed through the detection window with the conveyor belt at a speed of 0.308 cm/s,
as shown in Figure 1c,d. The light source was emitted from the top down to the detection
window, and the reflected signals of the sample were received by the detector above. The
spectral range was from 1100 to 2300 nm with a resolution of 1 nm, and the gate parameter
was set to retain the spectrum with a transmission ratio > 0.43 at 1800 nm. As the original
spectra of each sample were collected continuously, the function of the gate parameter was
to filter out the unqualified background spectra from these original spectra. Depending on
the length of the rice kernel and the movement speed of the conveyor belt, the number of
consecutive original spectra collected for each rice kernel varied between 8 and 9. The faster
the speed of the conveyor belt, the less raw spectral data would be collected. The first two
and the last two original spectra for each sample were removed, and the remaining original
spectra were averaged into one. The front side and back side of each rice kernel were
collected twice, and then these four spectra were averaged into one and recorded as the
DY-NIRr spectrum. The format of the DY-NIRr spectra was converted from transmittance
to absorbance.

2.3. Trace Detection of Single Rice Kernels
2.3.1. Trace Detection of AC in Rice

The amylose contents in single rice kernels were detected with the modified iodine
colorimetric method developed by Dai et al. [14], with some steps being slightly adjusted.
The specific steps were as follows: (1) The AC of the standard samples was determined, and
the standard curve was fitted. The determination procedure for the standard samples was
the same as that for the test samples. The standard samples consisted of potato flours with
AC values of 1.5%, 10.4%, 16.2%, and 26.5%. (2) Each rice kernel was manually dehusked,
ground in a mortar, and passed through a 100-mesh sieve (0.150 mm sieve) to obtain brown
rice flour. The flours were then dried at 70 ◦C for 12 h. (3) Approximately 0.01 g of powder
was weighed for each sample on a balance with an accuracy of 0.01 mg (Mettler Toledo,
Greifensee, Switzerland) and placed in a 2 mL centrifuge tube. After 100 µL of anhydrous
ethanol and 900 µL of 1 mol/L NaOH were added to each tube, the tubes were heated
in a water bath at 100 ◦C for 20 min. Then, 40 mL of water was added to each tube after
the tubes were cooled. (4) Subsequently, 40 µL of liquid from each centrifuge tube was
transferred into a new 5-mL centrifuge tube, and then 860 µL of water, 40 µL of 1 mol/L
HAc, 60 µL of 0.2% I2-KI solution, and 3 mL of water were added into the tube. After
standing for 10 min, the absorbance of the mixture in each tube was measured using an
ultraviolet–visible spectrophotometer (PerkinElmer, Singapore) at 620 nm. The absorbances
of each sample were measured twice and averaged. (5) The AC of each test sample (Wac)
was calculated according to the standard curve, which was fitted based on the AC and the
absorbance of the standard samples:

Wac =
10Cn

mn
× 100% (1)

where mn (mg) is the mass of the test sample and Cn is the AC of the test sample calculated
according to the standard curve.

2.3.2. Trace Detection of FC in Rice

A modified Soxhlet extraction method was used for the trace detection of rice FC.
Fifteen rice kernels were dehusked and ground to obtain rice flour and then dried at 70 ◦C
for 12 h. All the rice flour for each sample was weighed, and its mass was recorded as
m0. Each rice flour sample was transferred into a food-grade filter bag and sealed with a
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PFS-200 impulse sealer (Kayshark, Wenzhou, China), and then the filter bag was transferred
to a handmade paper tube and sealed. The paper tube was put into the Soxhlet extractor
for fat extraction [10]. After the extraction, each rice flour sample was dried, removed from
the paper tube and the filter bag, and weighed. The mass of the rice flour after extraction
was recorded as m1. The fat content WFC was calculated using the following equation:

WFC =
m0 − m1

m0
× 100% (2)

