Biostimulatory Response of Easily Extractable Glomalin-Related Soil Protein on Soil Fertility Mediated Changes in Fruit Quality of Citrus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of the EE-GRSP Solution
2.3. Experimental Design and Treatments Imposition
2.4. Variable Determinations
2.5. Data Analysis
3. Results
3.1. Changes in Root Colonization of Mycorrhiza and Hyphal Length in Soil
3.2. Changes in External Quality Parameters of Fruits
3.3. Changes in Internal Quality Parameters of Fruits
3.4. Changes in Soil Available Nutrients
3.5. Changes in Concentrations of Soil GRSP Fractions
3.6. Changes in Soil WSA Distribution and Aggregate Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lado, J.; Gambetta, G.; Zacarias, L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 2018, 233, 238–248. [Google Scholar] [CrossRef][Green Version]
- Duru, S.; Hayran, S.; Gul, A. The analysis of competitiveness of Mediterranean countries in the world citrus trade. Med. Agric. Sci. 2022, 35, 21–26. [Google Scholar] [CrossRef]
- Cao, M.A.; Zhang, F.; Abd_Allah, E.F.; Wu, Q.S. Mycorrhiza improves cold tolerance of Satsuma orange by inducing antioxidant enzyme gene expression. BIOCELL 2022, 46, 1959–1966. [Google Scholar] [CrossRef]
- Cheng, X.F.; Xie, M.M.; Li, Y.; Liu, B.Y.; Liu, C.Y.; Wu, Q.S.; Kuča, K. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Appl. Soil. Ecol. 2022, 170, 104308. [Google Scholar] [CrossRef]
- Uzun, A.; Gulsen, O.; Yesiloglu, T.; Aka-Kacar, Y. Distinguishing grapefruit and pummelo accessions using ISSR markers. Czech J. Genet. Plant. 2010, 46, 170–177. [Google Scholar] [CrossRef][Green Version]
- Srivastava, A.K.; Hota, D.; Dahat, S.; Sharma, D. Citrus nutrition: An Indian perspective. Ann. Plant Soil Res. 2022, 24, 1–15. [Google Scholar] [CrossRef]
- Cao, S.; Yang, S.; Gong, B.; Han, J.; Liao, W.; Zeng, B.; Luo, S.; Zhang, W. Effect of organic-inorganic fertilizer combined with alkaline materials soil-fruit improvement of citrus orchard. China Fruits 2022, 3, 44–49. [Google Scholar]
- Wu, Q.S.; Srivastava, A.K.; Zou, Y.N. AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 2013, 164, 77–87. [Google Scholar] [CrossRef]
- Bonfante, P. The future has roots in the past: The ideas and scientists that shaped mycorrhizal research. New Phytol. 2018, 220, 982–995. [Google Scholar] [CrossRef][Green Version]
- Cheng, S.; Zou, Y.N.; Kuca, K.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Front. Microbiol. 2021, 12, 809473. [Google Scholar] [CrossRef]
- Wu, Q.S.; Sun, P.; Srivastava, A.K. AMF diversity in citrus rhizosphere. Ind. J. Agric. Sci. 2017, 87, 653–656. [Google Scholar]
- Yang, L.; Zou, Y.N.; Tian, Z.H.; Wu, Q.S.; Kua, K. Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci. Hortic. 2021, 277, 109815. [Google Scholar] [CrossRef]
- Magurno, F.; Malicka, M.; Posta, K.; Wozniak, G.; Lumini, E.; Piotrowska-Seget, Z. Glomalin gene as molecular marker for functional diversity of arbuscular mycorrhizal fungi in soil. Biol. Fertil. Soils 2019, 55, 411–417. [Google Scholar] [CrossRef]
- Barna, G.; Makó, A.; Takács, T.; Skic, K.; Füzy, A.; Horel, Á. Biochar alters soil physical characteristics, arbuscular mycorrhizal fungi colonization, and glomalin production. Agronomy 2020, 10, 1933. [Google Scholar] [CrossRef]
