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Abstract: Sheep face recognition models deployed on edge devices require a good trade-off between
model size and accuracy, but the existing recognition models cannot do so. To solve the above
problems, this paper combines Mobilenetv2 with Vision Transformer to propose a balanced sheep
face recognition model called MobileViTFace. MobileViTFace enhances the model’s ability to extract
fine-grained features and suppress the interference of background information through Transformer
to distinguish different sheep faces more effectively. Thus, it can distinguish different sheep faces
more effectively. The recognition accuracy of 96.94% is obtained on a self-built dataset containing
5490 sheep face photos of 105 sheep, which is a 9.79% improvement compared with MobilenetV2,
with only a small increase in Params (the number of parameters) and FLOPs (floating-point opera-
tions). Compared to models such as Swin-small, which currently performs SOTA, Params and FLOPs
are reduced by nearly ten times, whereas recognition accuracy is only 0.64% lower. Deploying Mo-
bileViTFace on the Jetson Nano-based edge computing platform, real-time and accurate recognition
results are obtained, which has implications for practical production.

Keywords: sheep face recognition; deep learning; vision transformer; Mobilenetv2; precision
agriculture; Jetson Nano platform

1. Introduction

The automatic identification of individual livestock has become an integral part of the
livestock sector. It can capture various types of information that can be interpreted into
various reports and provide farmers with critical information to manage their farms.

Traditional methods of livestock identification include branding, tattooing, and ear
tagging [1]. However, these methods can cause animal stress and injury and require
frequent maintenance and cleaning. In addition, they require manual registration, which
is both time-consuming and prone to error [2]. Radio frequency identification (RFID) is
widely used in individual livestock identification [3]. However, it is more costly than
traditional methods and is susceptible to interference. Some studies have used retina,
iris, and nasal prints combined with traditional machine learning methods for individual
livestock identification [4,5]. Still, these methods require manual feature design and do not
satisfy the need for individual livestock identification in unconstrained environments.

In recent years, face recognition has matured thanks to the development of convolu-
tional neural networks (CNNs) and is an active area of research. Inspired by face recogni-
tion, researchers have investigated the effectiveness of CNNs in identifying livestock using
various biometric features [6-9]. Since faces contain many important features such as eyes,
noses, and other biometric features, they possess a great scope for development. Unlike
human faces, livestock faces have distracting factors such as hair and texture changes, and
it is impossible for livestock to consciously hold their faces steady in front of the camera for
longer periods [10-12]. Suboptimal face images lead to poor recognition by deep learning
models. Thus, livestock face recognition research has been limited [13]. Moreover, these
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research works either have recognition accuracy that does not meet the requirements of
real production or have large model parameters and high FLOPs that cannot be deployed
on resource-constrained edge devices to effectively facilitate the application of sheep face
recognition in practice. Some of the recently published works are shown in Table 1. As can
be seen, the overall identification accuracy is still not high enough, and they do not report
the number of parameters and FLOPs of the proposed models.

Table 1. Some livestock identification studies.

Reference Dataset Method Accuracy (%)
[14] 81 sheep CNN 95.00%
[15] 28 pigs CNN 96.80%
[16] over 5000 images of 547 sheep CNN 85.00%
[17] 3278 pictures of goats CNN 96.40%
[18] 945 images of cow faces CNN 91.67%
[13] 1553 images of 10 pigs CNN 96.70%
[19] 2364 images of pigs CNN 83.00%
[20] 2318 images of 90 cows CNN 91.30%

To reduce the number of parameters in the model, this paper chose Mobilenetv2
as the feature extraction network. Mobilenetv2 is a lightweight deep learning model
proposed by [21], which not only uses depthwise separable convolution to reduce the
FLOPs compared with Mobilenetv1 but also introduces the inverse residual structure to
improve the feature extraction ability of the network. However, the spatial localization of
the convolutional structure limits its overall modeling of sheep faces, which leads to poor
recognition when sheep face images are occluded and when faced with factors such as
lighting changes [22].

