
Citation: Zhu, W.; Sun, J.; Wang, S.;

Shen, J.; Yang, K.; Zhou, X.

Identifying Field Crop Diseases

Using Transformer-Embedded

Convolutional Neural Network.

Agriculture 2022, 12, 1083. https://

doi.org/10.3390/agriculture12081083

Academic Editor: Susana Pascual

Received: 15 June 2022

Accepted: 21 July 2022

Published: 22 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Identifying Field Crop Diseases Using Transformer-Embedded
Convolutional Neural Network
Weidong Zhu, Jun Sun *, Simin Wang, Jifeng Shen, Kaifeng Yang and Xin Zhou

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China;
zhu2022wd@sina.com (W.Z.); wang2022mm@sina.com (S.W.); shenjifeng@ujs.edu.cn (J.S.);
09160459@nnutc.edu.cn (K.Y.); zhouxin_21@ujs.edu.cn (X.Z.)
* Correspondence: sun2000jun@ujs.edu.cn

Abstract: The yield and security of grain are seriously infringed on by crop diseases, which are the
critical factor hindering the green and high-quality development of agriculture. The existing crop
disease identification models make it difficult to focus on the disease spot area. Additionally, crops
with similar disease characteristics are easily misidentified. To address the above problems, this paper
proposed an accurate and efficient disease identification model, which not only incorporated local
and global features of images for feature analysis, but also improved the separability between similar
diseases. First, Transformer Encoder was introduced into the improved model as a convolution
operation, so as to establish the dependency between long-distance features and extract the global
features of the disease images. Then, Centerloss was introduced as a penalty term to optimize the
common cross-entropy loss, so as to expand the inter-class difference of crop disease characteristics
and narrow their intra-class gap. Finally, according to the characteristics of the datasets, a more
appropriate evaluation index was used to carry out experiments on different datasets. The identifi-
cation accuracy of 99.62% was obtained on Plant Village, and the balanced accuracy of 96.58% was
obtained on Dataset1 with a complex background. It showed good generalization ability when facing
disease images from different sources. The improved model also balanced the contradiction between
identification accuracy and parameter quantity. Compared with pure CNN and Transformer models,
the leaf disease identification model proposed in this paper not only focuses more on the disease
regions of leaves, but also better distinguishes different diseases with similar characteristics.

Keywords: crop diseases; Transformer Encoder; global features; complex backgrounds; balanced accuracy

1. Introduction

Gu et al. [1] predict that the global grain industry will face huge impacts from all
aspects in 2030. How to guarantee the green and high-quality developments of agriculture
will be one of the focuses of future agricultural work. The occurrence and spread of crop
diseases are hard to predict, so timely early warnings and prevention are of extraordinary
significance to crop yield and quality [2]. However, up to now, recognizing diseases
by experienced experts is still the main approach in this field, which is time-consuming
and laborious. To some extent, it is ineffective in controlling the occurrence, spread and
damage of diseases [3–5]. Consequently, an automatic, less laborious and efficient method
is highly desired to ensure high crop yield and quality. Along with the developments and
improvements of computer vision technology, image classification and target detection
technology based on convolutional neural network (CNN) provides a new way for crop
disease management. It is different from traditional methods, with its ability to efficiently
process massive data and learn target features (including color, texture, edge and other
features) [6–8]. However, some problems remain unresolved when using computer vision
technology to identify crop diseases. For example, in a complex environment, it is difficult
for disease identification models to focus on disease spots, especially on small areas, which
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are not conducive to the early identification of crop diseases; different diseases may have
similar characteristics, and the model may make wrong judgments when facing similar
characteristics. Therefore, aiming at the above problems, this paper proposed to introduce
Transformer Encoder into CNN to establish the relationship between long-distance features,
so as to make up for the deficiency of the CNN model in extracting global features. In
addition, Centerloss was introduced as a penalty term to optimize the common cross-
entropy loss, so as to expand the inter-class difference of crop disease characteristics and
narrow their intra-class gap.

The remainder of this paper is introduced as follows. Section 2 shows the research
results of crop disease identification. Section 3 presents the datasets applied in this paper
and the optimization details of the disease identification model. Section 4 introduces the
experimental results and discussion. Section 5 summarizes the paper.

