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Abstract: The existence of dockage, unripe kernels, and foreign materials in chickpea mixtures is
one of the main concerns during chickpea storage and marketing. Novel algorithms based on image
processing were developed to detect undesirable, foreign materials, and matured chickpea kernels
in the chickpea mixture. Images of 270 objects including 54 sound samples and 36 samples of each
undesired object were prepared and features of these acquired images were extracted. Different
models based on linear discriminant analysis (LDA), support vector machine (SVM), and artificial
neural networks (ANN) methods were developed by using MATLAB. Three classification algorithms
based on LDA, SVM, and ANN methods were developed. The classification accuracy in training,
testing, and overall detection showed the superiority of ANN (99.4, 92.6, and 94.4%, respectively)
and LDA (91.1, 94.0, and 91.9%, respectively) over the SVM (100, 53.7, and 88.5%, respectively). The
developed image processing technique can be incorporated with a vision-based real-time system.

Keywords: chickpea; impurity; separation; classification; image processing

1. Introduction

Chickpea (Cicer arietinum) is the third most widely cultivated pulse in the world
planted in arid and semi-arid regions [1,2]. Iran produced 71,580 tons of chickpea in
2015 and is the fourth largest chickpea producer in the world after India, Pakistan, and
Turkey [3]. The main production provinces in Iran are East Azarbaijan, West Azarbaijan,
Ardebil, Isfahan, Alborz, Kermanshah, and Ilam. When harvesting, chickpea seeds at
different locations of a plant have different maturities and moisture contents. The naturally
ripped seeds have a milky white color, while unripe seeds have different colors from green
to brown, depending on their maturity (Figure 1). After near ambient (natural air) drying
in stores, chickpea seeds shrink and wrinkle on the surface of unripe seeds due to loss
of moisture content (Figure 1). The harvested chickpeas are usually mixed with foreign
materials (other grain kernels and the stone of the same size and shape as a chickpea
kennel) and dockage which include unripe, shrunken, damaged, and broken kernels and
stalks, stems, leaves, stone, and fines. Segregation of dockage and foreign materials during
chickpea handling causes storage problems such as high airflow resistance and hot spot
development [4]. Chickpeas with a high percentage of unripe seeds, damaged, and foreign
materials have a low market value. Therefore, it is necessary to remove those before storage.

Dockage can be removed by mechanical methods such as sieves or roller separators
while these mechanical methods cannot separate unripe kernels and foreign materials from
the chickpea bulk because these particles have a similar shape and size as the chickpea
kernels. In this article, the particles with the same size and shape as a matured chickpea
kernel but not chickpea kernels were referred to as impurities. Manual sorting of impurities
is time consuming and costly [5]. Therefore, developing a fast and low-cost universal
method to separate these impurities from sound kernels is required.
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Figure 1. Chickpea, dockage, and foreign materials: sound chickpea kernel (a), wrinkled chickpea 

kernel (b), immature chickpea kernel (c), brown chickpea kernel (d), split chickpea (e), stalk (f), 

stone (g), and sound chickpea kernel after background separation (h). 
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Figure 1. Chickpea, dockage, and foreign materials: sound chickpea kernel (a), wrinkled chickpea
kernel (b), immature chickpea kernel (c), brown chickpea kernel (d), split chickpea (e), stalk (f),
stone (g), and sound chickpea kernel after background separation (h).

Machine vision separation is one of the widely used tools to separate undesirable
particles due to its high accuracy and speed. Image processing algorithms coded inside a
machine vision system can distinguish targets due to their difference in colors [6,7], textures,
shapes [8–15], and sizes [16,17]. Therefore, using a machine vision system, the impurities
such as unripe and broken seeds and foreign materials can be separated from the sound
chickpea kernels.

