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Abstract: Lodging depresses the grain yield and quality of maize crop. Previous machine learning
methods are used to classify crop lodging extents through visual interpretation and sensitive features
extraction manually, which are cost-intensive, subjective and inefficient. The analysis on the accuracy
of subdivision categories is insufficient for multi-grade crop lodging. In this study, a classification
method of maize lodging extents was proposed based on deep learning algorithms and unmanned
aerial vehicle (UAV) RGB and multispectral images. The characteristic variation of three lodging
extents in RGB and multispectral images were analyzed. The VGG-16, Inception-V3 and ResNet-50
algorithms were trained and compared depending on classification accuracy and Kappa coefficient.
The results showed that the more severe the lodging, the higher the intensity value and spectral
reflectance of RGB and multispectral image. The reflectance variation in red edge band were more
evident than that in visible band with different lodging extents. The classification performance
using multispectral images was better than that of RGB images in various lodging extents. The test
accuracies of three deep learning algorithms in non-lodging based on RGB images were high, i.e.,
over 90%, but the classification performance between moderate lodging and severe lodging needed
to be improved. The test accuracy of ResNet-50 was 96.32% with Kappa coefficients of 0.9551 by
using multispectral images, which was superior to VGG-16 and Inception-V3, and the accuracies of
ResNet-50 on each lodging subdivision category all reached 96%. The ResNet-50 algorithm of deep
learning combined with multispectral images can realize accurate lodging classification to promote
post-stress field management and production assessment.

Keywords: lodging classification; unmanned aerial vehicle (UAV); sensitive band; ResNet algorithm

1. Introduction

According to the data released by China’s National Bureau of Statistics, the planting
area of maize reached 43.324 million hectares in 2021, increasing by 2.059 million hectares
compared with 2020. The total output of maize achieved 272 million tons, which made it
the most productive of China’s major crops. The yield variance of maize has an important
impact on national food security and agricultural economic development. However, crop
lodging is one of the major negative elements to affect maize output. It is stated as the
displacement of the above-ground stems from their upright position or failure of root-soil
attachment [1]. Lodging is generally caused by rainstorms, loose soil, high planting density
and unreasonable fertilization [2–4]. Lodging hinders the growth of maize [5], reduces
grain quality [6] and affects mechanized harvesting [7], which is becoming an important
restricting issue to increase maize yield [8]. Therefore, precise and efficient classification
with different maize lodging extents can help agricultural departments to investigate the
influence of maize growth, guide farmers to implement post-stress field management and
facilitate insurance firms to settle disputes properly [9,10].
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The traditional lodging assessment methods widely used are mainly visual inspection
and artificial measurement [11], which are inefficient, time-consuming and environment-
constraining [12]. The inaccuracy and subjectivity of them may lead to compensation
disputes between farmers and insurance companies, which cannot meet the needs of
precision agriculture. Remote sensing technology, as a new approach, has greatly promoted
the development of crop lodging detection [13]. The lodging incidence in wheat, rice and
barley were detected using visible and thermal infrared images based on the ground-based
and space-borne platforms [14–17]. In recent decades, the unmanned aerial vehicle (UAV)
has been increasingly applied for lodging monitoring due to its advantages of convenient,
flexible, low cost and high resolution [18,19]. It can timely and accurately obtain centimeter-
level images with multiple sensors, which plays a powerful role in lodging detection [20].
Many studies detected crop lodging based on a UAV system equipped with a digital camera.
They discriminated lodging from non-lodging and evaluated the extents of crop lodging by
analyzing color and texture features [21–23]. However, compared to RGB images with only
three visible bands, multispectral images with red edge and infrared bands reflecting the
growth capacity of crops can offer more information in crop lodging [12,24,25]. Both spatial
and spectral information of ground targets are obtained in the meantime. Therefore, the
information richness of lodging features between these two types of images are different.
It is worth studying to verify the performance of discriminating lodging severity extents
using RGB and multispectral images.