2. Related Work

Ashwinkumar et al. [9] separated the diseased and healthy regions of leaves based
on Kapur’s thresholding, and utilized an emperor penguin optimizer algorithm to search
the parameters, and the optimal model with 98.5% recognition accuracy was finally ob-
tained. Kamal et al. [10] proposed Reduced MobileNet with few parameters, which ef-
fectively weighed the relationships between latency and performance. Ji et al. [11] com-
bined the width features of Inception-V3 with the depth features of ResNet-50 to enhance
the representation of target features, and conducted experiments on grape datasets con-
taining four diseases. Sun et al. [12] added batch normalization and global pooling to
AlexNet and obtained a new model with rapid convergence. Six models were finetuned
and evaluated by Too et al. [13]. Among them, parameter quantity and running time of
DenseNets-121 were more reasonable, and no performance degradation and overfitting
occurred during training. Zhao et al. [14] conducted transfer learning based on a pretrained
model on cotton datasets, which alleviated the overfitting problem of the original model.
Mohameth et al. [15] compared the advantages and disadvantages of traditional machine
learning and CNN, discussed the effects of transfer learning and feature extraction of
multiple layers on recognition performance, and selected VGG16 for training. As far as the
results are concerned, the performance of their proposed model is excellent. However, they
only considered the effect of model structures on the results and ignored the association
between disease features. Mohanty et al. realized the importance of the generalization
performance and tested the model using other similar disease images, and finally obtained
satisfactory results. However, Mohanty et al. [16] also failed to do further analysis of
the disease features and simply fed the images into the model to obtain the results. In
addition, Mohanty et al. failed to achieve a good balance between recognition accuracy and
number of parameters. Huang et al. [17] proposed a neural architecture search network and
performed extensive preprocessing operations on the dataset, which eventually obtained
excellent results. However, the network takes some time to search for the best parameters
and is not flexible enough.

Although the aforementioned studies have demonstrated excellent results in the field
of crop disease recognition based on the convolutional neural network, the datasets they
used only contained a single diseased leaf and a simple background. The disease features
extracted and learned by CNN on such datasets are insufficient, which directly leads to
the unsatisfactory generalization ability of models. Therefore, researchers have gradually
shifted the focus of follow-up work to leaf disease data in complex environments and
complex backgrounds. A Complex environment means the image contains different light
intensity, noise and other disturbing factors, and complex background means the image
contains sky, soil, multiple leaves and other backgrounds.

In response to the problem of poor recognition effect of some models, Gao et al. [18]
used ResNet as the basic architecture and took feature differences among diseases as the
entry point to solve the problem, and the ability of extracting adjacent channel features and
filtering key features was successfully enhanced. Finally, the model achieved a high accu-
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racy of disease recognition. Zhou et al. [19] constructed a multimodal recognition model
incorporating image and text information to compensate for the low credibility and poor
interpretability of image information, and the recognition accuracy with 99% was attained
on private datasets. Picon et al. [20] applied three different CNN architectures on the crop
disease datasets obtained in a real environment to simulate the disease identification work
under complex backgrounds, and the recognition performance of models was improved
by fusing the contextual information of plant diseases. Whereas recognition accuracy is
certainly an essential metric to evaluate the performance of the model, the quantity of
parameters is also critical if we are to port the model to mobile devices. With the purpose
of simplifying structures and enhancing the ability of extracting micro disease features,
Chen et al. [21] proposed a lightweight model based on transfer learning. Although the
improved model had high performance, its applicability was poor, so it cannot be flexibly
used in different tasks. Wang et al. [22] significantly reduced the parameter quantities
and storage space of the model by changing the residual connection mode and using
group convolution, and finally a faster speed was obtained when identifying tomato and
cucumber diseases in the field. In addition, Tang et al. [23] added attention mechanisms to
ShuffleNet-V1 and ShuffleNet-V2, which can improve parameter utilization and realize
high-quality spatial coding. The improved models had high real-time performance in
identifying leaf diseases. In addition, we have made some comparisons with some of the
above literatures, and listed them in Table 1.

Table 1. Comparative analysis of the related work on plant disease identification.

Ref No. Model Data Situation Background Accuracy Challenges/Future Scope

[9] MobileNet Five tomato diseases
in Plant Village Simple 98.50%

The background of tomato disease is
simple, and the images need a lot of

complex preprocessing.

[10] MobileNet Plant Village Simple 98.34%
The improved model has low recognition

accuracy in the face of diseases in
complex environment.

[11] Inception-V3 and
ResNet-50

Four grape diseases
in Plant Village Simple 98.57%

The background is simple, and the
correlation between disease characteristics

is not considered.

[17] NAS Plant Village Simple 95.40%

The improved model performs poorly on
datasets with unbalanced quantity and

requires a certain amount of
operation time.

[18] ResNet-18 Self-collected
cucumber diseases Complex 98.54%

The improved model ignores the
relationship between cucumber disease

characteristics and only pays attention to
the separability between classes.

[20] ResNet-50 Self-collected
diseases Complex 98.00%

The local limitations of the features
extracted by CNN are not considered,

which is not conducive to the early
detection of the disease.

[21] MobileNet-V2 Self-collected
diseases Complex 99.13% The influence of unbalanced sample size

on experimental results is not considered.

[22] ResNet-18 Self-collected
diseases Complex 93.05%

The recognition accuracy is not high in
complex background. Furthermore, the

parameters of the model are large, and the
image processing rate is not discussed.

[23] ShuffleNet Four grape diseases Complex 99.14%

The influence of unbalanced data volume
on experimental results is not considered,
and how to expand intra class differences

is not analyzed.