Different classification methods have been used to distinguish different groups [18].
Çakmak and Boyac [19] used the artificial neural networks (ANN) method for quality
inspection of chickpeas based on color, morphology, and shape while Ghamari [20] used
the ANN method to identify four varieties of chickpea by classifying some morphological
data measured by a micrometer. Sabzi et al. [21] used the ANN method to distinguish
five chickpea varieties using image processing. Pourdarbani et al. [22,23] applied image
processing and ANN method to detect five and three different varieties of chickpea, re-
spectively. Shahin and Symons [17] developed a machine vision system to determine the
size distribution of chickpea samples. Sankaran et al. [24] identified chickpea phenotyping
based on seed size. LeMasurier et al. [16] applied image processing to determine lentil size.
Venora et al. [25] used the image processing method to identify lentil cultivars based on
those differences in size, shape, and color. The detection of unripe and broken kernels and
foreign materials has not been conducted in abovementioned studies.

Impurity detection is one of the main functions of a developed machine vision sys-
tem [26]. Chen et al. [27] developed an image processing system to detect impurity in a
rice combine harvester. Rong et al. [28] used a decision tree algorithm to classify foreign
materials from walnuts. Shen et al. [29] detected impurity or wheat samples using the
terahertz spectral imaging and convolutional neural networks. There is no study to detect
impurities of chickpea samples. There are differences between crops and between other
impurities in color, texture, and shape. Therefore, a specified algorithm is needed for the
detection of impurities for each crop.

To reduce the extracted features [30] and consequently increase the classification accu-
racy, researchers usually use principal component analysis (PCA) [18]. As PCA combines
the features, the efficient features are not specified so this PCA method has the limitation
in the application of automatic sorting. In this study, we proposed a sequential feature
selection method for selecting efficient features.
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The goal of this study was to develop a machine vision system that could distinguish
impurities (including unripe and broken chickpea kernels and foreign materials) from the
sound chickpea kernels. To achieve this goal, an image processing algorithm was developed
to acquire the target images, extract the features, select the efficient features, and classify
the efficient features. The artificial neural networks (ANN), linear discriminant analysis
(LDA), and support vector machine (SVM) methods were used to classify and detect
these undesired particles from the sound kernels. The classifier models were developed
to compare the classification accuracies by using the confusion matrix, accuracy for the
training and testing step, individually, and then total confusion matrix and accuracy.

2. Materials and Methods

The chickpea (Azad variety) sample was purchased from the local markets located in
Ilam Province, Iran. The purchased chickpea bulk was the mixture of impurities (unripe
kernels, damaged, and foreign materials) and sound kernels. The mixture was manu-
ally separated into seven groups: sound (Figure 1a), wrinkled (greenish) (Figure 1b),
unripe (Figure 1c), brownish (Figure 1d), and split (Figure 1e) chickpea kernels, and
stone (Figure 1f) and stalk (Figure 1g). Sound kernels were mature chickpea seeds with
normal color. Wrinkled kernels had normal color but had wrinkles due to the loss of their
initial high moisture contents during storage and drying. Immature kernels had green color
and were wrinkled. Brown kernels had not wrinkled but had a brown color. A split kernel
was a broken or split seed (the unbroken part is the same as a sound kernel). Stalks were
the chickpea stems (Figure 1f). Stones were those impurities with high kernel densities but
had a similar shape and size as sound kernels (Figure 1g). In total, 270 objects including
54 sound, 36 unripe (greenish), 36 brownish, 36 split, and 36 wrinkled chickpea kernels,
36 stones, and 36 stalks were prepared (Figure 1).

