Next Article in Journal
The Effects of Ecological Public Welfare Jobs on the Usage of Clean Energy by Farmers: Evidence from Tibet Areas—China
Previous Article in Journal
Potato Late Blight Severity and Epidemic Period Prediction Based on Vis/NIR Spectroscopy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

A Review of Crop Protection Methods against the Twospotted Spider Mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods

1
Institute of Plant Protection—National Research Institute, Wegorka 20, 60-318 Poznan, Poland
2
Sumi Agro Poland, Bonifraterska 17, 00-203 Warszawa, Poland
*
Author to whom correspondence should be addressed.
Agriculture 2022, 12(7), 898; https://doi.org/10.3390/agriculture12070898
Submission received: 12 May 2022 / Revised: 18 June 2022 / Accepted: 20 June 2022 / Published: 21 June 2022
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)

Abstract

:
Tetranychus urticae is one of the most important pests of many species of economically important crops, cultivated both under cover and in open ground. Feeding T. urticae reduces the size and quality of the yield. Nowadays, in connection with the popularization of organic farming and the green order policy, non-chemical methods that provide an effective reduction in the harmfulness of this spider mite are sought. The aim of the study is to present the current state of knowledge on methods of reducing the undesirable effects of T. urticae feeding. The paper discusses the main directions of searching for biopesticides against T. urticae and provides a list of natural components on which commercially available products are based. The aspect of using the natural properties of plants, micro- and macro-organisms is presented. The paper also deals with the issue of the spread of spider mites in connection with the observed climate changes.

1. Introduction

The twospotted spider mite—Tetranychus urticae Koch, 1836—is a member of the family Tetranychidae, which includes about 4000 species [1,2]. It has been found in all climate zones in Europe, Asia, and North and South America [3,4,5]. T. urticae was originally described based on European specimens. It is regarded as a native species of the temperate climate zone but is also found in subtropical regions. It occurs throughout the United States in greenhouses, where it winters outside its natural range of distribution. Tuttle and Baker [6] reported that this species colonizes deciduous fruit trees in the northern regions of the US and Europe. The host range of T. urticae covers about 1275 plant species from 70 genera representing several dozen botanical families [7], either wild or cultivated, including vegetables, ornamental plants, crops, fruit trees and shrubs [2].
The control of T. urticae relies mainly on the use of synthetic acaricides, which is not always effective as this species has a high ability to develop resistant populations [2,8,9], and many acaricides have a non-selective effect on predatory mites [10]. The misuse of chemical products for the control of spider mites can cause contamination of the natural environment and food, especially fruit and vegetables meant to be consumed when freshly harvested [11,12]. Acaricides belong to several main groups of chemical compounds: organophosphates, pyrethroids, carbazinates, quinolines, carbamates, tetrazines, diphenyl oxazolines, quinazolines, phenoxypyrazoles, thiazolidines, macrocyclic lactones, pyridazones, and pyrazole derivatives [13,14,15]. Recently, many studies have been carried out on replacing synthetic acaricides with new, safer agents, due to the risk of developing tolerance, toxicity and harmfulness to the natural environment associated with their overuse [16,17,18,19,20,21].
This review presents examples of currently used methods to control mites, including chemical and other measures. We aimed to present promising studies by various authors on the use of natural substances, biological strategies relying on bacterial and fungal microorganisms, as well as macro-organisms, including predatory mites and insects.

1.1. Life Cycle

T. urticae feeds mainly on the underside of the leaf [22]. After colonizing a new site, spider mites produce a silk web, which protects them against the negative effects of abiotic and biotic environmental factors and indicates the presence of the pest [23,24]. The silk web is also used by T. urticae for migration and is the carrier of a pheromone substrate [25,26,27]. Some plant species have leaves structures called leaf domatia, which are very eagerly colonized due to the microclimate promoting the development of spider mites [28].
Apart from the occurrence of webs, the presence of spider mites is evidenced by chlorotic discolouration on the leaves caused by feeding. Physical damage to leaf tissues disturbs the structure of the photosynthetic apparatus and photosynthesis, carbon dioxide assimilation, sugar metabolism and transpiration of the colonized leaves [29,30,31,32,33]. Significantly increased guaiacol peroxidase (GPX) activity and low level of catalase (CAT) activity were measured in Ocimun basilicum L. ‘Purpurascens’ (Lamiaceae) leaves infested by mites [34]. It is a species characterised by haplodiploid arrhenotoky, in which males develop from unfertilized eggs and are haploid, whereas females develop from fertilized eggs and are diploid [35]. The life cycle consists of the egg, larvae, quiescent larva (protochrysalis), protonymph, quiescent protonymph (deutochrysalis), deutonymph, quiescent deutonymph (teleiochrysalis), and sexually mature individuals: males and females. Males guard quiescent deutonymph females before they reach maturity, or juvenile females, and then fertilize them [35]. Regev and Cone [36,37,38] identified farnesol, nerolidol, geraniol, and citronellol as the components of sex pheromones in quiescent deutonymph females. Females mate only once, while males mate multiple times [39], preferring unrelated females [40]. The length of the life cycle and the development of the population depends on the temperature, the type of host plant on which it develops, and plant health [41,42]. The dynamics of its population also depend on the light intensity at the site of plant growth. Exposure to light intensity from 50 to 450 μmol m−2·s−1 increases its fertility and decreases its mortality [43]. Under optimal conditions, their life cycle is shorter than 10 days, and one female can deposit more than 100 eggs [44,45]. During the growing season of the host plant, the population of T. urticae may increase by many times. Its growth population, apart from environmental conditions, is also influenced by the type of social interactions between females and males, modifying female fertility [46].
T. urticae only moves relatively short distances on its own. It mainly migrates by wind-drift dispersal [47]. When food availability is low, silk balls, i.e., aggregates formed mainly by sexually immature females, can be observed on apical parts of plants. Silk balls are dispersed to new sites where females establish new colonies [48,49]. Females can go into the state of diapause. During this period, they do not feed or deposit eggs. Differences with respect to diapause have been observed between populations from different geographic regions [50,51]. Diapausing females are more tolerant to lower temperatures [52]. They are characterized by a different metabolism of amino acids, sugars and proteins compared to summer females [53,54] and a different expression of genes determining digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton [55]. A difference in the termination of the diapause in females collected at different times of winter has been observed [56]. Diapause in T. urticae females is associated with the reorganization of their metabolism and physiology in short-day regions, low ambient temperatures and limited food availability. Diapause in females is a strategy enabling survival in these unfavourable conditions.

1.2. Harmfulness

About 10% host plants infested by T. urticae are crops [57], including economically important crops in different regions of the world [58,59,60,61]. The intensive feeding of mites combined with a rapid increase in population size have a negative effect on the physiology of the whole plant, as well as the yield size and quality [58,62]. Muluken et al. [63] observed the complete destruction of potato plants in fields. Nyoike and Liburd [64] reported 50 to 80% loss in strawberry yield, while Jayasinghe and Mallik [65] reported up to 50% loss in tomato yield. This high loss in yield has been explained by pest invasion in the early stages of plant development, which was observed in Cucumis sativus L. (Cucurcitaceae) [66], cotton [67], tomato [65], and potato [68]. Spider mites are also harmful to sugar beet Beta vulgaris L. (Chenopodiaceae) grown in Poland [69]. For several years, large populations of this pest have been observed in plantations in central Poland, especially in Wielkopolskie, Kujawsko-Pomorskie, Łódzkie, Lubelskie, and parts of Mazowieckie provinces. It is a region with a large acreage of sugar beet crops, as well as agrometeorological conditions favourable for the development of the pest during the growing season (dry springs, high summer temperatures 25–30 °C and low precipitation 0−200 mm) [70].
Symptoms of damage caused by mites are initially observed on field margins, and with time they appear in patches all over the field. T. urticae causes premature yellowing and drying of the leaves. The feeding of mites that suck out the parenchymal tissue is visible on both sides of the leaf of sugar beet plants. As a result of intense pest feeding, small, bright spots in a mosaic pattern develop on the upper side of the leaf. The underside of the leaves is covered by a silk web with different developmental stages of the spider mite. The symptoms of early pest feeding are very often underestimated and mistaken for symptoms caused by viruses, nematodes or drought. The increase in twospotted spider mite population and further feeding cause leaf malformation and a web occurs on the plant apex. Plants wilt, turn brown and eventually die back. In the climate of Poland, T. urticae might produce from 4 to 6 generations during one growing season. When temperatures are favourable (25–30 °C), which often happens in late spring and summer, a single generation might develop in just 8 days [69]. The decrease in the root yield caused by intensive feeding of twospotted mite on sugar beet may be from 20 to 50%, and the sugar content in the roots may be reduced by up to 2% [69,71,72].

2. Available Methods for the Control of T. urticae

2.1. Chemical Control of T. urticae

Currently, the most popular method for the control of spider mites relies on the use of synthetic acaricides. Treatments should be performed based on systematic monitoring. According to regulations on integrated pest management, plants should be sprayed when threshold values of economic injury are exceeded and when the pest population cannot be reduced by growing arachnid-tolerant plants or using biological methods. If several treatments are necessary, they should be performed with products from different chemical groups, representing different modes of action. Phytophagous mites from the Tetranychidae family are a very specific group of crop pests. Their presence on crops often goes unnoticed until the damage caused by feeding causes significant economic losses. In practice, acaricides should be used when a greater number of mites is observed, and a silk web occurs on different plant organs. Moreover, these pests may produce up to several generations during the growing season and very quickly develop resistance to the active ingredients contained in synthetic acaricides. Table 1 presents selected products for the control of spider mites from among 14 chemical groups (15 active substances) available on the world market of plant protection chemicals. The presented acaricides are diverse in their mechanism of action. They affect the nervous system—neurotoxins (5)—inhibit the growth of mites or disturb their development (8), and inhibit lipid metabolism (2).
Many years of observations on the chemical control of spider mites revealed the presence of pest resistance. For example, since the 1970s, T. urticae has dominated in cotton grown in Australia, where resistance to acaricides used at that time was very quickly noted. Tolerance of T. urticae was also observed in cotton and bean plantations treated with insecticidal organophosphates [80].
The resistance of T. urticae to pyridaben, a substance from the pyridazinone class, was also investigated [16,17,81,82]. Pyridaben is a mitochondrial electron transport complex I inhibitor. The H110R mutation in the PSST subunit has been reported as a major factor in pyridaben resistance in the two-spotted spider mite, T. urticae. However, backcross experiments revealed that the mutant PSST alone conferred only moderate resistance. In contrast, inhibition of cytochrome P450 (CYP) significantly reduces resistance levels in many highly resistant strains. It was reported previously that maternal factors contributed to the inheritance of pyridaben resistance in the egg stage, but the underlying mechanisms have not been explained. Itoh et al. [82] studied the combined effects of the PSST H110R mutation and candidate CYPs, as resistance factors on pyridaben resistance in T. urticae. Their study (2021) revealed that the maternal effects of inheritance of resistance in the egg stage were associated with CYP activity. Analysis of differential gene expression by RNA-seq identified CYP392A3 as a candidate causal factor for the high resistance level. The researchers concluded that the high pyridaben resistance levels are due to a synergistic or cumulative effect of the combination of mutant PSST and associated CYPs, including CYP392A3, but other yet to be discovered factors might also be involved [82].
Currently, T. urticae is defined as the major crop that is pest-resistant to most of the selective acaricides approved for its control, i.e., organophosphates, abamectin, clofentezine, hexythiazox, bifenthrin and chlorphenapil [16,17,83]. The control of spider mites is very difficult because, due to the emergence of several generations per year, the rapid development of resistance to chemical products has been observed in this species. In the practice of plant protection, various biological agents are increasingly used, including acarophages, biotechnological agents, or other methods based on natural substances [19,84,85].