The Transformer architecture is a standard paradigm for natural language process-
ing [23] and has recently caused a stir in computer vision [24-27]. Transformer is comple-
mentary to convolutional structures. The Transformer architecture has a global perceptual
field that allows information to flow freely in different locations of the image, establishing
long-range dependencies and providing better robustness in recognizing obscured sheep
faces. The Transformer architecture is a more general form of attention mechanism, which
can give different attention to different features, meaning it can suppress the interference of
background information on recognition results to some extent. However, the Transformer’s
division of the whole image into small patches destroys the local continuity of the image.
Additionally, without the local inductive bias of the convolutional structure, the Trans-
former usually requires a large amount of data for training to achieve the same results as
the CNN-based model.

Therefore, it is a natural choice to combine Mobilenetv2, based on the convolutional
structure, with Transformer. In this paper, we combine the advantages of Mobilenetv2
and Vision Transformer to propose MobileViTFace, a lightweight sheep face recognition
model that makes a good trade-off between recognition accuracy and model size. The main
contributions of this paper are summarized as follows:

(1) We propose a sheep face recognition model MobileViTFace based on the CNN and
Transformer structure. MobileViTFace fully combines the advantages of the convo-
lutional structure and Transformer structure to extract more effective features for
the final sheep face recognition, which is a general form of combining convolutional
structure and attention structure.

(2) Improving the effectiveness of sheep face recognition. MobileViTFace not only has
high recognition accuracy, but also the number of parameters and FLOPs of the model
is significantly reduced due to the lightweight design.

(3) The application of the deep learning-based sheep face recognition model in practical
production is promoted. The proposed MobileViTFace sheep face recognition model
is deployed on the Jetson Nano edge computing-based platform to develop a sheep
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face recognition system, which effectively improves the informationization of sheep
farms and can provide a reference for other sheep farms.

2. Materials and Methods
2.1. Self-Built Dataset

The sheep face image data were collected in June 2020 at a sheep breeding base in
Ningxia, China. The Sony DSC-RX100M2 camera was used to track the sheep in the scenes,
and each video was about 1 min long with a frame rate of 60 fps and a resolution of
1920 x 1080. In total, 105 categories of 5490 images of sheep containing sheep faces were
obtained by intercepting key frames from the captured videos and excluding blurred and
poorly lit images. Some of the sheep data in different scenes are shown in Figure 1.

Figure 1. (a—f) are some samples of the dataset.

The obtained images were divided into the training set and validation set according
to the ratio of 7:3. Considering that there may be angle and brightness changes in the
actual shooting, the image data in the training set were enhanced by including angle
transformation of the image, adjusting the brightness and darkness, etc., for data expansion.
Finally, 13,176 training images were obtained.

2.2. Model
2.2.1. Overall Flow Chart

The overall flow chart of the sheep face recognition system with the sheep face recog-
nition algorithm as the core is shown in Figure 2.

Detection algorithm Recognition algorithm
R

- B \‘Y‘ N ‘ - +Sheep N

Video Key frames Bounding box  Sheep face Identify the results

Figure 2. The flow chart of the sheep face recognition model in this paper.

The video stream data was acquired through the webcam installed at the sheep
farm. The acquired video was decoded by FFMPEG (Fast Forward Moving Picture Expert
Group) and video frame interception to obtain sheep image data. We performed sheep face
detection and recognition and compared the obtained sheep face features with the registered
sheep face features in the database to obtain the recognition results. The recognition results
are visualized and displayed, and the sheep face detection and recognition models are
introduced in the following sections.
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2.2.2. Sheep Face Detection Module

Through experimental comparison, EfficientDet-D1 [28] was selected as the sheep face
detection model, and the detailed experimental results are presented in Section 3.1. The
commonly used object detection frameworks were divided into two major categories, where
one category is the two-stage object detection algorithms such as those found in [29-31].
The two-stage object detection algorithms have higher accuracy but are slower and cannot
meet the real-time requirements. The other category is the single-stage object detection
algorithms such as those found in [32,33]. The detection speed of the single-stage algorithm
can meet the real-time requirements. However, its detection accuracy is lower than that
of the two-stage detector. Balancing the speed and accuracy of detection algorithms is
the problem that needs to be solved. To solve the above issues, the EfficientDet network
was selected as this paper’s sheep face detection model. EfficientDet is a object detection
model proposed by the Google Brain team in 2020. It is a collective name for a series of
efficient and scalable object detection models, and its network architecture is shown in
Figure 3. The feature extraction network is EfficientNet and follows the compound scaling
(composite scaling) method. Bi-FPN (Bi-Feature Pyramid Network), a feature fusion
network, introduces learnable weights to learn the importance of different input features.
The prediction network consists of a classification prediction network and a regression
prediction network, and both networks share the weights of the feature network. However,
among the eight models in the EfficientDet series d0-d7, as the accuracy of the network
gradually increases, the computational effort increases accordingly. EfficientDet-D1 was
selected as the sheep face detection network in this paper to strike a balance between
detection accuracy and speed.