2.4. Multivariate Data Analysis
2.4.1. NIRS-Based Method for Detecting AC and FC in Single Rice Kernels

For the detection of AC in single rice kernels, first, one rice kernel was selected for each
sample for spectral acquisition; thereafter, the AC reference value of each rice kernel was
detected using the modified iodine colorimetric method; finally, the regression model between
the spectra and the AC reference values was established using multivariate calibration
methods. For the detection of FC in single rice kernels, first, fifteen rice kernels were selected
for each sample (with a mass of approximately 0.3 g), and the mean spectrum was calculated
based on the spectra of these rice kernels; thereafter, the fifteen spectra were averaged into
one; then, the FC reference values were detected using the modified Soxhlet extraction
method; and finally, the regression model between the mean spectra and FC reference values
was established. The step flow chart of the two methods is shown in Figure 2.
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2.4.2. Multivariate Calibration

Based on the Kennard–Stone algorithm [17], 70% of each dataset (i.e., 107 in the AC
dataset and 28 in the FC dataset) was classified as the calibration set, and the remaining 30%
of samples (i.e., 45 in the AC dataset and 11 in the FC dataset) were used as the validation
set. The Kennard–Stone algorithm was performed using MATLAB software version 2015
(The Mathworks, Natick, MA, USA).
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The optimization function of the OPUS 7.0 software (Bruker, Ettlingen, Germany) was
used for the optimization and prediction of the models. This function was based on the
principle of the siPLS algorithm [18], in which the pre-processed spectra were divided into
ten segments of equal size, and one to six segments were randomly combined for modeling.
The spectral pre-treatment methods used included first-order derivatives (1 der, with 17-
point smoothing by default), multivariate scattering correction (MSC), standard normal
variational transform (SNV), 1der + MSC, 1der + SNV, and the elimination of constant
offset (ECO). In particular, the 1 der combined with the SNV method was commonly used
to eliminate particle shape interference and baseline drift. The MSC method was used to
correct the effects of spectral scattering, and the ECO method was also commonly used
to eliminate the baseline drift. In general, the spectral data pre-processing methods need
to be compared or combined with each other, and the partial least square (PLS) model
was constructed under the combined conditions that consist of each pre-treatment method
and spectral range, and the predictive performance of the models was tested using the
validation set. The model with the lowest root mean square error of cross-validation
(RMSECV) and the highest coefficient of determination of cross-validation (R2

cv) was used
as the optimum. The root mean square error of prediction and the correlation coefficient
were expressed as RMSEP and R2

p. Statistical analysis and graphing were implemented
with OriginPro software (OriginLab Corp., Northampton, MA, USA).

3. Results and Discussion
3.1. Comparison of AC and FC Trace Detection Methods with the Traditional Method

To compare the results of the two modified methods with those of the traditional
methods, 14 rice samples were assessed using the modified iodine colorimetric method
and the traditional iodine colorimetric method [9]. The masses of each sample taken using
these two methods were 0.01 g and 0.1 g. Nine rice samples were determined using the
modified Soxhlet extraction method and the traditional Soxhlet extraction method [10]. The
masses of each sample taken using these two methods were 0.3 g and 2 g. The materials,
procedures, and results used are shown in Supplementary Data S1. The scatter plots of
the AC values determined using the traditional and modified iodine colorimetric methods
are shown in Figure 3a. The correlation coefficient of the results determined using the two
methods was 0.9886, and the |T| value of the paired t-test was 1.832 with a p-value of
0.092 (p > 0.05). The scatter plots of the FC values determined using the traditional and
modified Soxhlet extraction methods are shown in Figure 3b. The correlation coefficient
of the results determined using the two methods was 0.9329, and the paired t-test |T|
value was 0.898 with a p-value of 0.395 (p > 0.05). This indicates that the results measured
using the modified methods and the traditional methods correlated well, and the difference
between these results was not significant.
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3.2. Trace Detection Results of AC and FC in Single Rice Kernels

The statistical results of the AC and FC in single rice kernels determined using the two
modified trace detection methods are shown in Table 1. The distribution of AC and FC in the
calibration set ranged from 1.35% to 24.61% and 2.29% to 4.10%. These two ranges completely
covered those of the corresponding validation set. The mean values, standard errors (SE),
and standard deviations (SD) of the calibration set and validation set were similar. These
results indicate that the calibration sets were representative of the validation sets.

Table 1. AC and FC of samples measured using trace detection methods.