2.2. Available Methods for the Control of T. urticae

Due to the policy aiming to reduce the use of synthetic pesticides, the purpose of which is to protect the natural environment and its biodiversity, researchers are looking for new, effective methods to limit the harmfulness of T. urticae. In this area of interest, studies are carried out on the development of biopesticides based on natural substances and the bionomy of host plants, on the effects of microorganisms, their metabolites, and beneficial organisms.
Previous studies have demonstrated that T. urticae populations develop resistance to major acaricides due to their short life cycle (8–12 days at 30–32 °C) and high fertility (90–110 eggs per female) [86]. Therefore, it is necessary to develop new, natural control methods as an alternative to chemical products. One example of such a novel approach is the use of intercropping systems to minimize resistance to pesticides [20,87,88], reduce pest population densities [87,88,89,90], increasing the diversity and efficiency of natural enemies [61,91,92,93,94,95,96,97] and to improve crop yield [61,88,97].

2.2.1. Natural Properties of Plants

One method to reduce the harmfulness of pests is to grow plants whose natural properties inhibit pest development. Numerous studies have demonstrated the intraspecific differences in the susceptibility of crop cultivars to infestation by T. urticae, e.g., grapevine Vitis L. [98], strawberry Fragaria spp. (Rosaeceae) [99,100], Rosa spp. (Rosaceae) [101,102], Malus spp. (Rosaceae) [103,104,105,106], Phaseolus vulgaris L. (Fabaceae) [107,108,109,110,111,112], Cucumis sativus L. [113,114], Prunus persica (L.) (Rosaceae) [115], Glycine max L.(Fabaceae) [116], Solanum lycopersicum (L.) [117,118], Solanum melongena L. (Solanaceae) [119]. Different susceptibility of cultivars to colonization by T. urticae may be due to physical aspects and result from the structure of the leaf blade, cuticle, and the presence of grandular and non-grandular trichomes, which secrete plant defence substances (secondary metabolites) or prevent T. urticae from colonizing leaves and feeding.
Secondary plant metabolites have been investigated in many experimental studies aimed at identifying effective and safe agents protecting against spider mites. Plant extracts may have a potential for the control of mites due to the content of secondary metabolites, such as terpenoids, alkaloids, flavonoids and polyacetylenes [120,121]. Moreover, plant extracts often contain mixtures of active substances which may delay or prevent the development of resistance [122]. In addition, when selecting potential pesticidal plant extracts, several properties need to be considered, including the efficiency of their low concentrations in mite control, and non-toxicity to other animals, so that they can be used safely in sustainable agriculture [123]. Extracts obtained from aboveground and underground parts of plants have a lethal effect on spider mites, change the conductivity in the nervous system by influencing sodium channel transport [124], and have a deterrent/repellent effect and inhibit the egg-laying process [125,126,127,128,129,130,131,132].
So far, studies on the efficiency of T. urticae control have been carried out for more than 100 plant species from different botanical families, among which the largest number of plants studied represented Asteracae [133,134]. Yanar et al. [135] reported that the foliar application of alcoholic leaf extract from X. strumarium L. (Asteraceae) and Anthemis vulgaris L. (Asteraceae) caused 79.85 ± 0.83 and 76.63 ± 2.08% mortality in female two-spotted mites, respectively. Among natural pesticides, French marigold Tagetes patula Linn. (Asteracae) is considered an excellent species because it produces thiophenes and many polyacetylene compounds with a strong biocidal effect [136]. Antibacterial, antifungal, insecticidal and nematocidal activities of this plant species have been demonstrated in many studies [137,138,139,140,141,142,143], in addition to the effective control of ticks [87]. An experiment carried out by Ismail et al. [72] revealed that the marigold extract had toxic, ovicidal and repellent effects on T. urticae, and caused a 30−50% reduction in the number of deposited eggs. The deterrent and toxic properties of Abrus precatorius (Fabaceae) seed extracts were reported by Amer et al. [144]. The essential oils obtained from Tanacetum vulgare L. (Asteraceae) and Artemisia absinthium L. (Asteraceae) strongly increased the mortality of T. urticae [145]. Extracts from Matricaria recutita L. (Asteraceae), Achillea millefolium L. (Asteraceae), Taraxacum officinale L. (Asteraceae), and Salvia officinalis L. (Lamiaceae) strongly decreased the fertility, viability and feeding intensity of T. urticae [146,147]. Surface deposits on Taxus baccata L. (Taxaceae) needles removed by dipping in water had a detrimental effect on the total fecundity and oviposition period of T. urticae [148]. Many experimental studies have demonstrated that fragrances of phylogenetically distant plants are most effective in repelling certain pests on host plants [17,20,95,96,97]. When selecting potentially pesticidal plant extracts, several properties should be considered, including the efficiency of low concentrations in controlling mites, and lack of toxicity to other animals, ensuring safe use in sustainable agriculture [17]. One aspect of introducing and using plant extracts is their persistence and efficiency. The persistence and efficiency of a biopesticide can be improved by using new formulations, e.g., chitosan nanocapsules loaded with oil extracted from A. millefolium. In a study by Ahmadi et al. [149], this procedure significantly prolonged the acaricidal effect of the oil by controlling its release depending on the pH of the environment.
Based on the reported efficiency of natural substances, commercially available biopesticides have been developed and recommended for the control of T. urticae in many crops. Table 2 presents examples of plants as a source of natural secondary metabolites showing high biological activity. Particular attention was paid to those plants, the extracts of which were characterized by antifungal, antibacterial or anti-inflammatory properties.
Findings from laboratory studies have been successfully used in crop field trials. One example of such a novel approach is the use of intercropping systems to minimize resistance to pesticides [20,88]. Allium sativum L. ‘Iandrace’ (Amaryllidaceae) intercropped with strawberry (one, two and three garlic rows among the strawberry rows) caused a 44 to 65% reduction in the number of mobile forms of T. urticae [92]. The number of T. urticae eggs decreased by 38, 43 and 64%, respectively. This effect was attributed to sulfur compounds such as diallyl disulfide or diallyl trisulfide that were identified in garlic essential oil. Intercropping Chinese chive Allium tuberosum Rottler ex Spred. (Amaryllidaceae), Rottler ex Sprengel, with strawberry decreased the mean number of mites per leaf. However, it did not reduce the number of deposited eggs [92]. Mohammadi et al. [154] conducted a promising study in which strip intercropping of green beans with garlic reduced the densities of T. urticae eggs and mobile forms during the growing season in different intercrop ratios compared with green bean sole crop. In addition to protective secondary metabolites, plants also synthesize protective bioproteins. In 2017, Santamaria et al. [155] identified the MATI (mite attack triggered immunity) protein in Arabidopsis thaliana L. (Brassicaceae) plants closely related to resistance to T. urticae. The study revealed that T. urticae caused greater damage to Arabidopsis leaves in MATI knockdown mutants compared to Col-MATI overexpressing line.

2.2.2. Micro- and Macro-Organisms for the Control of T. urticae

Bacteria

The use of bacteria for the control of T. urticae is one of the research areas to develop an effective method for the control of the two-spotted spider mite. Many studies have demonstrated that Pseudomonas aeruginosa (Schroeter) caused a 100% mortality of adult females T. urticae after 72 h at a concentration of 107 cfu mL−1 by spraying application. Treatment with Bacillus subtilis (Ehrenberg) resulted in approximately 80% mortality, and Lysinibacillus spaericus (Meyer and Neide) slightly more than 95% [156]. Golec et al. [157] reported that products based on Chromobacterium subtsugae Martin et al., strain PRAA4-1 (Grandevo DF2) and heat-killed Burkholderia spp. 92 strain A396 (91 Venerate EP) limited the growth of a T. urtice population after a single treatment during a single pest generation. Grandevo DF2 caused 50% mortality in nymphs and reduced the fertility of females that survived the application of this product. Treatments with Streptomyces avermitilis (Burg et al.) and B. thuringiensis Berliner 1915 caused 90–100% mortality in females and 91–99% mortality in nymphs, respectively [158]. The pathogenicity of the bacteria is based on adhesion, which can increase the penetration of proteases, chitinase, lipase and hydrolase across the epidermis and natural openings in the T. urticae body, leading to the rapid death of the pest. In addition, the deterrent effect of Pseudomonas strains could be explained by the production of secondary metabolites, including volatiles, which prevent T. urticae colonizing leaves [159].

Fungi

Attempts have also been made to use parasitic fungi for the control of spider mites. Satisfactory efficiency has been achieved for Beauveria bassiana (Bals.-Criv.), [160], Metarhizium brunneum Petch [161] and Metarhizium anisopliae (Metchnikoff) strain 442.99, Hirsutella spp., strain 457.99 and Verticillium lecanii (Zimm.) strain 450.99. For B. bassiana (Naturalis-L) a 98% reduction in the number of eggs, juvenile and adult forms of T. urticae on tomato plants was observed [162].
One method to reduce the harmfulness of T. urticae relies on the use of fungal fermentation products: milabamectin and abamectin. These compounds are produced by soil fungi from the actinomycetes group: Streptomyces hygroscopicus subsp. aureolacrimosus (Jensen) and Streptomyces avermitilis (ex Burg). Abamectin is commercially available in products for the control of T. urticae in a wide range of vegetables, fruit shrubs and ornamental plants (Table 1). In recent years, resistance to this substance has been observed among T. urticae populations in many regions of the world [75,163,164,165,166]. Among European populations, resistance to milabamectin and cross-resistance to both substances was observed [167].

Predatory mites

Mohammadi et al. [154] (2021) carried out studies on seven predators of T. urticae: Stethorus gilvifrons (Muhant), Orius niger (Wolff), Neoseiulus zwoelferi (Dosse), Chrysoperla carnea (Stepheus), Geocoris punctipes (Say), Scolothrips sexmaculatus (Pergande), and Nabis pseudoferus (Remane). Over two growing seasons, only two of these species, S. gilvifrons and O. niger, were the main predators of T. urticae, and they caused 20 to 45% reduction in T. urticae populations. Another predator of T. urticae is Pronematus ubiquitus McGregor. This mite also changes the biology of T. urticae and consequently females deposit a lower number of eggs on leaves that were previously colonized by P. ubiquitus [168].
One vital aspect of using bacteria and fungi to control T. urticae is their potential impact on beneficial predatory mites. Studies have demonstrated a significant role of timing when using microbial products. Despite their high efficiency, Bacillus thuringiensis Berliner and Streptomyces avermitilis (ex Burg), as well as fungus Lecanicillium lecanii had a negative effect on Phytoseiulus persimilis Athias-Henriot when products were applied on the same day. The release of predatory mites one day after treatment of plants with L. lecanii and 7 days after treatment of plants with B. thuringiensis or S. avermitilis had no negative effect on the survival of the introduced predators. These findings confirm the potential suitability of entomopathogenic fungi and bacteria in combination with predatory mites in T. urticae biocontrol [158].

Insects

A study investigating the effects of naturally occurring insects in an organic strawberry crop demonstrated that Anthocoris nemorum (Linnaeus) may play a role in reducing T. urticae populations. Molecular analysis of the intestinal contents of these insects revealed the presence of T. urticae DNA [169]. The larval forms of the predatory thrips Scolothrips longicornis Priesner eat the eggs of T. urticae. Consumption increases as the temperature rises to 30 °C, and decreases at higher temperatures. T. urticae eggs are also consumed by female thrips most intensively before oviposition [170,171]. Laboratory studies revealed that a minute anthocorid, Orius albidipennis (Reuter), eats on average 7 females of T. urticae [172]. Investigation shown that ants have limiting effect on twospotted spider mite. In study under glasshouse conditions Miyagi et al. [173] and Osborne et al. [174] demonstrated that Tapinoma melanocephalum (Fabricius) is a significant predator of T. urticae.
The above-mentioned groups of micro- and macro-organisms have been used to develop commercially available biocontrol products. Products based on the activity of micro- and macro-organisms are presented in Table 3.