Class prediction net
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Figure 3. EfficientDet network structure.

2.2.3. Improved Sheep Face Recognition Module

MobileNetV2 is an improvement of mobileNetV1, a lightweight neural network.
MobileNetV2 retains the depthwise separable convolution of the MobileNetV1 version
with the addition of a linear bottleneck and inverted residual. For the input image, after a
series of convolution and bottleneck operations, the height and width of the input image
are continuously halved, the number of channels is increased, and the number of channels
remains constant until each downsampling. Finally, the feature vectors for prediction are
generated by averaging pooling and point convolution. Unlike the original Mobilenetv2,
MobileViTFace was based on the MobileNetV2 network structure, adding 2 LinearViT
structures to its third downsampling, 4 LinearViT structures to its fourth downsampling,
and 3 LinearViT structures to its fifth downsampling. The final feature vector was fixed to
128 dimensions through the fully connected layer, which was used to represent the sheep
face, and other settings remain unchanged. The network structure of MobileViTFace is
shown in Table 2.

This design is based solely on existing studies [34,35] and our experiments [36]. In
general, the Transformer structure is considered more powerful than the convolutional
structure because the Transformer aims to establish global connections between features. In
contrast, the convolutional structure captures only local information. However, in terms of
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efficiency, the convolutional structure consistently outperforms the Transformer structure
at all input resolutions. However, as the input resolution decreases, the efficiency gap
between the Transformer and convolutional structures shrinks. This observation inspired
us to design the network so that the Transformer structure can be placed at a later stage to
balance performance and efficiency. Although the above improvements achieve significant
results, their efficiency is still not comparable to that of the convolutional network alone.
Therefore, we used a mixture of convolutional and Transformer structures. The combination
of the convolutional structure and Transformer block is shown in Figure 4, where the input
features X = H x W x C (H represents the height of the input image, W represents
the width, and C represents the number of channels) are first locally modeled by 3 x 3
convolution and 1 x 1 convolution to obtain the output X = H x W x d (H represents
the height of the input image, W represents the width, and d represents the number of
channels). Then, each feature map is divided into N patches, and each patch is flattened as
a 1-dimensional vector with dimension P by linear projection. These patches are input into
M LinearViTs for global representation. Next, the patches are restored to the shape they had
before being input to the LinearViT. Feature fusion is performed with the input feature map
through residual connectivity, and the final output feature map shape is the same size as
the input feature map. In this way, based off of the convolution structure and Transformer
structure, the model has the ability of both local representation and global representation.

Table 2. MobileViTFace: Each line describes one or more identical operation sequences repeated for
n times. All layers in the same sequence have the same output channels. The step length of the last
layer in each sequence is the stride, and the step length of all other layers is 1. All spatial convolutions
use a 3 x 3 convolution.

Input Operator n Stride Output Channels
2242 x 3 Conv2d 1 2 16
1122 x 16 bottleneck 1 1 32
1122 x 32 bottleneck 3 2 64
562 x 64 bottleneck 1 2 9
282 x 96 LinearViT 2 - 9
282 x 96 bottleneck 1 2 128
142 x 128 LinearViT 4 - 128
142 x 128 bottleneck 1 2 160
72 % 160 LinearViT 3 - 160
72 % 160 Conv2d 1 x1 1 1 640
72 x 640 Avgpool 7 x 7 1 7 1000
12 x 1000 EC - - 128