2.1. Image Acquisition

Images of the prepared 270 objects were acquired using an image processing system
located in the lab of Ilam University. The imaging system had an imaging chamber, a
digital RGB camera (Sony Cyber-Shot DSC-WX200, Minato, Japan), a laptop (2.40 GHz
Core i5 CPU M520, 2.40 GHz processor), and four halogen lamps which provided the
uniform and consistent illumination in the chamber. The resolution of the camera was
16.1 megapixels with a sensor format of 1/2.3 inch, an optical zoom of 10X, and a sensor
size of 28.0735 mm2 (6.17 mm × 4.55 mm). The distance of the camera lens to the target
sample was 10 cm. A white paper was used as the background of the samples in visible
imaging. In this study, the lighting condition was fixed using the four halogen lamps.
Different lighting conditions and angles were used for the deep learning method in our
previous studies [31,32]. The number of samples was selected based on these previous
studies. Nine objects from each prepared group were manually located under the camera
lens at each image taking time, and their images were captured and recorded in jpeg format.
Then, the image of the nine objects were separated. Therefore, a total of 270 individual
(separated) images were obtained and each prepared object had one image.

2.2. Image Preprocessing

An algorithm was developed and coded in MATLAB (R2015a, Natick, USA). The
acquired RGB images were called by the algorithm at the beginning of the image processing
(Figure 2).
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Figure 2. The developed image processing algorithm.

To separate the object from the background, different channels of HSV color space
were obtained and the object was separated from the background using Equation (1).

I = SV − 0.4H (1)

where I is a mono color image [31], and H, S, and V are the different channels of HSV
color space. Equation (1) was developed by the trial-and-error method. After the noises or
unwanted small objects were removed with erosion operation, the I channel was converted
to a binary image. Hence, the obtained binary image was multiplied in R, G, and B channels
of the initial image, and the final image (Figure 1h) was the combination of them.

The processed image (in RGB color space) was transformed into different spaces
including L * a * b *, HSV, NRGB, CrCgCb, I1I2I3, and gray (Figure 2) [31–34]. Nineteen
image channels from each color space were obtained: R, G, B, L *, a *, b *, H, S, V, NR, NG,
NB, Cr, Cg, Cb, I1, I2, I3, and gray.

After segmenting and filtering, the developed algorithm extracted the shape, color,
and texture features from each image channel (Figure 2). To extract shape features, the
image matrix was labeled using the Bwlabl function and then the Regionprops function
was used to extract the length, width, surface center, area, centrifuge, extent, circumference,
elongation, and the biggest and ellipse axis of the object. The values of mean, standard de-
viation, skewness, kurtosis, coefficient of variation [12,32,35], minimum, maximum, mode,
middle, and covariance as color features were extracted from different image channels.

Mean(µ) =
1

MN

M

∑
i =1

N

∑
j =1

P(i, j) (2)

Standard Deviation(σ) =

[
1

MN

M

∑
i =1

N

∑
j =1

(P(i, j)− µ)

]1/2

(3)

Variance =
Ng−1

∑
i =0

(i− µ)2Pi (4)
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Skewness =
1

MNσ3

M

∑
i =1

N

∑
j =1

[(P(i, j)− µ)]3 (5)

Kurtosis =
1

MNσ4

M

∑
i =1

N

∑
j =1

[(P(i, j)− µ)]4 (6)

where µ is mean, M is the number of rows and N is the number of columns of the images,
P(i, j) is the color values of i column and j row, σ is standard deviation, σ2 is variance, and
Ng is the number of pixels.

To extract texture features, the statistical gray-level co-occurrence matrix (GLCM) was
calculated at first. It provides the spatial relationship between image pixels. Then, the
energy, entropy, correlation, homogeneity [31–35], and contrast features were extracted.

Homogeneity =
Ng

∑
i=1

Ng

∑
j=1

Pd(i, j)
1 + |i− j| (7)

Entropy = −
Ng

∑
i=0

Ng

∑
j=0

Pd(i, j) log Pd(i, j) (8)

Energy = −
Ng

∑
i=0

Ng

∑
j=0

Pd
2(i, j) (9)

Correlation =
∑

Ng
i=1 ∑

Ng
j=1(1− µi)Pd(i, j)

σiσj
(10)

where Pd is the co-occurrence matrix, P(i, j) is the color values at i column and j row, Ng is
the number of pixels, and σi,j is the standard deviation associated with i column and j row.