3. The Effect of Climate Change and the Expansion and Development of Spider Mites in the Future

The climate change observed for several decades will certainly affect the role of spider mites as crop pests. According to the current climate change scenario, T. urticae shortens its life cycle in dry and hot conditions, produces more generations per year, and broadens its host range [175]. Climate change models predict that the frequency, intensity and duration of heat waves will increase over the next two decades. Warming may promote the spread of not only T. urticae in the regions where the species is present, but also create conditions for the development of spider mites that so far are normally found in areas of warmer climate, e.g., the tropical species Tetranychus evansi Baker & Pritchard, 1960 [176,177]. Unfavourable winter temperatures do not rule out the possibility of this pest’s survival on crops under cover. Currently, T. evansi has the status of an invasive species. Heat waves might have a profound impact on the efficiency of biological agents for the control of the spider mite [178]. High temperatures might influence the biology of the biocontrol agent, ranging from postponing oviposition to manipulating offspring quantity via egg number and quality via egg size. Such species-specific responses of biocontrol agents to heat stress may also affect their success in controlling spider mites.
Apart from the temperature, wind plays an important role in the dispersal of spider mites. Findings by Narimanov et al. [179] confirmed that strong electrical fields in the air elicit pre-dispersal behaviour, and in combination with a light wind facilitate the dispersal of mobile forms and propagation of spiders to other areas where crops are grown. In their experimental study, the researchers emphasized that the employed strong electrical fields played a rather supplementary role in spiders’ dispersal, with wind remaining the most influential factor.
Current climate change is expected to improve the occurrence and spread of T. urticae in many cultivated plant species. Currently, the role of modern plant protection is to provide effective methods to control pests and to deliver solutions that minimize negative effects on the natural environment. Biological control methods are in line with the European Green Deal strategy, and they rely on the use of microorganisms, including entomopathogenic fungi, predators, or natural plant extracts and secondary metabolites, which create a natural barrier to the increased pressure of twospotted spider mites. Biological control treatments as an alternative to new chemicals used to control mites depend on a number of biotic and abiotic factors. Detailed ecological studies are required to investigate the interactions between the environment and its individual components, and to explain the bionomy of spider mites.