The appropriate classification methods for crop lodging extents are significant as well
as the selection of data source. Traditionally, machine learning algorithms consisting of a
support vector machine (SVM) [8], decision tree [26] and nearest neighbor [5] were used
to classify lodging by extracting crop morphology and spectral characteristics [21,23,27].
However, these manual approaches for extracting features often required empirical knowl-
edge and were typically suboptimal in the results [28]. With the development of machine
learning, the convolutional neural network (CNN) of deep learning has gradually become
the mainstream. CNN algorithms can automatically extract image features, and depict rich
intrinsic information with strong nonlinear modeling ability. Xia hao et al. [29] proposed
a classification model named GL-CNN on account of convolutional neural networks to
determine the optimal growth stage of leafy vegetables. Ananda et al. [30] used the Visual
Geometry Group (VGG) model to achieve the disease detection and classification of grapes
and tomatoes. CNN has been proved to be superior to existing traditional machine classifi-
cation algorithms [31]. The Inception and ResNet algorithms were proposed with better
performance, which could automatically extract target features from images more accu-
rately. They have been widely used in disease detection and crop classification in intelligent
agriculture [32,33]. However, there are few studies on maize lodging classification based
on deep learning algorithms. The maize lodging characteristics of multiple data types need
to be analyzed. The performance difference using RGB and multispectral images will be
compared. Previous studies have often focused on the overall classification accuracy of crop
lodging, which were unable to fully embody the quality of the model. The classification
effects of algorithms under subdivision categories are also worthy of attention.

The purpose of this study is to use deep learning algorithms to monitor the lodging
extents of maize based on RGB or multispectral images. The lodging extents are dis-
criminated as non-lodging, moderate lodging and severe lodging by lodging angle. The
specific objectives are as follows: (1) to analyze the characteristics of obtained images with
different lodging extents, (2) classify lodging extents of maize based on RGB and multi-
spectral images through VGG-16, Inception-V3 and ResNet-50 algorithms and (3) evaluate
classification performance in different lodging extents to determine the optimal algorithm.

2. Materials and Methods

The processes of classifying maize lodging extents in the study were showed in
Figure 1. The RGB and multispectral images were acquired via UAV, which were respec-
tively cropped, augmented and labeled to build the datasets. The difference of each band
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of RGB and multispectral images caused by maize lodging extents were analyzed. The
classification results of maize lodging extents using three deep learning algorithms were
compared and validated.
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Figure 1. Flowchart of RGB and multispectral dataset acquisition and classification of different
lodging extents using deep learning algorithms.

2.1. Study Area

The study area is located in Lishu County, Siping City, southwest Jilin Province, China
(Figure 2). The geographical coordinates of it are 43◦02′ N–43◦46′ N, 123◦45′ E–124◦53′ E.
Lishu is in the hinterland of Songliao Plain and the major grain producing county with a
maize planting area of 213,300 hectares. During the maize growth period, sunshine and
precipitation are sufficient, which can fully meet the growth needs of one ripe a year. From
late August to early September in 2020, strong winds and heavy rain caused crop lodging.
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2.2. Data Acquisition

The data collection of maize lodging canopy images in this study was performed with
a DJI Phantom 4 Pro (DJI-Innovations, Inc., Shenzhen, China) at 12:00 am on 12 September
2020. The weather was cloudless and windless. The overall weight of UAV system is 1388 g,
and the duration of flight is about 30 min. In this study, the flight altitude was 30 m above
the ground. The forward and lateral overlap was 80%. The digital camera had three color
channels of red, green and blue with a resolution of 1 cm/pixel. The multispectral images
were collected by a Parrot Sequoia camera (MicaSense, Inc., Seattle, DC, USA). It consisted
of four multispectral channels of green (550 nm), red (660 nm), red edge (735 nm) and
near-infrared (790 nm) with a resolution of 2 cm/pixel. The global positioning system
(GPS) and irradiance sensors were equipped at the same time. Before and after each flight,
radiometric calibration images were obtained by a calibrated reflectance panel. The field
inspection was taken after UAV data acquisition. Lodging has a huge impact on both yield
and grain quality. Lodging caused a maize yield loss of approximately 0–50% at different
lodging angles [3]. In general, the smaller the lodging angle, the smaller the yield loss.
Lodging classification can provide a basis for predicting future harvest yield. According
to the investigation of maize lodging in the study area, we categorically defined three
lodging extents based on crop lodging angle: non-lodging (NL) maize with a crop angle
<10◦, moderate lodging (ML) maize with a crop angle between 10–50◦ and severe lodging
(SL) maize with a crop angle >50◦ (Figure 3).
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lodging extents based on crop lodging angle.