The values of eccentricity, elongation, roundness, [31–35], centroid length, length of
the small and large axes, and length of the large axes as shape features were calculated.

Eccentricity =

√
1− (b/a)2 (11)

Elongation =
a
b

(12)

oundness =
4πA
p2 (13)

where a, b, A, and p are the length, width, area, and perimeter of the object, respectively.
After feature extraction, efficient features were selected among all extracted features

based on a quadratic sequential feature selection method [36]. To do this, an algorithm was
developed using MATLAB. The efficient features were considered as inputs of classifier models.

2.3. Classification

Different models based on linear discriminant analysis (LDA), support vector machine
(SVM), and artificial neural networks (ANN) methods were developed by using MATLAB
to classify the selected features [36–38]. The LDA is a statistical method that detects
different groups by determining boundaries in the predicted space between the groups
based on multivariate normal density with an estimated pooled covariance [39]. The SVM
is a supervised non-parametric statistical method to achieve higher accuracy with fewer
training samples for classification [40]. The ANN has a smart-learner dynamic system
that transfers the knowledge or law behind the empirical data to a predictive or classified
model [18].

To verify the developed LDA and SVM methods, 75% of the data (203 samples) were
randomly selected for training the classifier, and the remaining 25% (67 samples) was
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used for testing the model. Sixty percent of the data (162 samples) was randomly selected
for training the ANN classifier, 20% (54 samples) of the random selected data was used
for validating the models, and the remaining 20% (54 samples) was used for testing the
developed models. The data used for validating and testing were not used in the training.
After the evaluation of the classification result, the optimum classifier model was selected
based on the classification accuracy of the whole data for each processing step (training,
validating, and testing). Different ANN structures based on feed-forward back propagation
network with the tansig and purelin activation function for hidden and output layers,
respectively [12], were evaluated. The Levenberg–Marquardt training algorithm was used
due to its higher speed and prevention of over-training of the network which often leads
to inappropriate model learning [12]. Different artificial neural network models were
evaluated with different constructions to select the optimal network. For this purpose, the
number of neurons in the hidden layer has varied from 2 to 20 in different ANN structures.

The classifier models were developed to compare the classification accuracies by
using the confusion matrix. Confusion matrix is a popular measure used while solving
classification problems and it is a well-accepted method in the field of machine learning
and specifically the problem of statistical classification [41,42]. The model development
was in such a way that they generated the confusion matrix for each training, testing,
and validation step, individually. Additionally, the developed models generated a total
classification rate.

3. Results
3.1. Efficient Features

The mean of the selected efficient features of the seven groups is given in Table 1.

Table 1. The mean (±SE) efficient features of chickpea and impurities.

Feature Ch S,
Chickpea Kernel Foreign Material

Sound Wrinkle Unripe Brownish Split Stone Stalk

Correlation (pix S, S, ) R 0.99 ± 0.00 0.99 ± 0.01 0.97 ± 0.02 0.98 ± 0.01 0.99 ± 0.00 0.97 ± 0.01 0.98 ± 0.01
Energy (pix) R 0.79 ± 0.05 0.89 ± 0.04 0.91 ± 0.05 0.90 ± 0.04 0.85 ± 0.02 0.83 ± 0.10 0.89 ± 0.06
Energy (pix) B 0.79 ± 0.06 0.91 ± 0.32 0.92 ± 0.05 0.94 ± 0.03 0.88 ± 0.02 0.85 ± 0.09 0.90 ± 0.06
Energy (pix) a * 0.82 ± 0.53 0.93 ± 0.37 0.97 ± 0.03 0.90 ± 0.04 0.91 ± 0.03 0.89 ± 0.07 0.93 ± 0.054
Mean (pix) I2 0.10 ± 0.01 0.10 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 0.14 ± 0.01 0.04 ± 0.01 0.09 ± 0.01
Mean (pix) Cb −0.14 ± 0.13 −0.14 ± 0.03 −0.13 ± 0.01 −0.09 ± 0.02 −0.21 ± 0.02 −0.06 ± 0.01 −0.14 ± 0.02