All the aforementioned studies targeted crop leaf diseases in complex environments,
and provided theoretical guidance for disease management from the perspective of recog-
nition accuracy as well as model landing [24]. CNN, as a tool used in the studies to extract
disease features and identify disease categories, enhances the expression ability of features
through the connection relationship among layers. By virtue of its shared convolution
kernel parameters, redundant computations are avoided and the computational efficiency
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is improved. However, due to the ‘moving window’ attribute of convolution kernels, CNN
still has some limitations in capturing global features. Inspired by the Transformer [25],
and more specifically by the Transformer Encoder mechanism [26], this study proposed a
disease recognition model combining CNN and Transformer. The model proposed in this
paper aims to solve the problems in the process of crop disease identification in complex
environment. Firstly, the proposed hybrid model made use of Transformer’s ability to
capture the dependencies between remote features, so as to compensate for the deficiency
of CNNs in diseases recognition, Secondly, for similar characteristics between different dis-
eases, we improved the loss function so that the improved model can expand the distance
between classes, reduce the distance within classes and reduce the misclassified disease
characteristics. Finally, for the unbalanced sample size, we adopt a more appropriate
balance accuracy rate to mitigate the impact of this problem on the final recognition results.
In addition, different from the general hybrid models, this model is a lightweight visual
task processing network, and it has fast image processing speed.

3. Materials and Methods

In response to the deficiency of CNN to extract global features of images, Transformer,
which is capable of establishing dependencies between remote features, is introduced. That
is, the parameter quantity and the processing efficiency of the improved model will be
effectively optimized. Meanwhile, the global features extracted by Transformer will benefit
from inductive bias of CNN. In this study, the above improved methods were proposed to
realize the efficient identification of diseased leaves in complex environments.

3.1. Datasets Acquisition and Preprocessing

As displayed in Figure 1, the public dataset from Plant Village [27], which contains
healthy leaves of 14 crops and 24 types of diseased leaves, was prepared as a common
benchmark to measure the differences in performance among different models. Meanwhile,
considering the problem of harsh environmental disturbance in disease recognition in the
field, two additional crop leaf disease datasets with complex backgrounds were prepared.
The original images of Dataset1 (containing apple, cassava, cotton) were obtained from Kag-
gle [28], and leaf samples are shown in Figure 2. There are only 6891 unevenly distributed
images in the initial Dataset1. This would not only make the categories with large number
accumulate more errors in multiple iterative training, but also lead to some negative effects
on the models such as overfitting and poor generalization performance [29]. Therefore,
data enhancement operations including random rotation and brightness were applied to
Dataset1 [30,31], and the number of images in each category before and after enhancement
is given in Figure 3. Training data from the same source may result in poor generalization
performance of the final model, which is detrimental for identifying crop diseases in differ-
ent regions. In addition, without the guidance of professionals, it is difficult for us to obtain
the corresponding pictures of crop diseases, which requires us to explore the existing data.
Thus, we need to use background replacement technology to generate new data on the
basis of existing data. The background replacement technique can simulate the recognition
scenarios of different environments by replacing the background of the images based on
the existing data. It is efficient and accurate for the whole experimental process.

Dataset2 contains images of apple scab, cassava brown streak and cotton boll blight,
which was derived from the segmented leaf images in other datasets. The method in
Figure 4 was used to replace its single background. We replace the background based
on OpenCV in Python. Briefly, background replacement is to embed a single leaf into
other complex backgrounds. Therefore, we need to remove the black background in the
original image and obtain the binary mask of the leaf in the image to perform background
replacement. Specifically, first we converted the RGB images to HSV images. Since the
background of the original image is black, the threshold value of black corresponding to
the HSV color space is (0,0,46). Therefore, we pre-set the threshold range that separates
the leaf from the black background according to (0,0,46), and then obtain the binary mask
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image of the green leaf (a value of 0 for black corresponds to the leaf and a value of 255
for white corresponds to the background). However, due to the dark spots on the leaves,
which are similar to the black background, several white spots appear in the leaf area in
the mask image acquired at the beginning. In order to obtain a complete single leaf, we
need to eliminate the white spots in the leaf area. We thus apply a morphological open
operation consisting of erosion and dilation in sequence to get the final mask. Eventually,
different complex backgrounds (soil, branches, multiple leaves, etc.) are selected to replace
the background.

Figure 1. Leaf disease images with simple background in Plant Village.

Figure 2. Leaf disease images in natural scene.
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Figure 3. Number of images before and after augmentation, where 1~9 in the X axis represent
Apple—healthy, rust, scab; Cassava—bacterial blight, brown streak, healthy, mosaic virus; Cotton
boll—blight, healthy.

Figure 4. The process of background replacement.

The above two datasets were used in different ways. Dataset1 was divided into the
training set and test set by 4:1, which was used for model training and testing, respectively,
whereas Dataset2, with a total of 2160 images (each category contains 720 images), was only
regarded as a test set, mainly for studying the generalization performance of the models.