Author Contributions

Conceptualization, M.J. and R.D.; methodology, M.J. and R.D.; software, M.J.; validation, R.D.; formal analysis, J.K.; investigation, M.J. and R.D.; resources, M.J. and R.D.; data curation, J.K.; writing—original draft preparation, M.J. and R.D.; writing—review and editing, M.J., R.D. and J.K.; visualization, D.Z.; supervision, J.K. and D.Z.; project administration, R.D. and J.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research was part of targeted subsidy in Ministry of Science and Higher Education in Poland (2021–2023), implemented in Institute of Plant Protection-NIR (subsidy PROG-02).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding authors.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Migeon, A.; Malagnini, V.; Navajas, M.; Duso, C. Notes on the genus Eotetranychus (Acari: Tetranychidae) in Italy and France with a redescription of Eotetranychus fraxini Reck, new record for Italy and Western Europe. Zootaxa 2007, 1509, 51–60. [Google Scholar] [CrossRef]
  2. El-Sayed, S.M.; Ahmed, N.; Selim, S.; Al-Khalaf, A.A.; El Nahhas, N.; Abdel-Hafez, S.H.; Sayed, S.; Emam, H.M.; Ibrahim, M.A.R. Acaricidal and antioxidant activities of anise oil (Pimpinella anisum) and the oil’s effect on protease and acetylcholinesterase in the two-spotted spider mite (Tetranychus urticae Koch). Agriculture 2022, 12, 224. [Google Scholar] [CrossRef]
  3. Duso, C.; Kreiter, S.; Tixier, M.S.; Pozzebon, A.; Malagnini, V. Biological control of mites in European vineyards and the impact of natural vegetation. In Trends in Acarology, Proceedings of 12th International Congress of Acarology, Amsterdam, The Netherlands, 21−26 August 2006; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
  4. James, D.G.; Prischmann, D. The impact of sulfur on biological control of spider mites in Washington State vineyards and hop yards. In Trends in Acarology, Proceedings of 12th International Congress of Acarology, Amsterdam, The Netherlands, 21−26 August 2006; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
  5. Domingos, C.A.; Melo, J.W.S.; Oliveira, J.E.M.; Gondim, M.G.C. Mites on grapevines in northeast Brazil: Occurrence, population dynamics and within-plant distribution. Int. J. Acarol. 2014, 40, 145–151. [Google Scholar] [CrossRef] [Green Version]
  6. Tuttle, D.M.; Baker, E.W. Spider Mites of Southwestern United States and a Revision of the Family Tetranychidae; University of Arizona Press: Tucson, AZ, USA, 1968; pp. 1–143. [Google Scholar]
  7. Migeon, A.; Dorkeld, F. Spider Mites Web: A Comprehensive Database for the Tetranychidae. 2021. Available online: ww1.montpellier.inra.fr/CBGP/spmweb (accessed on 18 January 2021).
  8. Sato, M.E.; Da Silva, M.Z.; Raga, A.; Filho, M.F.D.S. Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): Selection, cross-resistance and stability of resistance. Neotrop. Entomol. 2005, 34, 991–998. [Google Scholar] [CrossRef] [Green Version]
  9. Nicastro, R.L.; Sato, M.E.; Da Silva, M.Z. Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): Selection, stability and cross-resistance to abamectin. Exp. Appl. Acarol. 2010, 50, 231–241. [Google Scholar] [CrossRef] [PubMed]
  10. Reis, P.R.; Franco, R.A.; Neto, M.P.; Teodoro, A.V. Selectivity of agrochemicals on predatory mites (Phytoseiidae) found on coffee plants. Coffee Sci. 2006, 1, 64–70. [Google Scholar]
  11. Vinicius, G.T.; Marineide, R.V.; Gustavo, L.M.M.; Cristiane, G.N. Plant extracts with potential to control of two-spotted spider mite. Arq. Inst. Biol. 2018, 85, e0762015. [Google Scholar]
  12. Woods, J.L.; Dreves, A.J.; Fisher, G.C.; James, D.G.; Wright, L.C.; Gent, D.H. Population density and phenology of Tetranychus urticae (Acari: Tetranychidae) in hop is linked to the timing of sulfur applications. Environ. Entomol. 2012, 41, 621–635. [Google Scholar] [CrossRef] [Green Version]
  13. Hayes, W.J.; Laws, E.R. Hand Book of Pesticide Toxicology; Academic Press: San Diego, CA, USA, 1991; Volume 1. [Google Scholar]
  14. Khajehali, J.; Van Nieuwenhuyse, P.; Demaeght, P.; Tirry, L.; Van Leeuwen, T. Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in the Netherlands. Pest. Manag. Sci. 2011, 67, 1424–1433. [Google Scholar] [CrossRef]
  15. Korbas, M.; Węgorek, P.; Paradowski, A.; Jajor, E.; Horoszkiewicz-Janka, J.; Zamojska, J.; Danielewicz, J.; Czyczewski, M.; Dworzańska, D. Vademecum of Plant. Protection Products; Wydawnictwo Agronom: Poznan, Poland, 2017; 672p. [Google Scholar]
  16. Van Leeuwen, T.; Tirry, L.; Yamamoto, A.; Nauen, R.; Dermauw, W. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic. Biochem. Physiol. 2015, 121, 12–21. [Google Scholar] [CrossRef]
  17. Ismail, M.S.M.; Tag, H.M.; Rizk, M.A. Acaricidal, ovicidal, and repellent effects of Tagetes patula leaf extract against Tetranychus urticae Koch (Acari: Tetranychidae). J. Plant Protec. Res. 2019, 59, 151–159. [Google Scholar] [CrossRef]
  18. Osakabe, M.; Uesugi, R.; Goka, K. Evolutionary aspects of acaricide-resistance development in spider mites. Psyche J. Entomol. 2009, 2009, 947439. [Google Scholar] [CrossRef] [Green Version]
  19. Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Dermauw, W.; Tirry, L. Acaricide resistance mechanisms in the twospotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Lerma, J.M.; Carmona, E.J.; Daza, M.C.; Escobar-Ramírez, S.; Galindo, V.; Gutiérrez, C.; López, S.D.; et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef]
  21. Mossa, A.T.H.; Afia, S.I.; Mohafrashi, S.M.M.; Abou-Awad, B.A. Rosemary essential oil nanoemulsion, formulation, characterization and acaricidal activity against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). J. Plant Prot. Res. 2019, 59, 102–112. [Google Scholar] [CrossRef]
  22. Ohtsuka, K.; Osakabe, M. Deleterious effects of UV-B radiation on herbivorous spider mites: They can avoid it by remaining on lower leaf surfaces. Environ. Entomol. 2009, 38, 920–929. [Google Scholar] [CrossRef] [Green Version]
  23. Saito, Y. Study on spinning behaviour of spider mites III. Response of mites to webbing residues and their preferences for particular physical conditions of leaf surfaces (Acarina: Tetranychidae). Jap. J. Appl. Entomol. Zool. 1979, 23, 82–91, (In Japanese with an English abstract). [Google Scholar]
  24. Saito, Y. The concept of “life types” in Tetranychinae. An attempt to classify the spinning behaviour of Tetranychinae. Acarologia 1983, 24, 377–391. [Google Scholar]
  25. Clotuche, G.; Deneubourg, J.-L.; Mailleux, A.-C.; Detrain, C.; Hance, T. Discrimination through silk recognition: The case of the two-spotted spider mite Tetranychus urticae. Comptes Rendus Biol. 2012, 335, 535–540. [Google Scholar] [CrossRef]
  26. Clotuche, G.; Mailleux, A.C.; Deneubourg, J.L.; Detrain, C.; Hance, T. The silk road of Tetranychus urticae: Is it a single or a double lane? Exp. Appl. Acarol. 2012, 56, 345–354. [Google Scholar] [CrossRef]
  27. Doğan, S.; Çağlar, M.; Çağlar, B.; Çırak, C.; Zeytun, E. Structural characterization of the silk of two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Syst. Appl. Acarol. 2017, 22, 572–583. [Google Scholar] [CrossRef] [Green Version]
  28. Situngu, S.; Barker, N. Position, position, position: Mites occupying leaf domatia are not uniformly distributed in the tree canopy. S. Afr. J. Bot. 2017, 108, 23–28. [Google Scholar] [CrossRef]
  29. Nihoul, P.; Hance, T.; Van Impe, G.; Marechal, B. Physiological aspects of damage caused by spider mites on tomato leaflets. J. Appl. Entomol. 1992, 113, 487–492. [Google Scholar] [CrossRef]
  30. Park, Y.L.; Lee, J.H. Leaf cell and tissue damage of cucumber caused by two spotted spider mite (Acari: Tetranychidae). J. Econ. Entomol. 2002, 95, 952–957. [Google Scholar] [CrossRef] [PubMed]
  31. Meck, E.D.; Walgenbach, J.F.; Kennedy, G.G. Association of Tetranychus urticae (Acari: Tetranychidae) feeding and gold fleck damage on tomato fruit. Crop Prot. 2012, 42, 24–29. [Google Scholar] [CrossRef]
  32. Hsu, M.-H.; Chen, C.-C.; Lin, K.-H.; Huang, M.-Y.; Yang, C.-M.; Huang, W.-D. Photosynthetic responses of Jatropha curcas to spider mite injury. Photosynthetica 2015, 53, 349–355. [Google Scholar] [CrossRef]
  33. Bensoussan, N.; Santamaria, M.E.; Zhurov, V.; Diaz, I.; Grbić, M.; Grbić, V. Plant-herbivore interaction: Dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front. Plant Sci. 2016, 7, 1105. [Google Scholar] [CrossRef] [Green Version]
  34. Golan, K.; Kot, I.; Górska-Drabik, E.; Jurado, I.G.; Kmieć, K.; Łagowska, B. Physiological response of basil plants to twospotted spider mite (Acari: Tetranychidae) infestation. J. Econ. Entomol. 2019, 112, 948–956. [Google Scholar] [CrossRef]
  35. Oku, K. Sexual selection and mating behavior in spider mites of the genus Tetranychus (Acari: Tetranychidae). Appl. Entomol. Zool. 2014, 49, 1–9. [Google Scholar] [CrossRef]
  36. Regev, S.; Cone, W.W. Evidence of farnesol as a male sex attractant of the two spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae). Environ. Entomol. 1975, 4, 307–311. [Google Scholar] [CrossRef]
  37. Regev, S.; Cone, W.W. Analyses of pharate female two spotted spider mites for nerolidol and geraniol: Evaluation for sex attraction of males. Environ. Entomol. 1976, 5, 133–138. [Google Scholar] [CrossRef]
  38. Regev, S.; Cone, W.W. The monoterpene citronellol, as a male sex attractant of the two spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae). Environ. Entomol. 1980, 9, 50–52. [Google Scholar] [CrossRef]
  39. Oku, K. Does female mating history affect mate choice of males in the two-spotted spider mite Tetranychus urticae? Acarologia 2013, 53, 217–220. [Google Scholar] [CrossRef] [Green Version]
  40. Yoshioka, T.; Yano, S. Do Tetranychus urticae males avoid mating with familiar females? J. Exp. Biol. 2014, 217, 2297–2300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  41. Rotem, K.A.; Agrawal, A.A. Density dependent population growth of the two-spotted spider mite, Tetranychus urticae, on the host plant Leonurus cardiaca. Oikos 2003, 103, 559–565. [Google Scholar] [CrossRef] [Green Version]
  42. Marinosci, C.; Magalhães, S.; Macke, E.; Navajas, M.; Carbonell, D.; Devaux, C.; Olivieri, I. Effects of host plant on life-history traits in the polyphagous spider mite Tetranychus urticae. Ecol. Evol. 2015, 5, 3151–3158. [Google Scholar] [CrossRef] [PubMed]
  43. Shibuya, T.; Iwahashi, Y.; Suzuki, T.; Endo, R.; Hirai, N. Light intensity influences feeding and fecundity of Tetranychus urticae (Acari: Tetranychidae) through the responses of host Cucumis sativus leaves. Exp. Appl. Acarol. 2020, 81, 163–172. [Google Scholar] [CrossRef]
  44. Laing, J.E. Life history and life table of Tetranychus urticae Koch. Acarologia 1969, 11, 32–42. [Google Scholar]
  45. Macke, E.; Magalhães, S.; Khan, H.D.-T.; Luciano, A.; Frantz, A.; Facon, B.; Olivieri, I. Sex allocation in haplodiploids is mediated by egg size: Evidence in the spider mite Tetranychus urticae Koch. Proc. Boil. Sci. 2011, 278, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
  46. Li, G.-Y.; Zhang, Z.-Q. The costs of social interaction on survival and reproduction of arrhenotokous spider mite Tetranychus urticae. Entomol. Gen. 2021, 41, 49–57. [Google Scholar] [CrossRef]
  47. Smitley, D.R.; Kennedy, G.G. Aerial dispersal of the two-spotted spider mite (Tetranychus urticae) from field corn. Exp. Appl. Acarol. 1988, 5, 33–46. [Google Scholar] [CrossRef]
  48. Clotuche, G.; Mailleux, A.-C.; Fernández, A.A.; Deneubourg, J.-L.; Detrain, C.; Hance, T. The formation of collective silk balls in the spider mite Tetranychus urticae Koch. PLoS ONE 2011, 6, e18854. [Google Scholar] [CrossRef] [Green Version]