- Liu, R.C.; Gao, W.Q.; Srivastava, A.K.; Zou, Y.N.; Kuča, K.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Differential effects of exogenous glomalin-related soil proteins on plant growth of trifoliate orange through regulating auxin changes. Front. Plant Sci. 2021, 12, 745402. [Google Scholar] [CrossRef]
- He, J.D.; Chi, G.G.; Zou, Y.N.; Shu, B.; Wu, Q.S.; Srivastava, A.K.; Kuča, K. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Appl. Soil Ecol. 2020, 154, 103592. [Google Scholar] [CrossRef]
- Liu, R.C.; Zou, Y.N.; Kuča, K.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Exogenous glomalin-related soil proteins differentially regulate soil properties in trifoliate orange. Agronomy 2021, 11, 1896. [Google Scholar] [CrossRef]
- Rillig, M.C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 2004, 84, 355–363. [Google Scholar] [CrossRef][Green Version]
- Wang, S.; Wu, Q.S.; He, X.H. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant Soil Environ. 2015, 61, 66–71. [Google Scholar] [CrossRef][Green Version]
- Chi, G.G.; Srivastava, A.K.; Wu, Q.S. Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange. Arch. Agron. Soil. Sci. 2018, 64, 1341–1350. [Google Scholar] [CrossRef]
- Meng, L.L.; Liang, S.M.; Srivastava, A.K.; Li, Y.; Liu, C.Y.; Zou, Y.N.; Wu, Q.S. Easily extractable glomalin-related soil protein as foliar spray improves nutritional qualities of late ripening sweet oranges. Horticulturae 2021, 7, 228. [Google Scholar] [CrossRef]
- Wu, Q.S.; Li, Y.; Zou, Y.N.; He, X.H. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different p levels. Mycorrhiza 2015, 25, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976, 72, 248–252. [Google Scholar] [CrossRef]
- Von, C.S.; Griffiths, H. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. Plant Cell Environ. 2009, 32, 567–576. [Google Scholar]
- Wu, Q.S.; You, G.L.; Li, Y. Plant growth and tissue sucrose metabolism in the system of trifoliate orange and arbuscular mycorrhizal fungi. Sci. Hortic. 2015, 181, 189–193. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Ames, R.N.; Bethlenfalvay, G.J. Mycorrhizal fungi and the integration of plant and soil nutrient dynamics. J. Plant. Nutr. 1987, 10, 1313–1321. [Google Scholar] [CrossRef]
- Rowell, D.L. Soil Science: Methods and Applications; Longman Scientific & Technical: Harlow, UK, 1994; p. 350. [Google Scholar]
- Nimmo, J.R.; Perkins, K.S. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 4; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 317–328. [Google Scholar]
- Gavito, M.E.; Jakobsen, I.; Mikkelsen, T.N.; Mora, F. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol. 2019, 223, 896–907. [Google Scholar] [CrossRef][Green Version]
- Wu, H.H.; Srivastava, A.K.; Li, Y.; Zou, Y.N.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Transcriptomic analysis of late-ripening sweet orange fruits (Citrus sinensis) after foliar application of glomalin-related soil proteins. Agriculture 2021, 11, 1171. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Wright, S.F.; Clark, D.A.; Ruess, R.W. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol. 2004, 92, 278–287. [Google Scholar] [CrossRef]