3.2. MobileNet-V2

At the early stage of CNN’s development, the convolution layers and pooling layers
were continuously stacked to increase the depth of the models, so as to learn the target
characteristics at different abstract levels. For example, residual connections were proposed
in ResNet [22] to extend the layer number of the model from the initial 18 layers to 50,
101, or even 152. Although the design of stacked layers can obtain a larger pixel range by
enlarging the receptive field, computational cost and parameter quantity of the model will
also rise, which is unfavorable to the field recognition of diseases. The intensive nature of
crop cultivation and the hidden location of diseases make it necessary for growers to still
work with mobile devices to identify diseases on the scene. However, ordinary large models
are hard to adapt to mobile devices with limited computing resources [32,33]. Hence, the
degree of lightweightedness is the basis of intelligent disease recognition. In 2019, the
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lightweight MobileNet-V2, which can be deployed on portable devices, was proposed by
Sandler et al. [34]. Firstly, the depthwise separable convolution in MobileNet-V1, which was
proposed to reduce the number of convolutional kernels and speed up the model operation,
was inherited by MobileNet-V2. Secondly, aiming at the design of the traditional bottleneck
layer (reducing the dimension first and then increasing the dimension), Inverted Residual
Block (IRB, ascending first and then descending) in Figure 5 was proposed, which not only
significantly reduced the memory required during model inference, but also ensured that
the rich feature information can be received by the Depthwise Convolution (DWConv)
layer of IRB. Finally, in order to solve the problem of feature loss when high-dimensional
features were compressed into low-dimensional features, the nonlinear activation function
ReLU6 in MobileNet-V2 was changed into a linear function, so as to retain the diversity of
feature information and enhance the expression ability of target features.

Figure 5. Structure of MobileNet-V2. The parameters next to the silver-gray downward arrow
represent the number and stride of convolution kernels. BN represents Inverted Residual Block.
DWConv is Depthwise Convolution, which is an important part of depthwise separable convolution.

3.3. Transformer Encoder

The standard Transformer Encoder is composed of 4 basic units, as illustrated on the
left side of Figure 6. The input data is normalized by Layer Normalization to accelerate
convergence. Dropout is to prevent overfitting and improve the generalization ability
of models. MLP can be simply understood as the stacked linear mapping operations.
However, what really sets Transformer apart is Multi-head attention, as illustrated on
the right side of Figure 6. The input In(x) ∈ RB×d is processed in parallel, when h = 1,
α(x), β(x), γ(x) ∈ RB×d can be obtained, respectively. Obviously, the above process can be
summarized as Equation (1).

α(x) = In(x)Wα, β(x) = In(x)Wβ, γ(x) = In(x)Wγ (1)

where Wα, Wβ, Wγ ∈ Rd×d are three different parameter matrices, d is the length of input
sequences and B is the number of input sequences. Since the same dimension is shared
with α(x) and β(x), they cannot be multiplied by each other. To meet the requirements of
matrix multiplication, β(x) will be transposed. Subsequently, Softmax is performed on the
multiplication results to obtain the attention degree AMij of all feature points to a certain
feature point, and the attention map can be formed by several AMij. Ultimately, the output
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of the entire module was constituted by the fusion result of attention map and γ(x). The
above processes can be calculated by Equation (2).

So f tmax : AMij(x) =
exp(Fij)

∑B
i, j=0 exp(Fij)

where Fij = α(xi) ∗ βT
(xj)

Attention(x) = AM(x) ∗ γ(x)

(2)

∗ denotes the matrix multiplication operation. When h = 2, the whole process can be
obtained from Equation (3) [35].

Multihead = (head1, . . . , headh)Wo

where headh = Attention(xWs)
(3)

Ws ∈ Rd× d
h , Wo ∈ Rd×d, h denotes the number of groups. Equation (3) can be under-

stood as dividing the long input sequence into several short sequences of equal length, and
feeding them into different Head Attentions, respectively, so as to more comprehensively
mine the information generated by the features at different locations in different spaces.

Figure 6. Structure of Transformer Encoder. The right side of the dashed line indicates that the
linear transformation of In(x) is equally partitioned into h parts according to the number of groups.
Attention map is obtained by matrix multiplication and Softmax, which is finally embedded in N(x) to
obtain the global representation.

3.4. Proposed Hybrid Model

The images of crop leaf disease collected in the field have complex backgrounds,
diverse characteristics and disorderly distributed disease regions. Faced with such im-
ages, the local features extracted by CNN often cannot completely represent certain dis-
eases. Consequently, combined with Transformer’s ability to extract global features of
images, a hybrid model combining CNN and Transformer was proposed, as illustrated
in Figure 7. MobileNet-V2 is taken as the basic network in this hybrid model. First of
all, a 3 × 3 convolution kernel is used to reduce the size of the input disease images, and
the retained valid information will be mapped to a higher dimensional feature space. In
the second place, in order to acquire more abundant disease feature information, meet
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the requirements of Transformer Encoder for input size and improve the overall process-
ing efficiency of the model, the feature information is continuously input into the IRBs
of MobileNet-V2 for multiple nonlinear transformations and size reduction. The most
important is the Mobile-Transformer block (MT block, see Figure 7). As can be seen from
Figure 7, for an input x ∈ RH×W×C, a 3 × 3 convolution kernel is used for encoding, a
1×1 convolution kernel is used to expand the dimension of encoded feature maps to obtain
xC ∈ RH×W×D(D>C), and xC ∈ RH×W×D will be divided into B patches xp ∈ Rh×w×D

(h = w = 2 are the length and width of the patch, respectively, and B is the number of
patches, which can be calculated by H×W

h×w ). Afterwards, in order to obtain the linear input
xT ∈ RB×(hwD) required by Transformer Encoder, we flatten each xp to get B sequences
with length h× w× D and stack them. After that, the output of Transformer Encoder is
folded to obtain the feature information that CNN can process, and its dimension is reduced
to obtain xTF ∈ RH×W×C for subsequent fusion with x. Lastly, as illustrated in the fusion
module, x and xTF ∈ RH×W×C, which represent local and global features respectively,
are fused to enhance the global control ability of CNN and the local perception ability
of Transformer.