  49. Clotuche, G.; Navajas, M.; Mailleux, A.-C.; Hance, T. Reaching the ball or missing the flight? Collective dispersal in the two-spotted spider mite Tetranychus urticae. PLoS ONE 2013, 8, e77573. [Google Scholar] [CrossRef] [Green Version]
  50. Gotoh, T. Annual life cycles of populations of the two-spotted spider mite, Tetranychus urticae KOCH (Acari: Tetranychidae) in four Japanese pear orchards. Appl. Entomol. Zool. 1997, 32, 207–216. [Google Scholar] [CrossRef] [Green Version]
  51. Koveos, D.; Veerman, A. Geographic variation of diapause induction and termination in the spider mite Tetranychus urticae: A mini-review. Entomol. Hell. 1988, 12, 5–12. [Google Scholar] [CrossRef] [Green Version]
  52. Khodayari, S.; Moharramipour, S.; Kamali, K.; Javaran, M.J.; Renault, D. Effects of acclimation and diapause on the thermal tolerance of the two-spotted spider mite Tetranychus urticae. J. Therm. Biol. 2012, 37, 419–423. [Google Scholar] [CrossRef]
  53. Jung, D.O.; Lee, K.Y. Identification of low molecular weight diapause- associated proteins of two-spotted spider mite, Tetranychus urticae. Entomol. Res. 2005, 35, 213–218. [Google Scholar]
  54. Khodayari, S.; Moharramipour, S.; Larvor, V.; Hidalgo, K.; Renault, D. Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLoS ONE 2013, 8, e54025. [Google Scholar] [CrossRef]
  55. Bryon, A.; Wybouw, N.; Dermauw, W.; Tirry, L.; Van Leeuwen, T. Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genom. 2013, 14, 358. [Google Scholar] [CrossRef] [Green Version]
  56. Gotoh, T. Termination pattern of diapauze in Tetranychus urticae Koch (Acari: Tetranychidae) in Sapporo. Appl. Entomol. Zool. 1986, 21, 480–481. [Google Scholar] [CrossRef]
  57. Vacante, V. The Handbook of Mites of Economic Plants: Identification, Bio-Ecology and Control; CABI International: Wallingford, UK, 2016; pp. 1–890. [Google Scholar]
  58. Archer, T.L.; Bynum, E.D.J. Yield loss to corn from feeding by the Banks grass mite and two-spotted spider mite (Acari: Tetranychidae). Exp. Appl. Acarol. 1993, 17, 895–903. [Google Scholar] [CrossRef]
  59. Greco, N.M.; Pereyra, P.C.; Guillade, A. Host-plant acceptance and performance of Tetranychus urticae (Acari, Tetranychidae). J. Appl. Entomol. 2006, 130, 32–36. [Google Scholar] [CrossRef]
  60. Grbić, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Rouzé, P.; Grbić, V.; Osborne, E.J.; Dermauw, W.; Ngoc, P.C.T.; Ortego, F.; et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 2011, 479, 487–492. [Google Scholar] [CrossRef] [Green Version]
  61. Abad, M.K.R.; Fathi, S.A.A.; Nouri-Ganbalani, G.; Amiri-Besheli, B. Effects of strip intercropping of eggplant with soybean on densities of two-spotted spider mite Tetranychus urticae, species diversity of its natural enemies, and crop yield. Iran. J. Plant Prot. Sci. 2019, 50, 27–39. [Google Scholar]
  62. Suekane, R.; Degrande, P.E.; De Melo, E.P.; Bertoncello, T.F.; Junior, I.D.S.L.; Kodama, C. Damage level of the two-spotted spider mite Tetranychus urticae Koch (acari: Tetranychidae) in soybeans. Rev. Ceres 2012, 59, 77–81. [Google Scholar] [CrossRef]
  63. Muluken, G.; Mashilla, D.; Ashenafi, K.; Tesfaye, B. Red spider mite, Tetranychus urticae Koch (Arachnida: Acari-Tetranychidae): A threatening pest to potato (Solanum tuberosum L.) production in Eastern Ethiopia. Pest Manag. J. Ethiop. 2016, 19, 53–59. [Google Scholar]
  64. Nyoike, T.W.; Liburd, O.E. Effect of Tetranychus urticae (Acari: Tetranychidae), on marketable yields of field-grown strawberries in north-central Florida. J. Econ. Entomol. 2013, 106, 1757–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Jayasinghe, G.G.; Mallik, B. Growth stage based economic injury levels for two spotted spider mite, Tetranychus urticae Koch (Acari, Tetranychidae) on tomato, Lycopersicon esculentum. mill. Trop. Agric. Res. 2010, 22, 54–56. [Google Scholar] [CrossRef] [Green Version]
  66. Park, Y.-L.; Lee, J.-H. Seasonal dynamics of economic injury levels for Tetranychus urticae Koch (Acari, Tetranychidae) on Cucumis sativus L. J. Appl. Entomol. 2007, 131, 588–592. [Google Scholar] [CrossRef]
  67. Gore, J.; Cook, D.R.; Catchot, A.L.; Musser, F.R.; Stewart, S.D.; Leonard, B.R.; Lorenz, G.; Studebaker, G.; Akin, D.S.; Tindall, K.V.; et al. Impact of two-spotted spider mite (Acari: Tetranychidae) infestation timing on cotton yields. J. Cotton Sci. 2013, 17, 34–39. [Google Scholar]
  68. Yigezu, G.; Wakgari, M.; Goftishu, M. Assessment of two-spotted spider mite (Tetranychus urticae) on potato (Solanum tuberosum L.) in Eastern Hararghe, Ethiopia. Int. J. Environ. Agric. Biotechnol. 2019, 4, 1862–1873. [Google Scholar] [CrossRef]
  69. Jakubowska, M.; Fiedler, Ż.; Bocianowski, J.; Torzyński, K. The effect of spider mites (Acari: Tetranychidae) occurrence on sugar beet yield depending on the variety. Agron. Sci. 2018, 73, 41–50. [Google Scholar] [CrossRef]
  70. Jakubowska, M.; Fiedler, Ż. Beet plantations endangered by mites. Porad. Plantatora Buraka Cukrowego 2014, 2, 53–54. [Google Scholar]
  71. Legrand, G.; Wauters, A.; Muchembled, C.; Richard-Molard, M. The common yellow spider mite (Tetranychus urticae Koch) (Acari: Tetranychidae) in sugar beet in Europe: A new problem. In Proceedings of the 63rd International Congress of Sugarbeet, Interlaken, Switzerland, 9–10 February 2000. [Google Scholar]
  72. Ulatowska, A.; Górski, D.; Piszczek, J. Monitoring of the two-spotted spider mite (Tetranychus urticae Koch) occurrence on sugar beet crops in Kuyavian-Pomeranian voivodeship. Zagadnienia Doradz. Rol. 2015, 4, 125–132. [Google Scholar]
  73. Whalon, M.E.; Mota-Sanchez, D.; Hollingworth, R.M. Arthropod Pesticide Resistance Database. 2016. Available online: http://www.pesticideresistance.org/index.php (accessed on 20 February 2022).
  74. Kwon, D.H.; Im, J.S.; Ahn, J.J.; Lee, J.-H.; Clark, J.M.; Lee, S.H. Acetylcholinesterase point mutations putatively associated with monocrotophos resistance in the two-spotted spider mite. Pestic. Biochem. Physiol. 2010, 96, 36–42. [Google Scholar] [CrossRef]
  75. Monteiro, V.B.; Gondim, M.G.C., Jr.; Oliveira, J.E.; Siqueira, H.A.A.; Sousa, J.M. Monitoring Tetranychus urticae Koch (Acari: Tetranychidae) resistance to abamectin in vineyards in the Lower Middle São Francisco Valley. Crop Prot. 2015, 69, 90–96. [Google Scholar] [CrossRef] [Green Version]
  76. Riga, M.; Tsakireli, D.; Ilias, A.; Morou, E.; Myridakis, A.; Stephanou, E.G.; Nauen, R.; Dermauw, W.; Van Leeuwen, T.; Paine, M.; et al. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochem. Mol. Biol. 2014, 46, 43–53. [Google Scholar] [CrossRef]
  77. Ferreira, C.B.S.; Andrade, F.H.N.; Rodrigues, A.R.S.; Siqueira, H.A.A.; Gondim, M.G.C. Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Prot. 2015, 67, 77–83. [Google Scholar] [CrossRef]
  78. Stumpf, N.; Nauen, R. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pestic. Biochem. Physiol. 2002, 72, 111–121. [Google Scholar] [CrossRef]
  79. Van Leeuwen, T.; Tirry, L. Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Manag. Sci. 2007, 63, 150–156. [Google Scholar] [CrossRef]
  80. Herron, G.A.; Edge, V.E.; Wilson, L.J.; Rophail, J. Organophosphate resistance in spider mites (Acari: Tetranychidae) from cotton in Australia. Exp. Appl. Acarol. 1998, 22, 17–30. [Google Scholar] [CrossRef]
  81. Kim, M.; Sim, C.; Shin, D.; Suh, E.; Cho, K. Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Prot. 2006, 25, 542–548. [Google Scholar] [CrossRef]
  82. Itoh, Y.; Shimotsuma, Y.; Jouraku, A.; Dermauw, W.; Van Leeuwen, T.; Osakabe, M. Combination of target site mutation and associated CYPs confers high-level resistance to pyridaben in Tetranychus urticae. Pestic. Biochem. Physiol. 2021, 181, 105000. [Google Scholar] [CrossRef] [PubMed]
  83. Tsagkarakou, A.; Nikou, D.; Roditakis, E.; Sharvit, M.; Morin, S.; Vontas, J. Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pestic. Biochem. Physiol. 2009, 94, 49–54. [Google Scholar] [CrossRef]
  84. Xu, Z.; Zhu, W.; Liu, Y.; Liu, X.; Chen, Q.; Peng, M.; Wang, X.; Shen, G.; He, L. Analysis of insecticide resistance-related genes of the carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome. PLoS ONE 2014, 9, e94779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  85. Martin, D.E.; Latheef, M.A.; López, J.D. Evaluation of selected acaricides against twospotted spider mite (Acari: Tetranychidae) on greenhouse cotton using multispectral data. Exp. Appl. Acarol. 2015, 66, 227–245. [Google Scholar] [CrossRef]
  86. Chen, Q.; Liang, L.; g Wu, C.; Gao, J.; Chen, Q.; Zhang, Z. Density threshold-based acaricide application for the two-spotted spider mite Tetranychus urticae on cassava: From laboratory to the field. Pest Manag. Sci. 2019, 75, 2634–2641. [Google Scholar] [CrossRef]
  87. Benelli, G.; Pavela, R.; Canale, A.; Mehlhorn, H. Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasitol. Res. 2016, 115, 2545–2560. [Google Scholar] [CrossRef]
  88. Vandermeer, J.H. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar] [CrossRef]
  89. Hooks, C.R.R.; Johnson, M.W. Impact of agricultural diversification on the insect community of cruciferous crops. Crop Prot. 2003, 22, 223–238. [Google Scholar] [CrossRef]
  90. Khan, Z.R.; Midega, C.A.; Wanyama, J.M.; Amudavi, D.M.; Hassanali, A.; Pittchar, J.; Pickett, J.A. Integration of edible beans (Phaseolus vulgaris L.) into the push–pull technology developed for stemborer and Striga control in maize-based cropping systems. Crop Prot. 2009, 28, 997–1006. [Google Scholar] [CrossRef]
  91. Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Shah, M.M. Insecticidal activity of plant-derived extracts against different economically important pest insects. Phytoparasitica 2017, 45, 113–124. [Google Scholar] [CrossRef]
  92. Hata, F.T.; Ventura, M.V.; Carvalho, M.G.; Miguel, A.L.A.; Souza, M.S.J.; Paula, M.T.; Zawadneak, M.A.C. Intercropping garlic plants reduces Tetranychus urticae in strawberry crop. Exp. Appl. Acarol. 2016, 69, 311–321. [Google Scholar] [CrossRef] [PubMed]
  93. Attia, G.; Grissa-Lebdi, K.; Lognay, G.; Bitume, E.; Hance, T.; Mailleux, A.C. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides: Biological approaches to control Tetranychus urticae. J. Pest Sci. 2013, 86, 361–386. [Google Scholar] [CrossRef]
  94. Fathi, S.A.A. Effect of intercropping systems of green bean and clover on biodiversity of natural enemies of Thrips tabaci Lindeman. Plant Prot. Sci. J. Agric. 2017, 40, 13–26. [Google Scholar] [CrossRef]
  95. Tajmiri, P.; Fathi, S.A.A.; Golizadeh, A.; Nouri-Ganbalani, G. Effect of strip-intercropping potato and annual alfalfa on populations of Leptinotarsa decemlineata Say and its predators. Int. J. Pest Manag. 2017, 63, 273–279. [Google Scholar] [CrossRef]
  96. Tajmiri, P.; Fathi, S.A.A.; Golizadeh, A.; Nouri-Ganbalani, G. Strip-intercropping canola with annual alfalfa improves biological control of Plutella xylostella (L.) and crop yield. Int. J. Trop. Insect Sci. 2017, 37, 208–216. [Google Scholar] [CrossRef]
  97. Zarei, E.; Fathi, S.A.A.; Hassanpour, M.; Golizadeh, A. Assessment of intercropping tomato and sainfoin for the control of Tuta absoluta (Meyrick). Crop Prot. 2019, 120, 125–133. [Google Scholar] [CrossRef]
  98. El-Ghobashy Mona, S.; El-Sayed, K.M.; Abd El-Wahed, N.M. Susceptibility of some grapevine varities in relation to biological aspects of the twospotted spider mite, Tetranychus urticae Koch. J. Plant Prot. Pathol. 2012, 3, 1337–1343. [Google Scholar]