Skip Connect

. /’”—‘—‘"/—

Figure 4. Bottleneck and LinearViT connection design.
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2.2.4. The Design of the Bottleneck

Inverted residual is the basic component of the bottleneck. Different from the residual
structure, 1 x 1 convolution is first used to realize dimensionality enhancement, and then
3 x 3 DW convolution (channel by channel convolution) is used to extract the features.
Finally, 1 x 1 convolution is used to achieve dimensionality reduction. The order of
descending and ascending dimensions is changed, and the standard convolution of 3 x 3
is changed into DW convolution to reduce the number of parameters of the model. In
the inverted residuals structure, the ReLU6 activation function is used for the first two
convolutions, and the linear activation function is used for the last one. The purpose
of replacing ReLU with ReLU6 is to ensure good numerical resolution even in the low-
precision Float16 on the mobile end. Moreover, leap connections are added to inverted
residuals when the step size is 1. The inverted residuals structure is shown in Figure 5.

)

Conv 1x1
Add ] Linear
Conv 1x1 P
Linear DWConv 3x3
I Relu6
%ﬁ/
DWConv 3x3
Relu6
JE—
f Conv 1x1
Conv 1x1 Relu6
Relu6 t
R A L
Input — Input
[ —
Stride=1 Stride=2

Figure 5. The design of the bottleneck.

2.2.5. The Design of the LinearViT

The MHA allows tokens to interact with each other and is the key to learning global
representation. However, the Transformer block has a self-attention complexity of O(N?),
i.e., it is quadratic in the number of tokens N. The deployment of Transformer-based
models on resource-constrained devices is of particular concern. Therefore, the necessary
optimization of MHA is a must. To this end, this paper takes a cue from PVT v2 [37] and
replaced the original Transformer with LinearViT to reduce the computational complexity
of the model. A comparison of the two is shown in Figure 6.

\\\ 190uu0)) dpysg

A
. g0auuo) diyg

Muti-Head
Attention

i | Muti-Head ‘:
H '

Attention

Average | |
Pooling

109uu0y’dryg

/ 109uu0) diyg
SuIpodud [BUON0SOJ

Norm

(b)

Figure 6. The linear versus the original Transformer. (a) is the LinearViT, (b) is the orginal Vi-

sion Transformer.



Agriculture 2022, 12, 1126

7 of 14

Compared with the original Transformer, LinearViT has two main improvements.
(1) Multi-head attention layer with linear computation complexity:

As shown in Figure 6, the original MHA receives a query Q, a key K, and a value V as
the input and output of the optimized feature map. The difference is that LinearViT’s MHA
reduces the spatial scale of K and V before the attention operation, which significantly
reduces the computation/memory overhead. For an image or intermediate feature layer
with an input of space dimension /1 X w X c, the original MHA complexity and LinearViT’s
MHA complexity are Equations (1) and (2), respectively, where P is the pooling size of
LinearViT’s MHA, which is set to 7. It can be seen that the computational complexity of
LinearViT is almost negligible compared with the original computational complexity.

Q(MHA) = 2hw?c + 2wc? (1)

Q(LinearViT) = 2hwP?c ()

(2) Replacing the position encoding with depthwise separable convolution:

The original Transformer divides the input image into patches that destroy the spatial
location information of the input. It requires the addition of location encoding to retain
spatial location information. The size of the location encoding is generally the same as the
number of patches. Still, a change in the size of the input image or the size of the patches
causes a change in the location encoding information, which is not conducive to model
reuse. However, the convolutional structure does not have such a concern. To solve the
above problem, in this paper, following the PVTv2, we added a 3 x 3 deep convolution
between the first fully connected (FC) layer and GELU with a 0 padding size of 1 in the
feedforward network.

2.3. Evaluation Indicators and Experimental Environment
2.3.1. Evaluation Indicators

The evaluation metric of the sheep face detection model is AP (Average Precision),
which is expressed as the area under the Precision-Recall curve. The larger the value of AP,
the better the detection model is. The formula for calculating AP is shown in Equation (3).