Figure 7. Hybrid model of CNN and Transformer. s represents stride, 2×means repeat twice, MT
block is the abbreviation of Mobile-Transformer block, which represents the combination of CNN
and Transformer and BN represents the Inverted Residual Block in MobileNet-V2. In MT module, the
feature map of H ×W is divided into B patches, then B patches are expanded and sent to the layer
composed of R Transformer Encoder in series. Finally, the output of Transformer Encoder is folded
and the attention embedding and feature fusion are completed.

3.5. Improved Loss Function

Different categories of diseases may have very similar symptoms, which makes it hard
for some disease characteristics extracted by the network to be accurately distinguished.
Furthermore, in the practical work of crop leaf disease recognition, the features extracted
by CNN should not only have separability, but also have a high discrimination degree,
otherwise the generalization performance of models will be affected. One of the solu-
tions to the above problem is to optimize loss function. The cross-entropy loss commonly
adopted in CNN focuses more on the separability among target categories and ignores the
problems existing within each category. This leads to the fact that although cross-entropy
loss can maintain high performance in a closed data space, the recognition performance
will be greatly reduced when facing unforeseen disease images. As a consequence, Center-
loss [36] was introduced to aggregate each class of disease characteristics, so as to widen
the inter-class distance and reduce the intra-class distance. Centerloss can be expressed by
Equation (4).

LC =
ε

2

b

∑
i=1
|| ai − cki ||22 (4)
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where ε is related to the recognizable extent of the extracted features, and ε is set to 0.01;
b represents the number of samples in each batch; ai represents the feature extracted from
the ith sample in the same batch; k represents the number of different categories and cki
represents the feature center of the category to which ith sample belongs. Thus, Equation (5)
can be obtained by optimizing cross-entropy loss.

L = LCE + LC = LCE +
ε

2

b

∑
i=1
|| ai − cki ||22 (5)

where LCE is cross-entropy loss. When the sample features in batch are misclassified, that
is, the gap between ai and cki is larger and the values of L and LC will also increase. At
this time, Equation (5) plays a role in increasing the inter-class distance. When correctly
classified, Equation (5) is served to reduce the intra-class distance accordingly.

3.6. Experiments Setup

The parameters involved in the experiment are exhibited in Table 2. In order to prevent
falling into local optimization, the attenuation coefficient of learning rate was set to 0.8; that
is, after 10 epochs, the learning rate would decay to 80% of the original. All experiments
were run on a Ubuntu 18.04 LTS 64-bit system environment. Pytorch 1.6 was adopted,
which supports GPU acceleration and dynamic neural networks. Additionally, CUDA 9.1
was used to assist in training. The computer is equipped with 32GB RAM and NVIDIA
GeForce GTX 2080Ti.

Table 2. Parameters and values adopted in the experiments.

Parameters Values

Classes on Dataset1 9
Classes on Dataset2 3

Image size 256 × 256
Batch size 32

Epochs 150
Learning rate (LR) 0.001

LR decay index 80%
Dropout 0.2

Optimizer Adam
β1, β2 Default (0.9, 0.999)

3.7. Evaluation Index

Due to the data samples are unbalanced, this study objectively evaluates the model
from five aspects, i.e., Micro_sensitivity, Micro_precision, Micro_F1 score, balanced accuracy
and accuracy. The specific calculation formula is shown in (6)–(10) [12]:

Micro_Sensitivity =
∑9

i=1 TPi

∑9
i=1 TPi + ∑9

i=1 FNi
× 100% (6)

Micro_Precision =
∑9

i=1 TPi

∑9
i=1 TPi + ∑9

i=1 FPi
× 100% (7)

Micro_F1 = 2× Micro_Sensitivity×Micro_Precision
Micro_Sensitivity + Micro_Precision

(8)

Balanced Accuracy = TPR + TNR
2

Where TPR = TP
TP + FN

TNR = TN
FP + TN

(9)
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Accuracy =
TP + TN

TP + TN + FP + FN
(10)

where i represents the the disease category. Dataset1 involves 9 kinds of diseases, so the
value range of i is 1 to 9. TP indicates that the prediction is a positive example and the
actual is a positive example; FP indicates that the prediction is positive and the actual
is negative; TN indicates that the prediction is negative and the actual is negative; FN
indicates that the prediction is negative and the actual is positive. Sensitivity represents
the ratio of the number of correctly predicted positive samples to the total number of real
positive samples; Precision represents the ratio of the number of correctly predicted positive
samples to the number of all predicted positive samples; and F1 is the harmonic mean of
Sensitivity and Precision. In this paper, the above formula is processed by micro average;
that is, the corresponding average value is calculated according to the contribution degree
of each type of sample. TPR is actually Sensitivity; TNR can be understood as how many
of all negative classes are predicted to be negative; Balanced Accuracy is an index used
to evaluate unevenly distributed data; and Accuracy refers to the ratio of the number of
correctly predicted samples to the total number of samples.