- Schindler, F.V.; Mercer, E.J.; Rice, J.A. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol. Biochem. 2007, 39, 320–329. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, S. Citrus decline: Soil fertility and plant nutrition. J. Plant Nutr. 2009, 32, 197–245. [Google Scholar] [CrossRef]
- Zhao, Z.; Chu, C.; Zhou, D.; Sha, Z.; Wu, S. Soil nutrient status and the relation with planting area, planting age and grape varieties in urban vineyards in shanghai. Heliyon 2019, 5, e02362. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Srivastava, A.K.; Wu, Q.S.; Mousavi, S.M.; Hota, D. Integrated soil fertility management in fruit crops: An overview. Int. J. Fruit Sci. 2021, 21, 413–439. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Paithankar, D.H.; Venkataramana, K.T.; Hazarika, B.; Patil, P. INM in fruit crops: Sustaining quality production and soil health. Ind. J. Agric. Sci. 2019, 83, 379–395. [Google Scholar]
Varieties | Treatments | Coloration Value | Fruit Hardness (kg × 105/cm3) | Fruit Size (Mm) | Fruit Weight (g FW/Fruit) | |||
---|---|---|---|---|---|---|---|---|
Longitudinal Diameter | Transverse Diameter | Pericarp | Sarcocarp | Total | ||||
Newhall | Non-EE-GRSP | 70.57 ± 3.61 a | 25.25 ± 2.29 a | 76.5 ± 6.5 bc | 71.8 ± 5.5 c | 60.57 ± 4.63 c | 150.08 ± 5.28 cd | 210.65 ± 19.57 d |
EE-GRSP | 69.84 ± 3.57 a | 19.06 ± 1.57 b | 84.4 ± 7.8 ab | 80.1 ± 7.4 bc | 76.78 ± 6.40 c | 196.17 ± 16.03 c | 272.95 ± 20.76 c | |
Oita 4 | Non-EE-GRSP | 54.77 ± 4.12 b | 16.34 ± 1.36 bc | 54.3 ± 4.6 c | 66.2 ± 4.5 c | 23.11 ± 2.06 d | 70.92 ± 5.75 e | 94.03 ± 6.42 e |
EE-GRSP | 61.82 ± 4.04 ab | 12.31 ± 1.15 c | 69.5 ± 5.6 bc | 84.4 ± 6.8 bc | 30.65 ± 2.90 d | 95.32 ± 9.05 de | 126.62 ± 11.30 e | |
Cocktail grapefruit | Non-EE-GRSP | 68.59 ± 5.58 a | 17.93 ± 1.63 b | 86.0 ± 8.6 ab | 93.1 ± 7.6 ab | 104.91 ± 9.23 b | 375.41 ± 31.90 b | 480.32 ± 36.13 b |
EE-GRSP | 71.32 ± 6.70 a | 17.68 ± 1.69 b | 101.1 ± 12.2 a | 109.4 ± 11.1 a | 137.23 ± 11.95 a | 449.17 ± 39.88 a | 586.40 ± 49.42 a | |
Significance | ||||||||
EE-GRSP | * | ** | ** | ** | ** | ** | ** | |
Varieties | NS | * | * | * | ** | * | ** | |
EE-GRSP × Varieties | NS | * | NS | NS | * | NS | NS |
Varieties | Treatments | Soluble Solids (%) | Titratable Acids (%) | Fructose (mg/g DW) | Sucrose (mg/g DW) | Glucose (mg/g DW) |
---|---|---|---|---|---|---|
Newhall | Non-EE-GRSP | 12.74 ± 1.77 ab | 0.36 ± 0.03 d | 235.21 ± 17.67 ab | 246.25 ± 21.40 ab | 57.32 ± 3.49 ab |
EE-GRSP | 14.42 ± 1.29 a | 0.35 ± 0.03 d | 239.3 ± 13.64 a | 258.55 ± 24.12 ab | 59.92 ± 5.38 a | |
Oita 4 | Non-EE-GRSP | 8.96 ± 0.75 c | 0.72 ± 0.05 a | 162.42 ± 14.14 b | 201.4 ± 14.14 bc | 44.62 ± 3.67 bc |
EE-GRSP | 9.24 ± 0.87 c | 0.49 ± 0.02 c | 209.07 ± 18.04 ab | 268.15 ± 22.62 a | 54.28 ± 4.24 ab | |
Cocktail grapefruit | Non-EE-GRSP | 9.88 ± 0.70 bc | 0.60 ± 0.03 b | 220.35 ± 19.68 a | 184.7 ± 14.14 c | 42.90 ± 2.82 c |
EE-GRSP | 13.70 ± 1.24 a | 0.46 ± 0.02 c | 253.82 ± 21.95 a | 225.17 ± 18.70 abc | 51.00 ± 3.25 abc | |
Significance | ||||||
EE-GRSP | ** | ** | * | ** | * | |
Varieties | * | * | * | * | * | |
EE-GRSP × varieties | * | ** | NS | NS | NS |
Varieties | Treatments | NH4-N (mg/kg) | NO3-N (mg/kg) | Olsen-P (mg/kg) | NH4OAc-K (mg/kg) | SOC (mg/g) |
---|---|---|---|---|---|---|
Newhall | Non-EE-GRSP | 56.80 ± 4.51 c | 88.01 ± 5.65 de | 170.30 ± 12.74 b | 378.93 ± 21.21 b | 7.56 ± 0.48 d |