2.3. Data Cleaning and Augmentation

RGB and multispectral images of the entire study area were obtained by Agisoft
Photoscan software. RGB images were resampled to 2 cm/pixel to match the resolution of
multispectral images. Then, the images of the entire study area were cropped into small
images with a resolution of 300 × 300 pixels. The actual spatial size of each image was
6 m, achieving a precise classification of maize lodging. Considering the partial areas of
the images were not related to maize lodging, the original dataset of 1326 images was
acquired by deleting the cropped images containing roads and weeds. Then, each sample
was labeled as non-lodging, moderate lodging and severe lodging by an expert through
visual interpretation (Figure 4).
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Figure 4. Maize lodging samples after data cleaning.

For the purpose of improving the overall generalization ability of the model, abundant
training images are needed in the deep learning algorithms to avoid over-fitting. Data
augmentation undertakes a more crucial improvement upon the classification accuracy in
the dataset [28]. Therefore, we performed data augmentation on the obtained dataset to
expand the number of samples. In this study, we enhanced image numbers by random
rotation, horizontal inversion and vertical inversion. A dataset of 5000 RGB images and
5000 multispectral images was generated by data augmentation without introducing extra
labeling costs. The dataset included 1616 non-lodging samples, 1684 moderate lodging
samples and 1700 severe lodging samples. The results of image augmentation taking an
RGB image as an example are shown in Figure 5.
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2.4. Deep Learning
2.4.1. Convolutional Neural Networks

Convolutional neural networks (CNN) have been essential to the development of deep
learning. Remarkable advancements have been made on image classification [34]. CNN
architecture is mainly divided into convolution layer, pooling layer and fully connected
layer (Figure 6). The various aspects in the whole image are assigned importance for
establishing a distinction between different objects in convolution layer. The weights
of convolution kernels (not directly accessible to users) are constantly updated during
algorithm iterations. After the convolution, the pooling operation can reduce the spatial
size of the convolved features. It can help reduce the computing power requirements of
data processing. We generally use two pooling methods, including maximum pooling
and average pooling. Maximum pooling was superior in this study, because it could
suppress noise while reducing dimension. Convolution and pooling layers were combined
to extract image features of different levels. The last layer is the fully connected layer,
which identifies the extracted features and provides the predicted label by using Softmax
regression classifier eventually.
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2.4.2. VGG-16

VGG-16 is a CNN algorithm proposed by the Visual Geometry Group of Oxford
University [35]. It consists of thirteen convolution layers (extracting image features), five
maximum pooling layers (reducing image spatial size) and three fully connected layers
(classifying images into labels) (Figure 7). Compared with traditional convolutional neural
networks, this algorithm uses a 3 × 3 convolution kernel to replace the larger one (e.g.,
5 × 5, 7 × 7). This optimization effectively reduces the number of model parameters
and extracts the detail features of the images more accurately. Hence, it can improve the
computing speed and has good generalization performance.
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2.4.3. Inception-V3

Inception-V3 is the most representative algorithm among inception algorithms [36].
It uses the Inception module, which performs multiple convolution and max pooling
operations in parallel to obtain a deeper feature map. The Inception-V2 references VGG
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net using small convolution kernels (e.g., 1 × 1, 3 × 3) to reduce the computational cost
effectively. On the basis of that, Inception-V3 decomposes the 3 × 3 convolution kernel into
1 × 3 and 3 × 1 convolution kernels (Figure 8). The depth and nonlinearity of the network
increase, which makes the network classification ability stronger.
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2.4.4. ResNet-50

ResNet-50 is proposed to solve the degradation problem in neural network training,
which means the performance of the algorithm decreases with the deepening of network
layers [37]. Residual block is the core of ResNet network (Figure 9), which mainly connects
the convolution layer across layer by jumping connection and short circuit methods. It
can transfer the input x as the initial result directly to the output, ensuring the integrity of
the information. The output result is H(x) = F(x) + x, where F(x) is the residual function,
which helps to transmit information to deeper neural networks and improve the accuracy
of the algorithm.
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These three algorithms were used to classify different lodging extents and test their
accuracy performance. The ReLU function was used as the activation function, and the
dropout layer was imported to prevent the algorithms from overfitting (dropout_ratio = 0.5).
The last layer (fully connected layer) was replaced by three classification categories to adapt
to the dataset of this study.

To demonstrate the algorithms’ validity and reliability, 70% of the samples (without
substitution) were randomly selected as the training set and the remaining 30% of samples
were the test set.