4. Results and Discussion

Firstly, in order to level the playing field between the improved model and the models
proposed in other articles, they were trained and tested separately on the same version of
Plant Village. Secondly, ablation experiments were conducted on Dataset1 to verify the
effectiveness of different improved methods. Thirdly, the results are compared with those
of other 8 studies in Section 4.3. Finally, in Section 4.4, the generalization performance of
the improved model was discussed by experimenting on Dataset2.

4.1. Results of Different Models on Plant Village

Mohameth et al. [15], Mohanty et al. [16] and Huang et al. [17] adopted the same
version of Plant Village and their experimental results were highly comparable. During the
pre-training, they saved the best weights obtained by their models, and after fine-tuning
the weight parameters, they migrated them to Plant Village to complete the evaluation of
improved models. The results obtained by the above methods are displayed in Table 3,
where Mohameth et al. only evaluated the color version of Plant Village. In order to ensure
the fairness of the experiment, three models were reconfigured according to the parameter
settings in the articles, and we compared them with the improved model proposed to this
study. Table 3 shows that the recognition accuracies on three versions of Plant Village
achieved by improved model are 99.62%, 99.08%, and 99.22%, respectively, which was
more competitive than the other methods. However, the composition of images in Plant
Village is simple, which cannot provide further effective reference for the actual disease
recognition. Consequently, in the subsequent part, the crop leaf disease images under
complex backgrounds would be taken as the research object to explore and solve the
difficulties faced by the disease recognition work in the field.

Table 3. Comparisons of recognition accuracy of different models on three versions of Plant Village.
The methods with prefix @ have been reconfigured. MV2 is the abbreviation of MobileNet-V2.

Paper Backone
Transfer
Learning

Image
Number

Accuracy (%)
Color Gray Segmented

Mohameth et al. [15] VGG16
√

54,306 97.82 - -
Mohanty et al. [16] AlexNet

√
54,306 99.27 97.26 98.91

Huang et al. [17] NasNet
√

54,306 98.96 99.01 95.40
@Mohameth et al. [15] VGG16

√
54,306 98.14 97.64 98.31

@Mohanty et al. [16] AlexNet
√

54,306 99.36 97.91 98.92
@Huang et al. [17] NasNet

√
54,306 99.15 98.96 98.66

This paper MV2
√

54,306 99.62 99.08 99.22
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4.2. Ablation Study on Dataset1

The characteristics in ImageNet are diverse, which are redundant for work with only
crop leaves, so we used Plant Village to pre-train the models. Moreover, a series of ablation
experiments were conducted for the above improvement strategies, and the experimental
results are shown in Table 4. On the basis of Plan0, Plan1 used Centerloss to optimize cross-
entropy loss, and Balanced Acurracy, Micro_Sensitivity, Micro_Precision and Micro_F1 were
improved by 1.65, 1.85, 2.11 and 1.99 percentage points, respectively, without increasing
the number of parameters. Plan2 introduced Transformer on the basis of Plan0, which
improved Balanced Acurracy, Micro_Sensitivity, Micro_Precision and Micro_F1 by 2.89, 3.52,
3.83, and 3.68 percentage points, respectively, while increasing the number of acceptable
parameters. Compared with Plan1 and Plan2, the indicators of Plan3 have been further
improved. In order to further analyze the advantages of the improved model, the more
detailed and comprehensive comparative analyses of the above improved methods were
carried out.

Table 4. The results of ablation studies on Dataset1. The Plan column represents the different
experimental models in the ablation experiment. Plan 0 represents the basic model MobileNet-V2. TL
stands for transfer learning. Param represents parameter quantity. ‘-’ indicates that this improvement
is not added; ‘

√
’ indicates adding this improvement.

Plan TL Centerloss Transformer Balanced
Accuracy (%)

Micro_
Sensitivity (%)

Micro_
Precision (%)

Micro_
F1 (%) Param (M)