The evaluation metrics of the sheep face recognition model MobileViTFace include
Accuracy, Recall, Precision, F1-score, Params, and FLOPs, and they are calculated in
Equations (3)-(7), where TP, FP, TN, and FN are the number of true positives, false positives,
true negatives, and false negatives, respectively. The Accuracy represents the number of
correctly classified samples as a percentage of the total number of samples. The Recall
represents the ratio of the number of samples correctly retrieved to the number of samples
that should have been retrieved. Precision is the ratio of the number of samples correctly
retrieved to the total number of samples retrieved. The Fl-score considers both Precision
and Recall. FLOPs are used to measure the model’s runtime, which refers to the number
of floating-point operations performed throughout the forward process. The lower the
FLOPs, the less computation and execution time the model requires. Params determines
the model’s size. The smaller the model, the lower the hardware requirements and the
higher the model’s applicability, provided that the task requirements are met.

1
AP = /0 P(r)dr 3)
accuracy = (TP+TN)/(TP+ TN + FP + FN) 4)
precision = TP/ (TP + FP) 5)
recall = TP/(TP + FN) (6)

F1-score = 2/((1/precision) + (1/recall)) )
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2.3.2. Experimental Parameter Setting

The experiments in this study were conducted in the Ubuntu 20.04 environment
(processor: Intel Core i9-10900X, RAM: 48 GB, graphics card: GeForce RTX 3090 x 2), and
the deep learning framework was Pytorch, combined with Cuda 11.1 for training.

Jetson Nano is a low-spec computing platform launched by Nvidia. The size of Jetson
Nano is 100 mm x 80 mm x 29 mm, with a 4-core, 64-bit ARM CPU and a 128-core Maxwell
GPU. The CPU and GPU share 4 GB of memory. The power consumption is 5-10 watts.

The parameters of the sheep face detection model were set as follows: the pre-trained
model on the ImageNet dataset was used to initialize the parameters of the feature extrac-
tion network, the batch size was set to 64, the SGD optimizer was used, and the momentum
was set to 0.9. The image size of the input network model was 640 x 640, and 100 epochs
were trained.

In the sheep face recognition model experiment, the Arcface loss function was used,
the dynamic initialization learning rate was set as 1 x 103, the AdamW optimizer was
used, and the cosine annealing algorithm was used to adjust the learning rate. To prevent
overfitting of the training model, the dropout was set to 0.6, learning momentum to
5 x 1074, iteration epoch to 50, and batch size to 64.

3. Results
3.1. Comparison of Sheep Face Detection Results

This section aims to screen out the models that make a good trade-off between recog-
nition effectiveness and recognition speed from the currently dominant object detection
networks in preparation for the subsequent execution of sheep face recognition. Sheep face
detection experiments were executed on the constructed dataset to detect as many sheep
faces as possible, and the experimental results are shown in Figure 7. It can be seen that,
basically, all models converge within 100 epochs, but Yolov3 performs less consistently,
which may be related to the learning rate. The detailed experimental results are shown in
Table 3, from which it can be seen that EfficientDet-D1 not only detects well, though not
the best, but has lower Params and FLOPs. Therefore, using it as a model for sheep face
detection is reasonable.

6 A —— TifficientDet-D1
—=— Faster-RCNN
—— RelinaNet
51 @
SSD
—— Yolov3
4 4 —— Yolov4
Yolovs
@
3
S

0 20 40 60 80 100
Epochs

Figure 7. Loss comparison of sheep face detection models.

3.2. Comparison of Recognition Results Using MobileViTFace and Other Methods

To verify the effectiveness of the proposed MobileViTFace, ten network models, such
as Resnet18 [38], were selected for comparison experiments on the self-built sheep face
dataset. The training process is shown in Figures 8 and 9.
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Table 3. Comparison of experimental results of detection models.
Model AP (%) Model Size (MB) FLOPs (G)

SSD 99.90 52.20 15.00

Faster RCNN 99.90 158.80 135.30

RetinaNet [36] 99.00 140.00 20.60

YOLO V3 91.40 234.00 155.20

YOLO V4 [38] 98.90 244.00 25.40

YOLO V5 (S) 98.70 27.00 16.40
EfficientDet-D1 98.90 25.00 5.60

10 e
b,.
P02 a2 o™
801
§ 60 1 —— MobileViTFace
) —=— VGG16
g —— Resnctl8
O 40 —— Densenet]2]
< Efficientnet-b0
—+— Mobilenetv2
—— Mobilenetv3
201 —+— Deil-small
ViT-small
Swin-small
0+ . . - : T
0 10 20 30 40 50

Epochs

Figure 8. Comparison of validation accuracy of sheep face recognition models.