Analytes
Calibration Samples Validation Samples

N Range Mean SE SD N Range Mean SE SD

AC% 107 1.35–24.61 13.20 0.615 6.36 45 1.63–24.45 13.15 1.051 7.05
FC% 28 2.29–4.10 3.00 0.085 0.45 11 2.44–3.82 3.07 0.142 0.47

Note: N: sample size; AC: amylose content; FC: fat content; SE: standard errors; SD: standard deviations.

3.3. Spectra of Single Rice Kernels under Different Measurement Conditions

The spectra acquired under different measurement conditions are shown in Figure 4
(original data are listed as Supplementary Data S2). All spectra in the figure are displayed
in wavelength format.
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As shown in Figure 4, the spectra under ST-NIRt conditions had the highest absorbance
and the largest baseline drift among all three types of spectra, which reflected the difference
in optical distance that occurred when the transmission light penetrates rice kernels with
different thicknesses. Although the absorbance and range of all three types of spectra were
different, the positions of the AC- and FC-related absorption peaks [19] presented in these
spectra (e.g., those near 1200, 1464, and 1920 nm) were the same, which indicates that the
necessary composition information was included in these spectra.
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3.4. Calibration and Validation Results of the Optimized Models

In order to construct the optimum models, spectral pre-treatment and spectral range
screening were needed. The models with the lowest RMSECV and the highest R2

cv were
screened under different optimization conditions. The calibration and validation results
of the models are shown in Table 2. In the table, the optimized AC and FC models are
included in the AC group and FC group, while those models that used classic spectral
range combinations and pre-treatment methods are included in the control group of AC
and FC (ACc and FCc).

Table 2. The calibration and validation results of the PLS models for AC and FC in single rice kernels.

Group Movement
Condition

Measurement
Mode R2

cv
RMSECV

(%) R2
p

RMSEP
(%)

Pretreatment
Method LV Spectral Ranges

(nm)

AC

ST NIRt 0.886 2.14 0.832 2.86 1 der + MSC 12 845.6–954.6,
1018.3–1401.5

ST NIRr 0.724 3.32 0.737 3.57 ECO 8 963.1–1043.7,
1138.1–2502.5

DY NIRr 0.666 3.66 0.724 3.66 MSC 10
1100–1220,
1340–1460,
1580–2060

ACc

ST NIRt 0.834 2.58 0.818 3.02 1 der + MSC 9 1099.5–1300.2
ST NIRt 0.804 2.8 0.651 3.4 1 der + MSC 11 1099.5–1500.3

ST NIRr 0.66 3.69 0.685 4.02 None 8 1099.5–1500.3,
1797.9–2200.8

ST NIRr 0.638 3.81 0.673 4.04 ECO 8 1099.5–1500.3,
1797.9–2400.6

DY NIRr 0.644 3.78 0.718 3.76 MSC 8 1100–1500,
1800–2000

DY NIRr 0.567 4.16 0.656 4.1 1der + MSC 8 1100–1500,
1800–2200

FC

ST NIRt 0.743 0.224 0.644 0.266 1 der + SNV 2 953.9–1019.9,
1179.5–1282.2

ST NIRr 0.646 0.263 0.624 0.283 1 der + SNV 11 1137.1–1251.2,
1389.4–2087.4

DY NIRr 0.765 0.214 0.655 0.262 MSC 8 1220–1340,
1700–1820

FCc

ST NIRt 0.546 0.298 0.624 0.274 1der + MSC 6 1099.5–1500.3

ST NIRt 0.43 0.334 0.595 0.284 1der + MSC 5 1099.5–1300.2,
1498.6–1726.1

ST NIRr 0.572 0.289 0.43 0.435 None 10 1099.5–1500.3,
1698.9–1900.7

ST NIRr 0.524 0.305 0.529 0.365 SNV 9
1099.5–1500.3,
1698.9–1900.7,
2298.4–2521.4

DY NIRr 0.536 0.301 0.632 0.271 1der + SNV 6 1100–1300,
1700–1900

DY NIRr 0.497 0.313 0.596 0.283 ECO 6 1100–1300

Notes: R2cv: determination correlation of cross-validation; RMSECV: root mean squares of cross-validation; R2
p:

determination correlation of prediction; RMSEP: root mean squares of prediction; ECO: eliminate constant offset;
LV: latent variables; AC: amylose content; FC: fat content; ACc: classic spectral ranges for amylose content; FCc:
classic spectral ranges for fat content; ST: static; DY: dynamic; NIRr: near-infrared reflectance; NIRt: near-infrared
transmittance.