EE-GRSP | 44.62 ± 3.23 c | 205.94 ± 14.14 b | 152.03 ± 9.89 b | 478.03 ± 35.18 a | 8.48 ± 0.63 d | |
Oita 4 | Non-EE-GRSP | 133.34 ± 9.26 b | 78.37 ± 5.74 d | 93.94 ± 5.65 c | 277.63 ± 26.88 c | 12.86 ± 0.91 c |
EE-GRSP | 177.03 ± 14.39 a | 254.06 ± 22.36 a | 173.86 ± 13.20 b | 507.16 ± 45.25 a | 16.36 ± 1.41 b | |
Cocktail grapefruit | Non-EE-GRSP | 136.16 ± 8.61 b | 101.11 ± 8.07 cd | 253.46 ± 16.26 a | 253.66 ± 16.26 c | 15.36 ± 0.70 bc |
EE-GRSP | 147.89 ± 12.19 b | 124.53 ± 9.89 c | 244.33 ± 21.21 a | 228.20 ± 19.79 c | 21.17 ± 2.24 a | |
Significance | ||||||
EE-GRSP | ** | ** | ** | ** | ** | |
Varieties | * | ** | * | ** | ** | |
EE-GRSP × Varieties | * | ** | ** | ** | * |
Varieties | Treatments | EE-GRSP (mg/g) | DE-GRSP (mg/g) | T-GRSP (mg/g) |
---|---|---|---|---|
Newhall | Non-EE-GRSP | 0.44 ± 0.02 de | 0.25 ± 0.02 c | 0.69 ± 0.04 d |
EE-GRSP | 0.62 ± 0.04 bc | 0.26 ± 0.03 c | 0.89 ± 0.05 c | |
Oita 4 | Non-EE-GRSP | 0.37 ± 0.02 e | 0.24 ± 0.02 c | 0.67 ± 0.03 d |
EE-GRSP | 0.54 ± 0.03 cd | 0.41 ± 0.05 b | 0.93 ± 0.08 c | |
Cocktail grapefruit | Non-EE-GRSP | 0.69 ± 0.05 ab | 0.50 ± 0.03 b | 1.19 ± 0.06 b |
EE-GRSP | 0.76 ± 0.04 a | 0.69 ± 0.04 a | 1.45 ± 0.09 a | |
Significance | ||||
EE-GRSP | ** | ** | ** | |
Varieties | ** | ** | ** | |
EE-GRSP × varieties | NS | * | NS |
Varieties | Treatments | Percentage of WSAs (%) | MWD (mm) | |||
---|---|---|---|---|---|---|
2–4 mm | 1–2 mm | 0.5–1 mm | 0.25–0.5 mm | |||
Newhall | Non-EE-GRSP | 65.98 ± 3.53 ab | 7.60 ± 0.42 bc | 4.41 ± 0.07 c | 1.87 ± 0.21 c | 2.45 ± 0.21 bc |
EE-GRSP | 80.43 ± 7.07 a | 6.01 ± 0.35 c | 7.68 ± 0.42 b | 5.76 ± 0.41 b | 2.82 ± 0.14 a | |
Oita 4 | Non-EE-GRSP | 47.84 ± 4.94 c | 14.24 ± 1.27 a | 9.59 ± 0.74 b | 10.49 ± 0.70 a | 1.57 ± 0.07 e |
EE-GRSP | 52.82 ± 7.07 bc | 15.24 ± 0.70 a | 15.29 ± 1.41 a | 12.21 ± 2.12 a | 1.93 ± 0.12 de | |
Cocktail grapefruit | Non-EE-GRSP | 58.8 ± 3.53 bc | 6.74 ± 0.21 c | 3.52 ± 0.35 c | 5.26 ± 0.14 b | 2.15 ± 0.07 cd |
EE-GRSP | 65.85 ± 5.65 ab | 8.58 ± 0.41 b | 8.21 ± 0.49 b | 7.29 ± 0.56 b | 2.67 ± 0.10 ab | |
Significance | ||||||
EE-GRSP | ** | ** | ** | ** | ** | |
Varieties | NS | NS | ** | ** | * | |
EE-GRSP × Varieties | * | * | * | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-Q.; Xie, Y.-C.; Li, Y.; Zheng, L.; Srivastava, A.K.; Hashem, A.; Abd_Allah, E.F.; Harsonowati, W.; Wu, Q.-S. Biostimulatory Response of Easily Extractable Glomalin-Related Soil Protein on Soil Fertility Mediated Changes in Fruit Quality of Citrus. Agriculture 2022, 12, 1076. https://doi.org/10.3390/agriculture12081076
Liu X-Q, Xie Y-C, Li Y, Zheng L, Srivastava AK, Hashem A, Abd_Allah EF, Harsonowati W, Wu Q-S. Biostimulatory Response of Easily Extractable Glomalin-Related Soil Protein on Soil Fertility Mediated Changes in Fruit Quality of Citrus. Agriculture. 2022; 12(8):1076. https://doi.org/10.3390/agriculture12081076
Chicago/Turabian StyleLiu, Xiao-Qing, Ya-Chao Xie, Yan Li, Li Zheng, Anoop Kumar Srivastava, Abeer Hashem, Elsayed Fathi Abd_Allah, Wiwiek Harsonowati, and Qiang-Sheng Wu. 2022. "Biostimulatory Response of Easily Extractable Glomalin-Related Soil Protein on Soil Fertility Mediated Changes in Fruit Quality of Citrus" Agriculture 12, no. 8: 1076. https://doi.org/10.3390/agriculture12081076