0
√

- - 91.94 91.64 91.37 91.50 2.24
1

√ √
- 93.59 93.49 93.48 93.49 2.24

2
√

-
√

94.82 95.16 95.20 95.18 5.00
3

√ √ √
96.58 96.97 96.76 96.86 5.00

A kind of leaf disease may have multiple symptoms, one of which may be highly con-
fused with the characteristics of other types of diseases in different periods. As illustrated
in Figure 8, the initial stage of cassava bacterial blight shows symptoms including wet stain
and white mucus, and in the later stage, the leaf color changes into yellowish brown, with
withered and rotten leaves appearing. The late symptoms of cassava brown streak disease
are similar to those of cassava bacterial blight, with tawny markings on the leaves and
often accompanied by withered leaves. The symptoms of cassava leaf infected with mosaic
virus are yellowing and curling, which are also very similar to the characteristics of the
first two types of diseases, so it is difficult to distinguish them directly by the naked eye.
The above situation will also result in misclassification of CNN models. The root of this
problem is that different leaf diseases belonging to the same category have a highly similar
color, shape and other characteristics, in brief, little differences in inter-class characteristics
of diseases, but rich and large differences in intra-class characteristics. To address the
above problem, Centerloss was used as a penalty term to optimize cross-entropy loss,
and Figure 9 visualized the effect before and after optimization. As shown in Figure 9a,
before optimization, the distribution of disease features extracted by CNN is sparse, and
there is a serious intersection among samples of different categories, indicating that these
samples are likely to be misclassified in the subsequent recognition work. As shown in
Figure 9b, after optimization, features belonging to the same cluster converge towards the
corresponding feature center, and the distance between different clusters is enlarged. The
comparison results show that the introduction of Centerloss makes the originally scattered
disease feature distribution more concentrated, and at the same time, the separability of
similar disease features has been further expanded.



Agriculture 2022, 12, 1083 13 of 19

Figure 8. Comparisons of symptoms of different diseased cassava leaves at different stages. cbb, cbs and
cmv are the abbreviations of cassava bacterial blight, cassava brown streak, and cassava mosaic virus.

Figure 9. Visualization of characteristic distribution of various diseases. The abscissa and ordi-
nate represent the distance between sample points, where 1:9 in the confusion matrix represents
Apple—healthy, rust, scab; Cassava—bacterial blight, brown streak, healthy, mosaic virus; Cotton
boll—blight, healthy.

Plan 2 introduced Transformer Encoder into MobileNet-V2, which made CNN encode
the global information and extract the local features of the disease images at the same time.
In other words, Transformer Encoder was regarded as convolution operations to learn
the global features of the disease images. The variation of balanced accuracy produced
by different models using this strategy is shown in Figure 10. In addition, heat maps
were applied to visualize the attention distribution of the models. In Figure 11 (red
regions represent important features, and regions covered by other colors are considered
as secondary features), the pure CNN models focus mostly on the edge area of leaves,
which proves that the pure CNN models are really good at extracting local features of
the images. However, it also exposes some problems, that is, compared with the whole
leaf, the diseased area is generally small, and the pure CNN models are easy to focus
attention on the textures, edges and other features of leaves. In contrast, CNN models, with
Transformer Encoder, can focus more attention on the lesion regions. This phenomenon can
be interpreted as the improved model with global and local feature information, which has



Agriculture 2022, 12, 1083 14 of 19

acquired the stronger ability of feature extraction and generalization in several iterations
of training. Furthermore, the performance of different CNN models using this improved
strategy has been improved to a certain extent, which also confirms the importance of
global features for leaf disease recognition.

Figure 10. The variation of balanced accuracy of different models after introducing Transformer
Encoder. TL means transfer learning. TE represents Transformer Encoder.

Figure 11. Visual analysis of regions of interest of different models.

In conclusion, the recognition situations of different models on each category of
disease images are listed in Table 5. In terms of weighed accuracy, compared with the other
two models, the improved model in this study shows certain advantages in recognizing
each kind of diseases, with an accuracy of 96.58%, which is 1.27~4.56% higher than the
other models.
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Table 5. Performance of different models on various disease images. MV3 is the abbreviation of
MobileNet-V3, ViT is a pure Transformer model, MOBILET is the improved model proposed in
this paper.

Crop Name Disease Situation
Accuracy (%)

MV3 ViT MOBILET

Apple
Healthy 96.79 99.02 99.37

Rust 96.50 99.03 99.21
Scab 96.08 98.11 98.90

Cassava

Bacterial blight 86.12 90.89 93.76
Brown streak 89.28 93.96 95.33
Mosaic virus 85.37 90.17 92.66

Healthy 89.83 94.15 95.30

Cotton
Boll blight 95.13 97.28 98.34

Healthy 95.27 97.51 98.77
Weighed accuracy (%) 92.31 95.60 96.87

Param quantity (M) 4.38 103.03 5.00
Recognition speed per image (ms) 4.24 8.77 4.93

Due to the introduction of Transformer Encoder, the improved model is slightly more
than the lightweight MobileNet-V3 in terms of parameter quantity by 0.62 M. However,
generally speaking, a good balance has been achieved between recognition accuracy and
parameter quantity in the improved model and its cost performance is more superior. Addi-
tionally, in order to more intuitively show the situation of recognition of each kind of disease
image, the confusion matrixes and ROC curves obtained by the three models on Dataset1
were provided. The numbers on the main diagonal represent the sample sizes that were
predicted correctly, and the remaining positions are the sample sizes that were predicted
incorrectly. Comparing these three confusion matrixes, it can be seen that: (1) Compared
with the pure CNN structure and the pure Transformer structure, the hybrid model proposed
by us effectively reduces the misclassification of samples; (2) As shown in Figure 12a,b, and
as mentioned above, the characteristics of different cassava diseases are relatively similar,
which leads to the four disease images often being mis-indentified as each other (e.g., cassava
brown streak and cassava bacterial blight are often misidentified with each other). However,
the improved model in this paper effectively alleviates this situation, which shows that the
improved method proposed in this paper can extract and analyze subtle and similar features
more effectively. In addition, the ROC curves of the three models obtained on Dataset1 also
show that the improved model proposed in this paper has better performance.