Table 2 shows that in the ACc and FCc groups, the predicted results achieved with
the classic spectral ranges and different pretreatment were not good, except for those
of the control model for AC under ST–NIRt conditions (R2

cv of 0.834 and R2
p of 0.818).

This indicates that the classic spectral ranges contained the characteristic bands, but they
contained more interference in the unrelated ranges. After the optimization of various
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pre-treatment methods and wavelength selection methods, all the models achieved better
results than the control groups. The R2

cv and R2
p of all the models in the AC and FC groups

were above 0.6.
For the AC of single rice kernels, the ST-NIRt-AC model achieved the best calibration

and validation results with the R2
cv of 0.886, RMSECV of 2.14, R2

p of 0.832, and RMSEP of
2.86. The results of the ST–NIRr–AC model were the second best, with the R2

cv of 0.724,
RMSECV of 3.32, R2

p of 0.737, and RMSEP of 3.57. The results of these two models were
better than those reported by Wu et al. [13], in which the R2 of calibration was 0.76, the
SEC (square error of calibration) was 3.44, the R2

p was 0.64, and the SEP (square error of
prediction) was 4.54. The model in the DY condition (the DY-NIRr-AC model) was slightly
worse than the two models in the ST condition, which had the R2

cv of 0.666, RMSECV of
3.66, R2

p of 0.724, and RMSEP of 3.66.
For the FC of single rice kernels, the model under DY conditions (DY-NIRr-FC model)

had the best predictive performance, with the R2
cv of 0.765, RMSECV of 0.214, R2

p of 0.655,
and RMSEP of 0.262. Compared with the DY-NIRr-FC model, the model under ST and
NIRt conditions (ST-NIRt-FC model) was slightly inferior, with the R2

cv of 0.743, RMSECV
of 0.224, R2

p of 0.644, and RMSEP of 0.266. The results of these two models were close to
the NIRS prediction results for bulk brown rice reported by Wang et al. [20], in which the
R2

cv of 0.73, RMSECV of 0.17, R2
p of 0.62, and RMSEP of 0.25 were reported. The model

under ST and NIRr conditions (ST-NIRr-FC model) has the worst prediction performance;
the R2

cv was 0.646, the RMSECV was 0.263, R2
p was 0.624, and the RMSEP was 0.283.

The comparison of the results under different conditions shows that in terms of AC in
single rice kernels, the analysis results under ST conditions were better than those under
DY conditions, while in terms of FC in single rice kernels, the results were the opposite.
The reason for this phenomenon may be related to the averaging process of the spectra
of multiple rice kernels when analyzing the FC. Under the ST condition, the position of
the sample and the number of scans were relatively consistent, which was more likely to
create stable spectral signals, while the spectrum under DY conditions was inclined to
change with the morphology of the rice kernel. Under the DY condition, the shorter the rice
kernel and the faster the sample moves, the fewer the number of original spectra can be
collected; moreover, the thicker the rice kernel, the shorter the distance of the light that was
reflected (as the detector collected signals from top to bottom). Therefore, the method of
averaging the spectra of multiple rice kernels should be helpful in correcting the physical
morphological interference of rice kernels under DY conditions, thereby improving the
predictive performance.

3.5. Characteristic Bands of Single Rice Kernel AC and FC

The characteristic bands used for the optimal single rice kernel AC and FC models are
shown in Figure 5a,b. The black, blue, and red dashed lines in the figure are the average
spectra of single rice kernels in the ST-NIRt, ST-NIRr, and DY-NIRr conditions, while
the solid lines of corresponding colors represent the spectral ranges used in the ST-NIRt,
ST-NIRr, and DY-NIRr models.