2.5. Validation

The image classification results of the dataset are evaluated by the confusion matrix,
test accuracy and Kappa coefficient. The test accuracy is figured by the ratio between
the number of correctly classified samples and the total number of samples in the test set.
Kappa coefficient is a robust measure of the extents of agreement. In order to evaluate these
indicators more persuasively, we repeated the experiments 10 times. The test accuracy and
Kappa coefficients were calculated by the following formula and recorded as the average
of ten repetitions:

Test Accuracy =
∑ n

i=1xii

N
(1)

Kappa =
∑ n

i=1xii/N −∑ n
i=1(∑

n
j=1xij∑ n

j=1xji)/N2

1−∑ n
i=1(∑

n
j=1xij∑ n

j=1xji)/N2 (2)

where xii refers to the correctly predicted samples, xij refers to the elements of the i-th row
and j-th column of the confusion matrix, n is the number of classifications and N is the total
number of samples in test set.

3. Results
3.1. Research Images Analysis

In order to obtain an understanding of the lodging features under different types
of images better, all the samples were used to observe the characteristics variation of
maize canopy in the different lodging extents. The intensity values of RGB images and the
reflectance of multispectral images were extracted directly by the statistical function of the
ENVI 5.3 software.

3.1.1. RGB Images Analysis

RGB images contain the intensity values in red, green and blue color channels ranging
from 0 to 255. Different intensity values of the three channels are combined into different
colors. The means and standard deviations of three channels with different lodging extents
were calculated in Figure 10. The intensity values of lodging (moderate lodging and severe
lodging) were all significantly higher than that of non-lodging in three bands, but those
of moderate and severe lodging were close relatively. In the non-lodging area, there were
interspaces between maize plants along with shadows, and the soil was exposed to aerial
photography, which made the intensity values low. After lodging, the plants tilted and
piled each other, causing the soil to be covered. The intensity values increased with the
decrease of soil bareness and the increase of plant density. Meanwhile, the changes of
intensity values with different lodging extents were consistent in three bands, which were
the lowest in blue and highest in green band. In Table 1, compared with the intensity
values of non-lodging maize in three bands, those of the moderate lodging increased by
37.64%, 21.68% and 27.73%, and those of the severe lodging increased by 53.81%, 32.89%
and 40.81%, respectively. It showed that the intensity values increased rapidly after lodging,
and the increase rate of the values in the blue band was the highest.
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Table 1. The average intensity values with three lodging extents in different bands.

Extents Bands Blue Green Red

Non-lodging 82.49 103.99 94.84
Moderate lodging 113.54 126.54 121.14

Severe lodging 126.88 138.20 133.55

3.1.2. Multispectral Images Analysis

Multispectral images show the reflectance in green, red, red edge and near-infrared
bands with different lodging extents. The reflectance ranges from 0 to 1. The means and
standard deviations of four channels with different lodging extents were calculated in
Figure 11. The spectral reflectance increased following the enhancement of lodging extents
in four bands. The reason was that lodging has changed the morphological structure of the
maize population. The original maize canopy was damaged with the stems exposed. As
the severity of maize lodging increased, more stems were exposed in aerial images taken
by the UAV. Furthermore, the reflectance of the leaf was lower than that of the stem [24]. In
Table 2, the reflectance of the red edge and near-infrared bands was significantly higher
than that of the green and red bands. Compared with the reflectance of non-lodging maize
in four bands, that of the moderate lodging increased by 6.45%, 12.50%, 19.51% and 13.20%,
and that of the severe lodging increased by 19.35%, 25%, 36.58% and 20.75%, respectively. It
indicated that in different lodging extents, the variation of reflectance in the red edge band
was more evident than that in the visible band, which meant the increase rate of reflectance
in the red edge band was the largest as well.

Table 2. The average reflectance with three lodging extents in different bands.

Extents Bands Green Red Red Edge Near-Infrared
Non-lodging 0.31 0.24 0.41 0.53

Moderate lodging 0.33 0.27 0.49 0.60
Severe lodging 0.37 0.30 0.56 0.64
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3.2. Lodging Classification Using RGB Images

VGG-16, Inception-V3 and ResNet-50 had pre-trained CNN models to deal with RGB
images. Their weight parameters were trained and identified based on a huge number of
RGB images from the ImageNet Dataset (http://image-net.org/index, accessed on 4 March
2022). The transfer-learning method could achieve sharing of model features through the
hyperparameter transfer. Therefore, the backbone parameters of three CNN algorithms
were initialized using the pre-trained weights, which could save algorithm training time
and obtain accurate results. The PyTorch framework with Python 3.6 was used to support
all experiments, and GTX 1070 6G GPU was employed to accelerate the overall process.
The learning rate, batch size and the number of iterations of the three algorithms were set
to 0.0001, 20 and 100, respectively. The networks were trained with the Adam optimizer
and cross-entropy loss function to optimize the objectives.