Figure 12. Cont.
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Figure 12. Confusion matrix and ROC curve obtained on Dataset1, where 1:9 in the confusion matrix
represents Apple—healthy, rust, scab; Cassava—bacterial blight, brown streak, healthy, mosaic virus;
Cotton boll—blight, healthy.

4.3. Comparisons with Results from Other Paper

In order to make the comparison results more comparable, we selected eight scientific
studies with apple, cassava and cotton as the experimental objects. It can be seen from
Table 6 that, compared with the recognition accuracy obtained by the models in the other
eight studies, the hybrid model proposed in this paper is at least 1.03%, 1.26% and 1.40%
higher than the former in apple, cassava and cotton, respectively. This shows that the
hybrid model based on CNN and Transformer proposed in this paper has a higher accuracy
in recognizing diseases.

Table 6. Comparisons with results from other papers.

Paper Year Backone Dataset Number of
Categories Accuracy (%)

Zhao et al. [14] 2020 VGG-19 Cotton 6 97.16
Luo et al. [37] 2021 ResNet-50 Apple 6 94.99
Sun et al. [38] 2021 MobileNet-V2 Cassava 5 92.20
Liu et al. [39] 2021 SqueezeNet Apple 4 98.13

Yadav et al. [40] 2020 AlexNet Apple 4 98.00
Ramcharan et al. [41] 2019 MobileNet Cassava 3 83.90

Sambasivam et al. [42] 2021 Private model Cassava 4 93.00

Caldeira et al. [43] 2021
GoogleNet Cotton 3 86.60
ResNet-50 Cotton 3 89.20

This paper 2022 MobileNet-V2 +
Transformer

Cotton 2 98.56
Apple 3 99.16

Cassava 4 94.26

4.4. Generalization on Dataset2

The training and test sets in Section 4.2 were shot in the same environment, which
have certain similarities and cannot be applied to verify the generalization performance of
models. In other words, training data from the same source may result in poor general-
ization performance of the final model, which is detrimental for identifying crop diseases
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in different regions. In addition, an excellent model also needs to have mighty prediction
ability when facing unforeseen data; hence, the test set in Section 4.2 was substituted by
Dataset2 to inspect the generalization performance of the improved model. As shown in
Table 7, affected by backgrounds replacement, the recognition accuracies of various models
decreased to a certain extent. However, the improved model in this study still achieved the
highest recognition accuracy, which showed that the improved model has better general-
ization ability when facing unforeseen data and can better meet the requirements of field
disease recognition.

Table 7. Differences in generalization ability among different models.

Model
Accuracy in Simple Background (%) Accuracy with Background Replacement (%)

Apple Scab Cassava Brown
Streak

Cotton Boll
Blight Apple Scab CASSAVA

Brown Streak
Cotton Boll

Blight

MV3 95.14 93.33 95.97 92.22 91.11 93.47
ViT 97.22 93.89 97.64 93.89 91.53 94.72

MOBILET 98.33 95.42 98.89 95.97 94.03 96.39

5. Conclusions

Based on the tasks of field crop disease recognition, the datasets used in this study were
closer to the production needs in real life. In response to the characteristics of crop disease
features in complex environment, which includes wide distribution regions and irregular
distribution, we analyzed the shortcomings of MobileNet-V2 and made the improved
model achieve a good balance between recognition accuracy and parameter quantity. The
attention of the improved model was more focused on the diseased regions by introducing
Transformer Encoder, which also improved the ability of extracting global disease features.
Based on cross-entropy loss, Centerloss was introduced, which not only improved the
separability of different disease features, but also made the sample features automatically
cluster toward the feature center of the category they belong to. The recognition accuracy
of 99.62% was achieved by the improved model on Plant Village. Even when facing the
interference from complex backgrounds in Dataset1, the accuracy was higher than other
models, reaching 96.58%. In Dataset2, the improved model proposed in this paper achieved
recognition accuracy of 95.97%, 94.03% and 96.39%, respectively, which shows that the
improved model has good generalization ability. Meanwhile, the improved model also has
better recognition performance and less parameter quantity when compared with other
superior models. In summary, the improved model in this study can better recognize
crop leaf diseases under complex backgrounds, and provides ideas for transferring deep
learning models to mobile disease detection devices.

At present, most of the mainstream crop disease identification methods study the
diseased leaves, but early disease identification is more meaningful and more difficult. In
the early stage of the disease, the disease spots are smaller and difficult to observe with
the naked eye. Before the disease spots are formed, the image identification method based
on RGB cannot recognize this kind of disease images. Therefore, in the follow-up work,
the multimodal images of crop diseases can be introduced into deep learning, and the
multimodal images can be fused to realize the early identification of diseases.
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