3001 MobileViTFace
VGG16
2504 Resnetl8
Densenet121
Efficientnet-b0
200 A Mobilenctv2
Mobilenetv3
) Deit-small
7] 4
8 = ViT-small
Swin-small
1004
504
0
0 10 20 30 40 50
Epochs

Figure 9. Loss comparison of sheep face recognition models.

From Figure 8, it can be seen that the recognition accuracy of MobileViTFace improves
rapidly, tends to be stable at the 11th epoch, does not show significant changes during
the subsequent iterations, and no longer changes at 50 epochs. This can be compared
with the dramatic changes in recognition accuracy of Mobilenetv2 and ViT-small; by
combining the advantages of both, MobileViTFace has the characteristics of good stability,
easy training, and faster convergence. Another remarkable phenomenon is that EfficientNet-
b0, MobilenetV2, and MobilenetV3 have similar Params and FLOPs as our model. Still, the
recognition effect significantly lags behind our model, which indicates that the addition of
Transformer significantly improves the recognition effect of Mobilenetv2. From Figure 9,
we can observe that MobileViTFace converges quickly, tends to stabilize at the 45th epoch,
and converges significantly faster than Mobilenetv2 and ViT. Additionally, it is worth
noting that VGG16 [39] converges the fastest, although it has higher Params and FLOPs,
which can be attributed to its use of smaller convolutional kernels.



Agriculture 2022, 12, 1126

10 of 14

Table 4 shows more detailed experimental results. Two significant patterns can be
found in the table: (1) With similar Params and FLOPs, the recognition accuracy of Mo-
bileViTFace is much higher than that of EfficientNet-b0, MobilenetV2, and other models;
for example, the recognition accuracy of MobileViTFace is 9.79% higher than that of Mo-
bilenetV2. (2) With similar recognition accuracy, MobileViTFace’s Params and FLOPs are
much lower than other models; for example, MobileViTFace’s Params only account for
9.6% of Swin-small’s, but the recognition accuracy is only 0.64% lower for MobileViTFace.
This indicates that MobileViTFace makes a good trade-off between recognition accuracy
and Params and FLOPs, which is significantly better than MobilenetV2 and Transformer
before improvements.

Table 4. Detailed experimental result comparison of MobileViTFace with other SOTA models.

Model Pre (%) Recall (%) F1 (%) Acc (%) Params (MB) FLOPs (G)
VGG16 95.87 95.66 95.76 95.32 138.30 15.50
Resnet18 97.64 97.19 97.42 96.61 11.60 1.80
DenseNet121 97.80 97.18 97.49 96.84 7.90 2.80
EfficientNet-b0 92.03 91.25 91.64 90.88 5.30 0.39
MobilenetV2 89.72 87.83 88.76 87.15 3.50 0.31
MobilenetV3 90.84 89.58 90.21 89.83 5.40 0.22
ViT-small 96.00 95.44 95.72 95.21 22.00 424
DeiT-small 95.26 94.39 94.82 94.39 22.00 4.24
Swin-small 98.78 98.57 98.68 97.58 49.60 8.50
Ours 97.85 97.05 96.55 96.94 4.80 0.90

3.3. How to Deal with the Newly Added Sheep?

The above experiments demonstrate the effectiveness of the MobileViTFace proposed
in this paper. Still, the above experiments were conducted in a closed-set environment, i.e.,
new additions of sheep were not considered, which is a problem that must be considered
because sheep are often released or added to the sheep farm. To solve this problem, two
approaches were used, i.e., experiments in the open-set environment and fine-tuning of
the already trained sheep face recognition model. The experimental results are shown
in Figures 10 and 11. As can be seen from the figures, both the model in the open-set
environment and the model fine-tuned with the newly added sheep face images can
converge quickly within ten epochs. Still, the model in the open-set environment only
obtains a recognition accuracy of about 88%, which cannot meet the actual demand. The
recognition accuracy of the model after fine-tuning is as high as 98%, thus fine-tuning the
trained sheep face recognition model is still a feasible solution at this stage.