The changes of classification accuracy and loss in three algorithms during 100 iterations
were shown in Figure 12. Due to the use of pre-training models, the initial training
accuracies were all more than 0.6. With the continuous optimization of the algorithms, the
classification accuracy improved rapidly. Eventually, the training accuracy of the three
algorithms reached 86.16%, 91.89% and 94.16%, respectively. In addition, we chose cross-
entropy as the loss function, and loss gradually decreased following the opposite overall
trend to accuracy curves. Both of them began to maintain stability after approximately
20 iterations. The convergence rate of ResNet-50 algorithm was obviously faster than the
other two algorithms. In Table 3, the test accuracies of the three algorithms were 83.55%,
87.32% and 90.08% with Kappa coefficients of 0.7421, 0.8040 and 0.8599, respectively. The
overfitting phenomenon did not occur in the training process. ResNet-50 obtained the
optimal performance in three algorithms, whose test accuracy was 7.81% and 3.16% higher
than VGG-16 and Inception-V3. However, in addition to discussing the overall classification
accuracies of the three algorithms, the classification performance of different categories
was also worth further analysis.

http://image-net.org/index
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Table 3. Performance of the three algorithms for the test sets of RGB images.

Algorithms Test Accuracy Kappa

VGG-16 83.55% 0.7421
Inception-V3 87.32% 0.8040

ResNet-50 90.08% 0.8599

The confusion matrices of the three algorithms are shown in Figure 13. It indicated
that the performance varied for different lodging severity extents in three algorithms. The
identifications of non-lodging all achieved good results, whose classification accuracies
were more than 90%. The accuracies of Inception-V3 and ResNet-50 in moderate lodging
were improved over 10% compared to that of VGG-16. The three algorithms had no distinct
differences in severe lodging. However, the classification error of the three algorithms
between moderate lodging and severe lodging was high with almost over 10%, especially
VGG-16, which made it difficult to identify the subdivision of lodging effectively.
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3.3. Lodging Classification Using Multispectral Images

For multispectral images, the backbone parameters of the three algorithms needed to
be randomly initialized to retrain models by the Xavier initialization method [38]. The last
layer (fully connected layer) was replaced by three classification categories as well. The
software environment and hyperparameter settings were the same as the operation on the
RGB images.

The fluctuations of classification accuracy and loss of the three algorithms during
100 iterations using multispectral images were represented in Figure 14. In the early stage
of algorithm optimization, the accuracy and loss curves showed an oscillating trend. That
was because the algorithms were quickly adjusting the parameters to meet the classification
requirements at the beginning. Then, the training accuracy of the three algorithms gradually
increased and converged after 60 iterations with 92.34%, 94.70% and 98.55%, respectively.
With the continuous optimization, the loss decreased quickly and ResNet-50 was the first
to realize convergence. In Table 4, the test accuracies of the three algorithms were 89.91%,
92.36% and 96.32% with Kappa coefficients of 0.8318, 0.8935 and 0.9551, respectively. There
was no over-fitting phenomenon in the training process as well. The test accuracy of
ResNet-50 was 7.12% and 4.28% higher than VGG-16 and Inception-V3, respectively.
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Table 4. Performance of the three algorithms for the test sets of multispectral images.

Algorithms Test Accuracy Kappa

VGG-16 88.91% 0.8318
Inception-V3 92.36% 0.8935

ResNet-50 96.32% 0.9551

The confusion matrices of the three algorithms through multispectral images are
shown in Figure 15. The three algorithms still performed well in the classification of non-
lodging, which was higher than 92%. Compared with the RGB images, the classification of
moderate lodging and severe lodging was significantly improved by multispectral images,
and the accuracies of Inception-V3 and ResNet-50 were more than 90%. The accuracy error
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of ResNet-50 between moderate lodging and severe lodging was less than 5%, which can
better classify the three extents of maize lodging.
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3.4. Classification Results