  99. Vásquez, C.; Pérez, M.; Dávila, M.; Mangui, H.; Telenchana, N. Biological parameters of Tetranychus urticae Koch (Acari: Tetranychidae) on strawberry cultivars in Ecuador. Rev. Chil. Entomol. 2018, 44, 271–278. [Google Scholar]
  100. Fahim, S.F.; Momen, F.M.; El-Saiedy, E.S.M. Life table parameters of Tetranychus urticae (Trombidiformes: Tetranychidae) on four strawberry cultivars. Persian J. Acarol. 2020, 9, 43–56. [Google Scholar]
  101. Golizadeh, A.; Ghavidel, S.; Razmjou, J.; Fathi, S.A.A.; Hassanpour, M. Comparative life table analysis of Tetranychus urticae Koch (Acari: Tetranychidae) on ten rose cultivars. Acarologia 2017, 57, 607–616. [Google Scholar] [CrossRef]
  102. Chacón-Hernández, J.C.; Cerna-Chávez, E.; Aguirre-Uribe, L.A.; Ochoa-Fuentes, Y.M.; Ail-Catzim, C.E.; Landeros-Flores, J. Resistance of four rose varieties to Tetranychus urticae (Acari: Tetranychidae) under greenhouse conditions. Fla. Entomol. 2020, 103, 404–407. [Google Scholar] [CrossRef]
  103. Kasap, I. Effect of apple cultivar and of temperature on the biology and life table parameters of the two spotted spider mite Tetranychus urticae. Phytoparasitica 2004, 32, 73–82. [Google Scholar] [CrossRef]
  104. Skorupska, A. Morphologico-anatomical structure of leaves and demographic parameters of the hawthorn spider mite, Tetranychus viennensis Zacher and the two-spotted spider mite, Tetranychus urticae (Koch) (Acarina, Tetranychidae) on selected scab-resistant apple varieties. J. Appl. Entomol. 1998, 122, 493–496. [Google Scholar] [CrossRef]
  105. Skorupska, A. Resistance of apple cultivars to two-spotted spider mite, Tetranychus urticae Koch (Acarina, Tetranychidae) Part, I. Bionomy of two-spotted spider mite on selected cultivars of apple trees. J. Plant Prot. Res. 2004, 44, 75–80. [Google Scholar]
  106. Taj, H.F.; Mahmood, S.; Kabir, M.A.; Hossain, M.A.; Alim, M.A. Influence of apple cultivars on the development and fecundity of the two-spotted spider mite, Tetranychus urticae (Koch). Int. J. Bio-resour. Stress Manag. 2011, 2, 403–408. [Google Scholar]
  107. Razmjou, J.; Vorburger, C.; Tavakkoli, H.; Fallahi, A. Comparative population growth parameters of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), on different common bean cultivars. Syst. Appl. Acarol. 2009, 14, 83–90. [Google Scholar] [CrossRef]
  108. Najafabadi, S.S.M.; Zamani, A.A. The effect of common bean cultivars on life table parameters of Tetranychus urticae (Acari: Tetranychidae). Persian J. Acarol. 2012, 2, 297–310. [Google Scholar] [CrossRef]
  109. Modarres Najafabadi, S.S.; Vafaei Shoushtari, R.; Zamani, A.A.; Arbabi, M.; Farazmand, H. Resistance to Tetranychus urticae Koch (Acari: Tetranychidae) in Phaseolus vulgaris L. Middle East J. Sci. Res. 2012, 11, 670–690. [Google Scholar]
  110. Uddin, M.N.; Alam, M.Z.; Miah, M.R.U.; Mian, M.I.H.; Mustarin, K.E. Life table parameters of Tetranychus urticae Koch (Acari: Tetranychidae) on different bean varieties. Afr. Entomol. 2015, 23, 418–426. [Google Scholar] [CrossRef]
  111. Shoorooei, M.; Hoseinzadeh, A.H.; Maali-Amiri, R.; Allahyari, H.; Torkzadeh-Mahani, M. Antixenosis and antibiosis response of common bean (Phaseolus vulgaris) to two-spotted spider mite (Tetranychus urticae). Exp. Appl. Acarol. 2018, 74, 365–381. [Google Scholar] [CrossRef] [PubMed]
  112. Saeidi, Z. Screening of 55 pinto bean lines for resistance to the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Persian J. Acarol. 2020, 9, 291–299. [Google Scholar]
  113. De Ponti, O.M.B. Resistance in Cucumis sativus L. to Tetranychus urticae Koch. 1. The role of plant breeding in integrated control. Euphytica 1977, 26, 633–640. [Google Scholar] [CrossRef]
  114. Maleknia, B.; Fathipour, Y.; Soufbaf, M. How greenhouse cucumber cultivars affect population growth and two-sex life table parameters of Tetranychus urticae (Acari: Tetranychidae). Int. J. Acarol. 2016, 42, 70–78. [Google Scholar] [CrossRef]
  115. Riahi, E.; Nemati, A.; Shishehbor, P.; Saeidi, Z. Population growth parameters of the two-spotted spider mite, Tetranychus urticae, on three peach varieties, in Iran. Acarologia 2011, 51, 473–480. [Google Scholar] [CrossRef]
  116. Sedaratian, A.; Fathipour, Y.; Moharramipour, S. Comparative life table analysis of Tetranychus urticae (Acari: Tetranychidae) on 14 soybean genotypes. Insect Sci. 2011, 18, 541–553. [Google Scholar] [CrossRef]
  117. De Oliveira, J.R.F.; De Resende, J.T.V.; Maluf, W.R.; Lucini, T.; Filho, R.L.; De Lima, I.P.; Nardi, C. Trichomes and allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of Tetranychus urticae. Front. Plant Sci. 2018, 9, 1132. [Google Scholar] [CrossRef]
  118. Savi, P.J.; Gonsaga, R.F.; de Matos, S.T.S.; Braz, L.T.; de Moraes, G.H.; de Andrade, D.J. Performance of Tetranychus urticae (Acari: Tetranychidae) on three hop cultivars (Humulus lupulus). Exp. Appl. Acarol. 2021, 84, 733–753. [Google Scholar] [CrossRef]
  119. Kumral, N.A.; Göksel, P.H.; Aysan, E.; Kolcu, A. Life table of Tetranychus urticae (Koch) (Acari: Tetranycidae) on different Turkish eggplant cultivars under controlled conditions. Acarologia 2019, 59, 12–20. [Google Scholar] [CrossRef]
  120. Singh, R.N.; Saratchandra, B. The development of botanical products with special reference to seri-ecosystem. Casp. J. Environ. Sci. 2005, 3, 1–8. [Google Scholar]
  121. Dąbrowski, Z.T.; Seredyńska, U. Characterisation of the two-spotted spider mite (Tetranychus urticae Koch, Acari: Tetranychidae) response to aqueous extracts from selected plant species. J. Plant Prot. Res. 2007, 47, 113–124. [Google Scholar]
  122. Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
  123. Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and as increasingly regulated world. Ann. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
  125. Ebadollahi, A.; Sendi, J.J.; Aliakbar, A.; Razmjou, J. Chemical composition and acaricidal effects of essential oils of Foeniculum vulgare Mill. (Apiales: Apiaceae) and Lavandula angustifolia Miller (Lamiales: Lamiaceae) against Tetranychus urticae Koch (Acari: Tetranychidae). Psyche J. Entomol. 2014, 2014, 424078. [Google Scholar] [CrossRef] [Green Version]
  126. Ribeiro, N.; Camara, C.A.G.; Ramos, C. Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae and Neoseiulus californicus (McGregor). Chil. J. Agric. Res. 2016, 76, 71–76. [Google Scholar] [CrossRef] [Green Version]
  127. Pavela, R.; Dall’Acqua, S.; Sut, S.; Baldan, V.; Kamte, S.L.N.; Nya, P.C.B.; Cappellacci, L.; Petrelli, R.; Nicoletti, M.; Canale, A.; et al. Oviposition inhibitory activity of the Mexican sunflower Tithonia diversifolia (Asteraceae) polar extracts against the two-spotted spider mite Tetranychus urticae (Tetranychidae). Physiol. Mol. Plant Pathol. 2018, 101, 85–92. [Google Scholar] [CrossRef]
  128. Premalatha, K.; Nelson, S.J.; Vishnupriya, R.; Balaksishnan, S.; Santhana Krishnan, V.P. Acaricidal activity of plant extracts on two spotted spider mite, Tetranychus urticae Koch. (Acari: Tetranychidae). J. Entomol. Zool. Stud. 2018, 6, 1622–1625. [Google Scholar]
  129. Topuz, E.; Madanlar, N.; Erler, F. Chemical composition, toxic and development- and reproduction-inhibiting effects of some essential oils against Tetranychus urticae Koch (Acarina: Tetranychidae) as fumigants. J. Plant Dis. Prot. 2018, 125, 377–387. [Google Scholar] [CrossRef]
  130. Rincón, R.A.; Rodríguez, D.; Coy-Barrera, E. Botanicals against Tetranychus urticae Koch under laboratory conditions: A survey of alternatives for controlling pest mites. Plants 2019, 8, 272. [Google Scholar] [CrossRef] [Green Version]
  131. De Santana, M.F.; Câmara, C.A.G.; Monteiro, V.B.; de Melo, J.P.R.; de Moraes, M.M. Bioactivity of essential oils for the management of Tetranychus urticae Koch and selectivity on its natural enemy Neoseiulus californicus (McGregor): A promising combination for agroecological systems. Acarologia 2021, 61, 564–576. [Google Scholar] [CrossRef]
  132. Bhullar, M.B.; Kaur, P.; Kumar, S.; Sharma, R.K.; Kumar, R.; Kumari, S.; Singh, V.; Kaur, A.; Kaur, J.; Sharma, U.; et al. Management of mites with homemade neem fruit aqueous extract in capsicum under protected cultivation. Persian J. Acarol. 2021, 10, 85–94. [Google Scholar]
  133. Camilo, C.J.; Nonato, C.F.A.N.; Galvão-Rodrigues, F.F.; Costa, W.D.; Clemente, G.G.; Sobreira Macedo, M.A.C.; Galvão Rodrigues, F.F.; Martins da Costa, J.G. Acaricidal activity of essential oils. Trends Phytochem. Res. 2017, 1, 183–219. [Google Scholar]
  134. Agut, B.; Pastor, V.; Jaques, J.A.; Flors, V. Can plant defense mechanisms provide new approaches for the sustainable control of the two-spotted spider mite Tetranychus urticae? Int. J. Mol. Sci. 2018, 19, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Yanar, D.; Kadıoglu, I.; Gökçe, A. Acaricidal effects of different plant parts extracts on two-spotted spider mite (Tetranychus urticae Koch). Afr. J. Biotechnol. 2011, 10, 11745–11750. [Google Scholar]
  136. Marotti, I.; Marotti, M.; Piccaglia, R.; Nastri, A.; Grandiand, S.; Dinell, G. Thiophene occurrence in different Tagetes species. J. Sci. Food. Agric. 2010, 90, 1210–1217. [Google Scholar] [CrossRef]
  137. Bamel, K.; Gulati, R. Biology, population built up and damage potential of red spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) on marigold: A review. J. Entomol. Zool. Stud. 2021, 9, 547–552. [Google Scholar] [CrossRef]
  138. Bamel, K.; Gulati, R. Seasonal fluctuations in the population of Tetranychus urticae Koch on French marigold under screen house conditions. J. Eco-Friendly Agric. 2022, 17, 132–136. [Google Scholar] [CrossRef]
  139. Faizi, S.; Siddiqi, H.; Bano, S.; Naz, A.; Lubna; Mazhar, K.; Nasim, S.; Riaz, T.; Kamal, S.; Ahmad, A.; et al. Antibacterial and antifungal activities of different parts of Tagetes patula: Preparation of patuletin derivatives. Pharm. Biol. 2008, 46, 309–320. [Google Scholar] [CrossRef] [Green Version]
  140. Vidal, J.; Carbajal, A.; Sisniegas, M.; Bobadilla, M. Toxic activity of Argemone subfusiformis Ownb. and Tagetes patula link against Aedes aegypti L. fourth instar larvae and pupae. Rev. Peru. Biol. 2009, 15, 103–109. [Google Scholar]
  141. Hooks, C.R.; Wang, K.-H.; Ploeg, A.; McSorley, R. Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl. Soil Ecol. 2010, 46, 307–320. [Google Scholar] [CrossRef]
  142. Salinas-Sánchez, D.O.; Aldana-Llanos, L.; Valdés-Estrada, M.E.; Gutiérrez-Ochoa, M.; Valladares-Cisneros, G.; Rodríguez-Flores, E. Insecticidal activity of Tagetes erecta extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 2012, 95, 428–432. [Google Scholar] [CrossRef]
  143. Politi, F.A.S.; Figueira, G.M.; Araújo, A.M.; Sampieri, B.R.; Mathias, M.I.C.; Szabó, M.P.J.; Bechara, G.H.; dos Santos, L.C.; Vilegas, W.; Pietro, R.C.L.R. Acaricidal activity of ethanolic extract from aerial parts of Tagetes patula L. (Asteraceae) against larvae and engorged adult females of Rhipicephalus sanguineus (Latreille, 1806). Parasites Vectors 2012, 5, 295. [Google Scholar] [CrossRef] [Green Version]
  144. Amer, S.A.A.; Reda, A.S.; Dimetry, N.Z. Activity of Abrus precatorius extracts against the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Acarologia 1989, 30, 209–215. [Google Scholar]
  145. Chiasson, H.; Bostanian, N.J.; Vincent, C. Acaricidal properties of a chenopodium-based botanical. J. Econ. Entomol. 2004, 97, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