954
9 901
N ———t e,
= et
9]
©
5
g 851
<
80
—+— Open sel
—— Fine turning

0 10 20 30 40 50
Epochs

Figure 10. Comparison of recognition accuracy between open-set and fine-tuning experiments.
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Figure 11. Loss comparison between open-set experiment and fine-tuning experiment.

3.4. Visualization of Recognition Results

The recognition effect of the sheep face recognition system is shown in Figure 12. From
Figure 12a,b, it can be seen that the sheep face recognition system can effectively detect the
faces of two breeds of sheep and give their corresponding identity information in the system.
Figure 12¢ shows that the sheep face recognition system can also accurately recognize sheep
faces on a small scale from a distance. For sheep with unknown identities, the system
developed in this paper can also identify them accurately, as shown in Figure 12d, which
shows the unknown identity. In the actual test, the average delay from sending the video
stream to receiving and decoding the key frame is 0.33 s. The single frame inference time
of the detection model and recognition model optimized by TensorRT is 68.22 ms and
15.46 ms, respectively, and the FPS can reach 13. The system can meet the requirements of
real-time sheep face recognition.

Figure 12. (a—c) are the correct identification results, and (d) is the identification result of unregis-
tered sheep.

3.5. Failure Case

Although the MobileViTFace proposed in this paper shows good recognition results,
some cases still fail to recognize faces correctly. The reasons for incorrect recognition or
non-recognition are analyzed in this subsection. As shown in Figure 13, some failure cases
are shown. Among them, Figure 13a,b are the face images of the same sheep, but image
Figure 13a is blurrier and the detailed information of the sheep’s face is lost more seriously,
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which in turn leads to the model recognition error. Figure 13c,d are two sheep faces with
black hair on both faces, and the black color makes other features inconspicuous, which in
turn leads to the model failing to extract enough features for correct classification.

@

(a) (b)

Figure 13. Sample examples of identifying errors, (a,b) are the same sheep, and (c,d) are sheep with
black facial hair.

4. Discussion

This study proposes a sheep face recognition model with high recognition accuracy,
low Params, low FLOPs, and easy deployment on edge devices. This paper combined
Mobilenetv2 with Vision Transformer to obtain MobileViTFace, a lightweight sheep face
recognition model with a good trade-off between recognition accuracy and model size.
MobileViTFace achieves accurate and real-time recognition results on edge devices and
meets the expected goals. MobileViTFace significantly reduces the model parameters and
computation while maintaining high recognition accuracy, improves the robustness of the
model to occlusions and background noise, and facilitates the application of deep learning
models to individual livestock recognition. The model’s design is more complex than
the pure CNN structure. MobileViTFace combines the advantages of CNN and Vision
Transformer, and compared to the pure CNN structure [14,17,20], MobileViTFace has higher
recognition accuracy because the addition of the Vision Transformer structure gives the
model a higher performance ceiling. The Params is small, and the computation is simple.
Compared to the pure Vision Transformer structure [40], MobileViTFace has faster inference
and requires less data volume. Compared with other lightweight recognition models [41],
our model is more robust and has faster inference.

This study focused more on practical applications and did not pursue higher recog-
nition accuracy, which leads to excessive Params and FLOPs of the model and cannot
be promoted for use in practice. MobileViTFace significantly reduces the Params and
FLOPs of the model while maintaining high recognition accuracy and can achieve real-time
accurate sheep face recognition with a resource-constrained edge device. The model design
is generally relatively complex, and the Params and FLOPs need to be further reduced
compared to the lightweight CNN model.

5. Conclusions

In this paper, we found that Transformer can improve the performance of lightweight
convolutional neural networks. With the appropriate lightweight design of Transformer, the
proposed MobileViTFace sheep face recognition model possesses both the high efficiency
of the convolutional structure and the high performance of Transformer, which promotes
the deep learning-based sheep face recognition model being deployed on edge devices. In
the future, we will develop sheep face recognition models that are more suitable for use in
complex contexts.
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