In this study, the experiment results indicated that the overall performance of three
deep learning algorithms using multispectral images in classification of different maize
lodging extents was better than that of RGB images with an increase of 6.42%, 5.77%
and 6.93% (Figure 16). The maize lodging classification based on RGB images using
three algorithms realized high accuracy in non-lodging, which was suitable for the binary
classification of lodging and non-lodging. Among the three deep learning algorithms,
ResNet-50 was efficient and robust to classify the different lodging extents with the fastest
convergence rate and highest classification accuracy during algorithm training. ResNet-
50 also had the highest improvement in classification accuracy of multispectral images
compared with RGB images, which could extract the lodging features more effectively.
Therefore, ResNet-50 was the optimal algorithm to realize the classification of maize
lodging extents.
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4. Discussion

Lodging is a major factor in decreasing the crop yields worldwide. Accurate clas-
sification of lodging extents is beneficial to monitoring crop production and conducting
reasonable decision-making. Timely and effectively obtaining experimental data plays a
crucial role in it. Some researchers used satellite data to conduct crop lodging studies [14,39].
However, it is susceptible to clouds and the revisiting time is long with low spatial resolu-
tion. With the development of UAV technology, remote sensing research based on UAVs
platform has been highly valued and become a hotspot [40]. The wide application of UAVs
has indeed facilitated the monitoring of crop lodging. Tan et al. [23] used RGB images for
grading lodging severity with the accuracy of 79.1%. Sun et al. [25] realized the detection
of maize lodging with the overall accuracy of 86.61% and the Kappa coefficient of 0.8327
using maximum likelihood classification (MLC) by multispectral images. Furthermore,
through applying machine learning methods, such as nearest neighborhood classification
and Support Vector Machine (SVM), Chauhan et al. [24] and Rajapaksa et al. [41] reported
the wheat lodging classification using multispectral images with 90% and 92.6% accuracies,
respectively. Multispectral images had more potential to explore the characteristics of crop
lodging. The lodging feature extraction is also of great significance for the classification re-
sult. Canopy texture, crop height, spectral reflectance and vegetation indices were extracted
separately to research in the above study. The extraction process was both time-consuming
and subjective. The features extracted for different crops were also different. It created
difficult problems for further research of crop lodging.

We further realized the maize lodging classification based on deep learning algorithms.
Deep learning algorithms can automatically extract intrinsic features from massive data
through supervised learning to classify different lodging extents. Among the three deep
learning algorithms in this study, the ResNet-50 algorithm performed best, with a test
accuracy of 96.32% and Kappa coefficients of 0.9551, which was significantly better than
traditional machine learning algorithms. On the type of images used above, although
the lodging classification using multispectral images was more accurate, the low cost
of RGB images acquisition and more than 80% test accuracy made it more beneficial
for smallholders to detect crop lodging. The application of transfer-learning method can
greatly shorten the training time of the models, which can facilitate more timely agricultural
disaster assessment and management. In addition, through using multispectral images, the
reflectance variation in red edge band was more evident than that in visible band with the
increase of lodging severity extents, which may be an important factor for better lodging
classification using multispectral images. Using red edge band to extract sensitive features
for classifying lodging extents is worth further study.

There are still some deficiencies that need to be improved. We divided the exper-
imental plots into three lodging extents. Further detailed classification of the lodging
extents is necessary, which meets the requirements of precision agriculture. Moreover,
the models presented in this study need to be tested and validated in other crop lodging
classifications. The solution of them can serve crop yield prediction and precise agricultural
insurance claim.

5. Conclusions

In this study, unmanned aerial vehicles (UAVs) provided convenience for multiple
types of data acquisition. The RGB and multispectral images of maize lodging canopy were
tested to classify different lodging extents. The images were preprocessed by cropping,
cleaning and enhancing to generate the dataset containing 5000 subimages. The experi-
mental results indicated that the spectral reflectance increased with the increase of lodging
severity on the multispectral images of maize lodging. The red edge band was the most
sensitive to the change of lodging severity extents. The classification performance of the
three algorithms using RGB images, although good for non-lodging with over 90% accu-
racy, was unsatisfactory for moderate and severe lodging. The test accuracies of VGG-16,
Inception-V3 and ResNet-50 were 89.91%, 92.36% and 96.32% with Kappa coefficients of
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0.8318, 0.8935 and 0.9551, respectively, by using multispectral images. The accuracy of
ResNet-50 on each lodging subdivision category all reached 96%. Therefore, ResNet-50
outperformed the Inception-V3 and VGG-16 algorithms, and multispectral images were
more suitable for crop lodging classification than RGB images. This study provides a
more accurate and effective method for the classification of crop lodging extents. Further
detailed lodging classification and the general applicability of the method will be the focus
of subsequent research.
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