  146. Tomczyk, A.; Szymańska, M. Possibility of reducing the population of spider mites with the use of decoctions and extracts from selected herbal plants. In Proceedings of the 35th Sesji Naukowej Instytutu Ochrony Roslin, Poznan, Poland, 17–18 February 1995. [Google Scholar]
  147. Kawka, B.; Tomczyk, A. Influence of extracts from sage (Salvia officinalis L.) on some biological parameters of Tetranychus urticae Koch feeding on Algerian Ivy (Hedera helix variegata L.). IOBC/WPRS Bull. 2002, 25, 127–130. [Google Scholar]
  148. Furmanowa, M.; Kropczyńska, D.; Zobel, A.; Głowniak, K.; Sahajdak, A.; Guzewska, J.; Józefczyk, A.; Rapczewska, L. Effect of water extracts from needle surface of Taxus baccata and Taxus baccata var. elegantissima of life history parameters of two-spotted spider mite (Tetranychus urticae Koch). Herba Pol. 2001, 47, 5–10. [Google Scholar]
  149. Ahmadi, Z.; Saber, M.; Bagheri, M.; Mahdavinia, G.R. Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae. J. Pest Sci. 2018, 91, 837–848. [Google Scholar] [CrossRef]
  150. Wyszukiwarka Środków Ochrony Roślin. Available online: https://www.gov.pl/web/rolnictwo/wyszukiwarka-srodkow-ochrony-roslin—zastosowanie (accessed on 25 February 2022).
  151. APVMA Online Service Portal. Available online: https://portal.apvgma.gov.au (accessed on 20 February 2022).
  152. Asuveg. Available online: https://ausveg.com.au/ (accessed on 10 February 2022).
  153. CABI BioProtection Portal. Available online: https://bioprotectionportal.com/ (accessed on 3 March 2022).
  154. Mohammadi, K.; Fathi, S.A.A.; Razmjou, J.; Naseri, B. Evaluation of the effect of strip intercropping green bean/garlic on the control of Tetranychus urticae in the field. Exp. Appl. Acarol. 2021, 83, 183–195. [Google Scholar] [CrossRef]
  155. Santamaría, M.E.; Martínez, M.; Arnaiz, A.; Ortego, F.; Grbić, V.; Diaz, I. MATI, a novel protein involved in the regulation of herbivore-associated signaling pathways. Front. Plant Sci. 2017, 8, 975. [Google Scholar] [CrossRef] [Green Version]
  156. Emam, H.M. Efficiency of three bacterial strains against Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory conditions. Arab Univ. J. Agric. Sci. 2021, 29, 447–457. [Google Scholar] [CrossRef]
  157. Golec, J.R.; Hoge, B.; Walgenbach, J.F. Effect of biopesticides on different Tetranychus urticae Koch (Acari: Tetranychidae) life stages. Crop Prot. 2020, 128, 105015. [Google Scholar] [CrossRef]
  158. Zenkova, A.A.; Grizanova, E.V.; Andreeva, I.V.; Gerne, D.Y.; Shatalova, E.I.; Cvetcova, V.P.; Dubovskiy, I.M. Effect of fungus Lecanicillium lecanii and bacteria Bacillus thuringiensis, Streptomyces avermitilis on two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) and predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J. Plant Prot. Res. 2020, 60, 415–419. [Google Scholar] [CrossRef]
  159. Raaijmakers, J.M.; Vlami, M.; De Souza, J.T. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 2002, 81, 537–547. [Google Scholar] [CrossRef] [PubMed]
  160. Marcic, D. Acaricides in modern management of plant-feeding mites. J. Pest Sci. 2012, 85, 395–408. [Google Scholar] [CrossRef]
  161. Zélé, F.; Altıntaş, M.; Santos, I.; Cakmak, I.; Magalhães, S. Inter- and intraspecific variation of spider mite susceptibility to fungal infections: Implications for the long-term success of biological control. Ecol. Evol. 2020, 10, 3209–3221. [Google Scholar] [CrossRef]
  162. Chandler, D.; Davidson, G.; Jacobson, R.J. Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocontrol Sci. Technol. 2005, 151, 37–54. [Google Scholar] [CrossRef]
  163. Memarizadeh, N.; Ghadamyari, M.; Zamani, P.; Sajedi, R.H. Resistance mechanisms to abamectin in Iranian populations of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Acarologia 2013, 53, 235–246. [Google Scholar] [CrossRef]
  164. Ilias, A.; Vassiliou, V.A.; Vontas, J.; Tsagkarakou, A. Molecular diagnostics for detecting pyrethroid and abamectin resistance mutations in Tetranychus urticae. Pestic. Biochem. Physiol. 2017, 135, 9–14. [Google Scholar] [CrossRef]
  165. Xu, D.; He, Y.; Zhang, Y.; Xie, W.; Wu, Q.; Wang, S. Status of pesticide resistance and associated mutations in the two-spotted spider mite, Tetranychus urticae, in China. Pestic. Biochem. Physiol. 2018, 150, 89–96. [Google Scholar] [CrossRef]
  166. Díaz-Arias, K.V.; Rodríguez-Maciel, J.C.; Lagunes-Tejeda, Á.; Aguilar-Medel, S.; Tejeda-Reyes, M.A.; Silva-Aguayo, G. Resistance to Abamectin in Field Population Of Tetranychus urticae Koch (Acari: Tetranychidae) associated with cut rose from State of Mexico, Mexico. Fla. Entomol. 2019, 102, 428–430. [Google Scholar] [CrossRef] [Green Version]
  167. Herron, G.A.; Langfield, K.L.; Chen, Y.; Wilson, L.J. Development of abamectin resistance in Tetranychus urticae in Australian cotton and the establishment of discriminating doses for T. lambi. Exp. Appl. Acarol. 2021, 83, 325–341. [Google Scholar] [CrossRef] [PubMed]
  168. Van de Velde, V.; Duarte, M.V.A.; Benavente, A.; Vangansbeke, D.; Wäckersb, F.; De Clercqa, P. Quest for the allmitey: Potential of Pronematus ubiquitus (Acari: Iolinidae) as a biocontrol agent against Tetranychus urticae and Tetranychus evansi (Acari: Tetranychidae) on tomato (Solanum lycopersicum L.). bioRxiv 2021. [Google Scholar] [CrossRef]
  169. Jacobsen, S.K.; Klingen, I.; Eilenberg, J.; Markussen, B.; Sigsgaard, L. Entomopathogenic fungal conidiae marginally effect the behavior of the predators Orius majusculius (Hemiptera: Anthocoridae) and Phytoseilus persimilis (Acari: Phytoseidae) foraging for healthy Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 2019, 79, 299–307. [Google Scholar] [CrossRef] [PubMed]
  170. Pakyari, H.; Enkegaard, A. Effect of different temperatures on consumption of two spotted mite, Tetranychus urticae, eggs by the predatory thrips, Scolothrips longicornis. J. Insect Sci. 2012, 12, 98. [Google Scholar] [CrossRef] [Green Version]
  171. Pakyari, H.; Fathipour, Y.; Enkegaard, A. Effect of temperature on life table parameters of predatory thrips Scolothrips longicornis (Thysanoptera: Thripidae) fed on twospotted spider mites (Acari: Tetranychidae). J. Econ. Entomol. 2011, 104, 799–805. [Google Scholar] [CrossRef] [Green Version]
  172. Sobhy, I.S.; Sarhan, A.A.; Shoukry, A.A.; El-Kady, G.A.; Mandour, N.S.; Reitz, S.R. Development, consumption rates and reproductive biology of Orius albidipennis reared on various prey. BioControl 2010, 55, 753–765. [Google Scholar] [CrossRef]
  173. Miyagi, A.; Kikuchi, T.; Ooishi, T.; Ohno, S. First record of ant predation on spider mites in Japan. Jap. J. Entomol. 2009, 12, 123–124. [Google Scholar]
  174. Osborne, L.S.; Peña, J.E.; Oi, D.H. Predation by Tapinoma melanocephalum (Hymenoptera: Formicidae) on twospotted spider mites (Acari: Tetranychidae) in Florida greenhouses. Fla. Entomol. 1995, 78, 565–570. [Google Scholar] [CrossRef]
  175. Ximenez-Embun, M.; Castañera, P.; Ortego, F. Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae. J. Insect Physiol. 2017, 96, 73–81. [Google Scholar] [CrossRef]
  176. Migeon, A.; Ferragut, F.; Escudero-Colomar, L.A.; Fiaboe, K.; Knapp, M.; de Moraes, G.J.; Ueckermann, E.; Navajas, M. Modelling the potential distribution of the invasive tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Exp. Appl. Acarol. 2009, 48, 199–212. [Google Scholar] [CrossRef] [PubMed]
  177. Meynard, C.N.; Migeon, A.; Navajas, M. Uncertainties in predicting species distributions under climate change: A case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS ONE 2013, 8, e66445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  178. Walzer, A.; Steiner, T.; Spangl, B.; Koschier, E. Artifical heat waves induce species–specific plastic responses on reproduction of two spider mite predators. J. Pest Sci. 2021, 288, 1. [Google Scholar] [CrossRef]
  179. Narimanov, N.; Bonte, D.; Mason, P.; Mestre, L.; Entling, M.H. Disentangling the roles of electric fields and wind in spider dispersal experiments. J. Arachnol. 2021, 49, 380–383. [Google Scholar] [CrossRef]
Table 1. Synthetic acaricides that have been used for controlling T. urticae worldwide.
Table 1. Synthetic acaricides that have been used for controlling T. urticae worldwide.
Active IngredientChemical GroupMode of ActionStudies
on
Pest Resistance
Abamectin,
Milbemectin
Macrocyclic lactonesNeurotoxin.
Contact and gastric poison. Produces a translaminar effect and a limited systemic effect
[8,9,16,17,73,74,75,76,77]
AcequinocylQuinolinesPreinsecticide. Ovicidal action. Disrupts cellular respiration and ATP synthesis. Contact and gastric poison[18,78]
BifenazateCarbazinatesOvicidal action. Disrupts cellular respiration and ATP
synthesis. Contact poison
[16,17,79]
ClofentezineTetrazinesGrowth regulator. Toxic to eggs and larvae.
Contact poison
[16,17]
EthoxazoleDiphenyl oxazolineChitin synthesis inhibitor. Inhibits the moulting of mites. Toxic to eggs and larvae.
Contact poison
[14,18]
FenazaquinQuinazolineDisrupts cellular respiration. Contact poison[19,78]
FenpyroximatePhenoxypyrazolesDisrupts cellular respiration and energy metabolism in all mobile life stages of mites. Contact and gastric poison[18]
Phosmet
malathion
OrganophosphatesInhibits choline esterase activity. Neurotoxin. Contact and, to a lesser extent, gastric poison[16,79,80]
HexythiazoxThiazolidinesGrowth regulator. Toxic to eggs and larvae. Contact and gastric poison. The substance has a translaminar effect[16,17]
OxamylCarbamatesAcetylcholinesterase inhibitor. Neurotoxin. Contact poison. Has a penetrating and
systemic effect.
[19,73,74]
PyridabenPyridazinonesDisrupts cellular respiration. Contact poison.[16,17,19,81,82]
Synthetic pyrethrinsPyrethrinsDisrupt neural conductivity. Block sodium channels in nerve cells. Contact poison.[16,17,83]
SpirodiclofenTetronic acidsInhibits lipid biosynthesis by inhibiting acetyl-CoA carboxylase. Contact poison.[19,73,78]
TebufenpyradPyrazole derivativesNeurotoxin. Contact and gastric poison. Has a translaminar effect and a limited
systemic effect.
[16,17,78]
Table 2. Plant protection products formulated on natural extracts from plants used for treatment T. urticae worldwide.
Table 2. Plant protection products formulated on natural extracts from plants used for treatment T. urticae worldwide.
Active Ingredient/
Plant Extracts
CountryPlantsReferences
Abamectin 18 gPolandEggplant (Solanum melongena L.), cucumber (Cucumis sativus L.), peppers (Capsicum annuum L.), tomato (Solanum lycopersicum L.), chrysanthemum (Chrysanthemum L.), rose (Rose L.), strawberry (Fragaria L.), raspberry (Rubus ideus L.), blackberry (Rubus fructinosus L.); tomato, rose, strawberry under covers[150]
AbamectinAustraliaAdzuki bean (Vinga angularis (Willd.)), apple (Malus L.), blackberry, blackcurrant (Ribes nigrum L.), capsicum or pepper, custard apple (Annona reticulata L.), corkwood tree (Duboisia R.Br), fruiting vegetables excluding cucurbits (Cucurbitaceae), hops (Humulus lupulus L.), lychee (Litchi chinensis Bonn.), mung bean (Vinga radiata (L.)), navy bean (Phaseolus vulgaris L.), ornamentals, passion fruit (Passiflora edulis Sims.), pear (Pyrus communis L.), raspberry, snow pea (Pisum sativum L.), strawberry, sugar snap pea, sweet corn (Zea mays L.), tomato—field grown[151,152,153]
AzadirachtinAustraliaAfrican violet (Saintpaulia ionatha Saint Paul-Illaire), aster (Aster L.), azalea (Rhododendron L.), begonia (Begonia L.), chrysanthemum, daffodil (Narcissus psudonarcissus L.), dahlia (Dahlia L.), delphinium (Delphinium L.), geranium (Geranium L.), gladiolus (Gladiolus L.), hibiscus Hibiscus rosa-sinensis L.), iris (Iris L.), ivy (Hedera L.), lily (Lilium L.), lawn, lemon (Citrus L.), mandarin (Citrus reticulata Blanco), marigold (Tagetes L.), mushroom (Agaricus bisporus L.), nectarine (Prunus persica var. nucipersica (Suckow)), orange (Citrus sinensis (L.)), ornamentals, potting soil, rose, snapdragon (Antirrhinum majus L.)[153]