Homogeneity (pix) H 1.00 ± 0.00 1.00 ± 00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Correlation (pix) V 0.99 ± 0.00 0.98 ± 0.01 0.97 ± 0.15 0.98 ± 0.01 0.99 ± 0.00 0.97 ± 0.01 0.98 ± 0.01

Homogeneity (pix) V 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Area (Kpix) 82.28 ± 16.12 51.86 ± 16.45 29.51 ± 21.99 43.71 ± 21.079 81.61 ± 12.58 67.50 ± 48.08 53.30 ± 37.54

Centroid (pix) 483.68 ± 77.35 561.08 ± 70.31 486.37 ± 100.64 496.81 ± 93.48 552.47 ± 84.54 468.10 ± 100.34 629.67 ± 138.65
Roundness (pix) 0.60 ± 0.15 0.49 ± 0.23 0.23 ± 0.11 0.31 ± 0.20 0.68 ± 0.08 0.20 ± 0.11 0.29 ± 0.16

Major diameter (pix) 359.55 ± 38.65 299.62 ± 53.04 242.92 ± 100.12 288.820 ± 63.66 362.66 ± 35.33 346.36 ± 128.08 518.65 ± 275.79
Elongation (pix) 1.22 ± 0.11 1.41 ± 0.45 1.67 ± 0.49 1.49 ± 0.36 1.26 ± 0.15 1.68 ± 0.58 3.82 ± 1.94

S, Image channel, S, S, Pixel. * The a* color space.

The values of different features for most groups were different (Table 1). For example,
the maximum value of the correlation feature was associated with the matured (sound and
wrinkle) kernels, while the minimum value was associated with unripe and stones. The
unripe kernels had a smaller major diameter than that of matured kernels, while the stalk
had the longest major diameter. The value of the energy feature in the B channel for brown
kernels was the highest, while other objects had a lower value. This result indicated that
the correlation features could detect different objects. The values of these features for all
images were used as the input of the developed classifiers.

3.2. Classification

The efficient features of the three groups were classified by using linear discriminant
analysis, support vector machine, and artificial neural network methods. The three groups
were desired kernel (sound kernel), the undesired kernel (wrinkled, immature, and brown-
ish kernel), and foreign material (stalk and stone). Confusion matrices for training and
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testing the LDA and SVM method and those for training, validating, and testing the ANN
method were calculated by the developed classification algorithms.

3.2.1. Linear Discriminant Analysis

The confusion matrices associated with the linear discriminant analysis classifier are
presented in Table 2. The correct classification rates of the model in training and testing
were 91.3 and 94.0%, respectively. Five sound kernels (12.2%), seven undesired kernels
(6.5%), and six foreign materials (11.1%) were misclassified in training. During testing,
4 out of 18 foreign material objects (22.2%) were incorrectly detected as undesirable seeds.
The overall accuracy of the linear discriminant method was 91.9%.

Table 2. Confusion matrices associated with different classifiers.

Classifier Step D a U b F c GA d SA e TA f

Linear discriminant analysis

Training
D a 36 5 0 87.8

91.3

91.9

U b 5 101 2 93.5
F c 0 6 48 88.9

Testing
D a 13 0 0 100.0

94.0U b 0 36 0 100.0
F c 0 4 14 77.8

Support vector machine

Training
D a 41 0 0 100.0

100.0

88.5

U b 0 108 0 100.0
F c 0 0 54 100.0

Testing
D a 0 13 0 0.0

53.8U b 0 36 0 100.0
F c 0 18 0 0.0

Optimal artificial neural network

Training
D a 33 0 1 97.1

98.8

94.4

U b 0 86 0 100.0
F c 0 1 42 97.7

Validating
D a 9 1 0 90.0

81.5U b 1 24 4 82.8
F c 1 3 11 73.3

Testing
D a 11 0 0 100.0

92.6U b 2 27 0 0.0
F c 0 2 12 85.7

a D = Desired (sound) kernel, b U = undesired (undesired) kernel, c F = foreign materials, d GA = group accuracy,
e SA = step accuracy, f TA = total accuracy.