Figure 5a shows that the starch-related absorption peaks [19] near 1204 nm and
1464 nm are included in the ranges used in the three groups of single rice kernel AC
models (the ST-NIRt-AC, ST-NIRr-AC and DY-NIRr-AC models). Another absorption
peak for starch is at 1932 nm [19], which is also included in the range used by the two
NIRr models. The ranges used in these three models are close to the characteristic bands
reported by Sampaio et al. [21] in their analysis of rice flour AC, which are 8941–8194 cm−1

(1118–1220 nm), 5592–5045 cm−1 (1788–1982 nm), and 4683–4335 cm−1 (2135–2307 nm).
The ranges determined in this study also overlap with the ranges used in the rice flour
AC models determined by Mishra et al. [22], which are 6966 cm−1 (1436 nm), 6997 cm−1

(1429 nm), 7005 cm−1 (1428 nm), and 8100 cm−1 (1235 nm).
Figure 5b shows that parts of the bands used in the three groups of models for single

rice kernel FC (ST-NIRt-FC, ST-NIRr-FC, and DY-NIRr-FC) are close to the fat characteristic
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absorption peaks at 1210 nm and 1760 nm [19]. These ranges are also close to the ranges
(1207, 1726, and 1763 nm) reported by Wimonsiri et al. [23] in the analysis of FC in rice
cookies. Moreover, compared with other AC and FC detection methods (Table 3), the
methods applied in this study possess acceptable detection accuracy [21,24].
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Table 3. Comparison of different AC and FC detection methods by using rice kernels and rice flour
as the model.

Instrument Content Sample Motion State Resolution Results Ref.

MPA–reflection
amylose content

rice kernels
static

conditions 16 cm−1
RMSECV (%) = 3.32,
RMSEP (%) = 3.57 This study

fat content RMSECV (%) = 0.263,
RMSEP (%) = 0.283 This study

MPA–transmission
amylose content

rice kernels
static

conditions 16 cm−1
RMSECV (%) = 2.14,
RMSEP (%) = 2.86 This study

fat content RMSECV (%) = 0.224,
RMSEP (%) = 0.266 This study

AOTF
amylose content

rice kernels dynamic
conditions

1 nm
RMSECV (%) = 3.66,
RMSEP (%) = 3.66 This study

fat content RMSECV (%) = 0.214,
RMSEP (%) = 0.262 This study

MPA–reflection amylose content rice flour static
conditions 16 cm−1 RMSECV (%) = 1.92,

RMSEP (%) = 1.938 [21]

MPA–reflection &
transmission fat content rice flour static

conditions 16 cm−1 RMSECV (%) = 0.12,
RMSEP (%) = 0.165 [24]

In summary, the bands used for modeling in this study are closely related to the ab-
sorption of amylose or fat molecules, indicating that the models we selected are reasonable.

4. Conclusions

In this study, two NIRS-based methods used to determine AC and FC in single rice
kernels were proposed. Two modified wet-chemical methods were applied as the reference.
The accuracy of these reference methods was proven to be close to that of traditional
wet-chemical methods, and the differences were negligible. The prediction efficiency of the
models was significantly improved under the optimal conditions of various pre-treatment
methods and spectral ranges. The validity of the proposed methods was verified under
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different measurement conditions. The R2
cv and R2

p values of the AC and FC in single
rice kernels based on the NIR models were all above 0.6. The results indicated that the
proposed methods were applicable to the rapid and non-destructive detection and sorting
of rice seeds, and it was shown that their accuracy can meet the requirements for the rough
screening of rice seed varieties.

By comparing the predicted results under different measurement conditions, the
optimal conditions for rice seed detection and seed sorting using the proposed methods
were explored. The results show that the accuracy of the NIRS analysis results was related
to the target constituents and the measurement modes. For the AC in a single rice kernel,
the prediction results of the NIRS models under ST and NIRt conditions were the best,
while for the FC in a single rice kernel, the results under DY and NIRr conditions were
the best. The averaging of multiple spectra of single rice kernels may be an effective
means to improve the accuracy of NIRS models fog single rice kernels. The comparison
results also showed that for the detection of constituents of single rice kernels under ST
conditions, the accuracy was better when using diffuse-transmission NIRS. However, as the
AOTF spectrometer only has a reflection mode, the feasibility of using diffuse-transmission
NIRS under DY conditions for single-rice-kernel constituent analysis needs to be verified
further. In addition, the moving speed of the sample under DY conditions was low.
Therefore, to meet the requirements of high-throughput detection and sorting of crop seeds
more effectively, the proposed method should be further verified and optimized based on
equipment with more efficient spectral acquisition and analysis functions.
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