3.2.2. Support Vector Machine

The classification accuracy of the model for the train and test data was 100% and 53.8%,
respectively (Table 2). All undesirable chickpea kernels were correctly classified but all
desirable chickpea kernels and foreign materials were misclassified. During testing, 36 out
of 67 objects (53.7%) were correctly identified and 31 objects (46.3%) were misclassified.
The total accuracy of the SVM classifier was 88.5%.

3.2.3. Artificial Neural Network

The number of neurons in the input and output layer was 14 (efficient features) and
7 (output groups), respectively. The highest percentage of the correct classification rate
was related to an ANN model with 14 neurons in the hidden layer. The accuracies of the
optimal ANN classifier during training, validating, and testing were 98.8, 81.5, and 92.6%,
respectively. The overall accuracy of the model based on the ANN method was 94.4%
(Table 2).

3.3. Overall Accuracy

The higher detection rates in training were associated with the SVM (100.0%) and
ANN (98.8%) model, while the LDA (91.3%) model had the lowest detection rate (Table 2).
The classification accuracy in testing showed an opposite trend because the accuracy of
the LDA model in testing was 94.0% and that of ANN and SVM was 92.6% and 53.8%,
respectively (Table 2). As the test data for all classifiers were the same, this result indicated
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the higher ability of the LDA model in the testing step. During testing, the image was
randomly selected and this resulted in different detection rates from that in the training.

The overall accuracy of the developed classifiers was dominated by the ANN model
(94.4%), while the LDA (91.9%) and SVM (88.5%) were ranked after the ANN model.

4. Discussion

The classification accuracy in our study was higher than that in the impurity detection
of rice [27]. Chen et al. [27] had a 76% classification accuracy and this low accuracy might
be caused by the low detection rate of impurities in rice. The classification accuracy in our
study was lower than that of the impurity detection in wheat reported by Shen et al. [29].
Shen et al. [29] achieved a 97.8% accuracy and the notable difference in color between wheat
and impurities might be the main reason for their high accuracy. Chickpea kernels and
impurities (unripe chickpeas and stalks) had a similar color which increased the detection
difficulty and resulted in low detection accuracy. The same reason might be for the impurity
detection in rice.

It is possible to develop a visual machine system quipped with a separating algorithm
developed in this study and the system can extract the selected features for separating
impurities from chickpeas as well as grading chickpeas based on the level of their ripeness.
Therefore, image processing integrated with our developed ANN classifiers can be used
as a simple, fast, and non-destructive method for the separation of undesirable chickpea
kernels and impurities from chickpea kernels. The methods can be incorporated with
a vision-based real-time system. To increase the accuracy of chickpea separation in the
future, the developed algorithm in this study can be combined with algorithms based on
the processing of hyperspectral images and the deep learning method.

5. Conclusions

In this study, chickpea seeds as the desired final product were distinguished from
undesired chickpea kernels (wrinkled, immature, brown, and split) and impurities (stalk
and stone) based on their difference in color, texture, and shape. The images of chickpeas,
undesired chickpeas, and impurities were acquired and processed to extract the features
of the images. The efficient features were selected among the extracted features and were
classified by the developed linear discriminant analysis, artificial neural network, and
support vector machine methods. The classification rate of linear discriminant analysis
(94.0%) and artificial neural network (92.6%) was higher than that of support vector machine
(53.7%) during testing. The overall accuracy of the ANN (94.4 %) model was higher than
that of LDA (91.6 %) and SVM (88.5 %) classifiers. The image processing method can
be used to upgrade the traditional separation, sorting, and grading methods, which can
enhance product quality with decreasing operation costs.
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