AzadirachtinColombiaArtichoke (Cynara cardunculus var. scolymus L.), asparagus (Asparagus officinalis L.) avocado (Persea americana Mill.), blackberry, blueberry (Vaccinium L.),
broccoli (Brassica oleracea var. italica L.), carnation cauliflower (Brassica oleracea L.), chili pepper, chrysanthemum, coffee (Coffea L.), cranberry (Vaccinum macrocarpon Aiton), eggplant, gooseberry (Ribes uva-crispa L.), granadilla Passiflora ligularis Juss.), grape (Vitis L.), grapefruit (Citrus x paradisi Macfad.), highbush berry (Vaccinium corymbosum L.), blueberry, lemon, lettuce (Lactuca sativa L.), lime, mandarin, naranjilla (Solanum quitoense Lam.), orange, ornamentals, passion fruit, pepper (Piper nigrum L.), pineapple (Ananas comosus (L.)), potato (Solanum tuberosum L.), rabbit eyeraspberry (Vaccinium virgatum Aiton.), rose, spinach (Spinacia oleracea L.), strawberry, sweet pepper, tangelo (Citrus x tangelo Ingram & Moore), tomato, tree tomato (Solanum betaceum Cav.)
[153]
AzadirachtinUgandaAll crops[153]
Azadirachtin,
Pyrethrin natural
PortugalAll crops[153]
Azadiractia indica L.,
Pongamia pinnata L.
Ricinus communis L.
UgandaAll crops[153]
Canola oilCanadaAfrican eggplant (Solanum macrocarpon L.), alfalfa (Medicago sativa L.), amur river grape (Vitis amurensis Rupr.), apple, apricot (Pruns americana (Scop.)), aronia berry (Aronia arbutifolia (L.)), ash (Fraxinus L.), asparagus (Asparagus officinalis L.), barberry (Berberis vulgaris L.), bayberry (Myrica L.), bean (Phaseolus L.), bearberry (Arctostaphylos uva-ursi
(L.)), beet (Beta vullgaris L.), pepper, bilberry (Vaccinium myrtillus L.), birch (Betula L.), black raspberry (Rubus occidentalis L.), blackberry, blackcurrant (Ribes nigrum L.), blueberry, broccoli, buffalo berry (Shepherdia argentea (Pursh)), buffalo currant (Ribes aureum Pursh), bush tomato (Solanum centrale L.), cabbage (Brassica oleracea var. capitata L.), carrot (Daucus carota L.), cauliflower, celery (Apium graveolens L.), chard (Beta vulgaris L.), chayote (Sechium edule (Jacq.)), cherry (Prunus avium L.), chestnut (Castanea Mill.), omordi guava (Ugni molinae Turcz.), omordi waxgourd (Benincasa hispida (Thungb), chokecherry (Prunus virginiana L.), citron melon (Citrullus caffer Schrad.), cloudberry (Rubus chameamorus L.), cocona (Solanum sessiliflorum Dunal), crab apple (Malus sylvestris Mill.), cranberry, cucumber, cudrane (Cudrania omordicate (Carrière)), currant (Ribes L.), currant tomato (Solanum pimpinellifolium (L.)), dogwood (Cornus florida L.), edible honeysuckle (Lonicera L.), eggplant, elderberry (Sambucus nigra L.), elm (Ulmus L.), evergreen trees, firethorns (Pyracantha Roem.) flowering cherry (Prunus serratula (Lindl.)), peach, plum, foliage plants, garden huckleberry, geranium, goji berry (Lycium chinense L.), grape, groundcherry (Physalis L.), hawthorn (Crateagus L.), hazel tree (Corylus L.), highbush cranberry (Viburnum trilobum Marshal), holly (Ilex L.), hop, house plants, huckleberry (Vaccinium L. and Gaylussacia Kunth), jostaberry (Ribes × nidigrolaria), juneberry (Amelanchier lamarckii Lamarck), kale (Brassica oleracea L.), kiwi (Actinidia chinensis (Planch.)), lettuce, lilac (Syringa vulgaris L.), lingonberry (Vaccinium vitis-idaea L.), magnolia (Magnolia L.), maize, maple, martynia (Martynia annua L.), maypop (Passiflora incarnata L.), melon (Cucumis melo L.), omordica (Momordica charantia L.), mountain pepper berry (Tasmannia lanceolata (Poir.)), mulberry (Morus L.), muntries (Kunzea pomifera Muell.), muskmelon, naranjilla, native currant (Acrotriche depressa R.Br.), nectarine, oak (Quercus L.), okra (Abelmoschus esculentus (L.)), onion (Allium cepa L.), ornamentals, partridgeberry (Mitchella repens L.), pea, pea eggplant (Solanum torvum Sw.), peach (Prunus persica (L.)), pear, pecan (Carya illinoinensis (Wangenh)), pepper, phalsa (Grewia asiatica L.), pincherry (Prunus pensylvanica L.f.), pine (Pinus L.), plum (Prunus domestica L.), potato, privet (Ligustrum L.), prune (Prunus L.), pumpkin (Cucurbita L.), radish (Raphanus sativus L.), raspberry, redcurrant (Ribes rubrum L.), riberry (Syzygium luehmannii (F.Muell)), rose, roselle (Hibiscus sabdariffa L.), rutabaga (Brassica napus L.), salal (Gaultheria shallon Pursh), scarlet eggplant (Solanum aetiopicum), schisandra berry (Schisandra chinensis (Turcz.)), sea buckthorn (Hippophae L.), serviceberry (Amelanchier Medik.), sour cherry (Prunus cerasus L.), soybean (Glycine max L.), spruce (Picea L.), squash (Cucurbita L.), strawberry, sugar beet, sunberry (Solanum retroflexum Dunal), ycamore (Platanus L.), tamarillo (Solanum betaceum Cav.), tomatillo (Physalis philadelphica Lam.), tomato, tulip tree (Liriodendron L.), turnip (Brassica rapa subsp. rapa L), walnut (Juglans L.), watermelon (Citrullus lanatus (Thunb.)), wild raspberry (Rubus occidentalis L.), willow (Salix L.)
[153]
Eco oilAustraliaCapsicums, cucumbers, tomatoes[153]
Extract of
Tithonia diversifola (Hemsl.)
ColombiaAvocado (Persea americana Mill.)[153]
Extract of Quillay saponinas Molina
Non-saponin solids such as polyphenol salts and sugars
ColombiaAvocado, blackberry, blueberry, chirimoya (Annona cherimola Miller), cranberry, fig (Ficus carica L.), grape, grapefruit, guana (Psidium guajava L.), highbush blueberry, lemon, mandarin, mango (Mangifera L.), orange, ornamentals, papaya (Carica papaya L.), peach, plum, rabbit eye blueberry, raspberry, rose, sapodilla (Manilkara zapota (L.)),
strawberry, sugar apple (Annona squamosa L.), tangelo, tomato
[153]
Fatty acids
C14–C20–479.8 g
PolandCucumber, strawberry tomato under cover; chokeberry (Aronia Medik.), cranberry, honeysuckle, raspberry, blackberry, black currant, red currant, white currant, gooseberry (Ribes uva-crispa L.), cherry, plum, pear, tomato[150]
Garlic extract,
Pyrethrin natural
UgandaAll crops[153]
Key lime extract,
Olive extract
PeruAsparagus, avocado, banana (Musa L.), blueberry, granada (Punica granatum L.), grapevine, lemon, mandarin, mango, plantain (Plantago L.), subtle lemon (Citrus limon (L.)), tangelo[153]
MaltodextrinGhanaAfrican pear, apple, avocado, banana, bean, bell pepper (Capsicum annuum L.), bean, blackberry, broccoli, brussels sprout (Brassica oleracea var. gemmifera L.), cabbage, carrot, cassava (Manihot esculenta Cranz.), cauliflower, cherry, chilli pepper, cocoa (Theobroma cacao L.),
Coconut (Cocos nucifera L.), common bean, cucumber, eggplant, bean, garden egg (Solanum melongena L.), green bean, guava, hot pepper, indian spinach (Basella alba L.), jackfruit (Artocarpus heterophyllus Lam.), kale, kiwi, lemon, lettuce, lime, maize (Zea mays L.), mango, melon, nectarine, noni fruit (Morinda citrifolia L.), okra, onion,
orange, papaya, pear, pepper, pineapple, raspberry,
soursop (Annona muricata L.), soybean, spinach, strawberry, sugar apple, sweet pepper, sweet potato (Ipomea batatas L.), tangerine (Citrus reticulata L.), taro, tomato, watermelon, yam (Dioscorea alata L.)
[153]
MaltodextrinPortugalAll crops[153]
MaltodextrinSpainAll crops[153]
Pyrethrin naturalUgandaAll crops[153]
Mineral oilCanadaAll crops[153]
Orange oil 60 gPolandBlackberry, raspberry[150]
Orange oil—58.96 gPolandOrnamental plants, peppers, tomato[150]
Orange oilPortugalAll crops[150]
Organic antioxidant,
Silicone polymer,
Siloxane
UKAll crops[153]
Paraffin oil—770 gPolandApple[150]
Paraffin oilPortugalAll crops[153]
Potassium salts of fatty acidsCanadaAll crops[153]
Potassium salts of fatty acidsAustraliaDifferent crops[152]
Pyrethrin naturalCanadaAfrican violet, apple, aralia (Aralia L.), aster, asparagus, azalea, bean, begonia, beet, broccoli, cabbage, carrot, celery, chrysanthemum, cineraria (Cineraria L.), cucumber, dahlia, delphinium, dieffenbachia (Diffenbachia Schott.), eggplant, evergreen trees, fuchsia (Fuchsia L.), geranium, gladiolus, gloxinia (Gloxinia LHer), grape, herbs, house plants, impatiens (Impatiens L.), iris, ivy, lantana (Lantana L.), lettuce, marigold, neanthe bella palm (Chamaedorea elegans Mart), onion, ornamentals, pea, pepper, petunia, potato, radish, rose, snapdragon, squash, tomato, turnip[153]
Pyrethrin naturalUgandaAll crops[153]
Rapeseed oilPortugalAll crops[153]
Rapeseed oilUKAll crops[153]
Urtica sativa L. extractPortugalAll crops[153]
Urtica sativa extractSpainAll crops[153]
Urtica sativa extractGermanyAll crops[153]
White mineral oilGhanaAfrican pear, apple, avocado, banana, bean, bell pepper, bean, blackberry, cabbage, carrot, cassava, cherry, chilli pepper, coconut, cucumber, eggplant, garden egg, guava, hot pepper, Indian spinach, jackfruit, kiwi, lemon, lettuce, lime, mango, melon, nectarine, noni fruit, okra, onion, orange, papaya, pear, pepper, pineapple, raspberry, soursop, soybean, spinach, star apple (Chrysophyllum caimito L.), strawberry, sugar apple, sweet pepper, sweet potato, tangerine, taro, tomato, watermelon, yam[153]
Table 3. Micro- and macro-organisms used in plant protection products for treatment T. urticae worldwide.
Table 3. Micro- and macro-organisms used in plant protection products for treatment T. urticae worldwide.
Biological GroupSpeciesCountryCrops
BacteriaBacillus thuringiensis Berliner,
Pseudomonas fluorescens (Flugge)
BangladeshTea
Fungi (entomopathogenic fungi)Beauveria bassiana (Bals.)Australia, Bangladesh, Uganda, PolandPermitted for use on all crops
Metarhizium anisopliae (Metchnikoff)KenyaMaize, ornamentals, rose
UgandaPermitted for use on all crops
Paecilomyces fumosoroseus (Wize)ColombiaPermitted for use on all crops
M.anisopliae,
Paecilomyces lilacinus (Thom)
ChilePermitted for use on all crops
Verticillum lecanii (Zimmerman)UgandaPermitted for use on all crops
MitesAmblydromalus limonicus (Gharma & McGregor)Germany, Portugal, SpainPermitted for use on all crops
Amblyseius andersoni (Chant)Canada, Germany,
Portugal,
Spain, UK
Permitted for use on all crops
A. andersoniKenya, UKOrnamentals, Rose
Amblyseius californicus (Moq.)Kenya, Uganda, UKFrench bean, ornamentals, rose, vegetable
Amblyseius spp.Canada, Chile, Germany, Portugal,
Spain, UK
Permitted for use on all crops
A. swirskii Athias-HenriotCanada, Germany, Poland,
Portugal, Spain, UK
Permitted for use on all crops
Amblyseius sp.,
Transeius montdorensis (Schicha)
Portugal, PolandPermitted for use on all crops
Neoseiulus californicus McGregorAustralia, Bangladesh, Canada, Chile, Germany, Peru, Poland,
Portugal, Spain, Uganda, UK
Permitted for use on all crops
Hypoaspis miles BerleseCanadaPermitted for use on all crops
N. californicusKenyaOrnamentals, rose
N. cucumeris (Oudemans)Canada, Chile, Germany, Poland, Portugal, UKPermitted for use on all crops
Phytoseiulus persimilis Athias-Henriot Australia, Canada, Chile,
Germany, Peru, Portugal, Spain, Uganda, UK
Permitted for use on all crops
Phytoseiulus macropilis (Banks)BangladeshPermitted for use on all crops
Ph. persimilisKenya, PolandFrench bean, ornamentals,
rose, vegetables, tomatoes
Transeius sp.Germany, Portugal, Spain, UKPermitted for use on all crops
Tyflodromus sp.AustraliaPermitted for use on all crops
InsectsChrysoperla carnea StephensCanada, Poland, UKPermitted for use on all crops
Chrysoperla sp.ChilePermitted for use on all crops
Dalotia coriaria (Kraatz)CanadaPermitted for use on all crops
Dicyphus hesperus KnigthCanadaPermitted for use on all crops
Feltiella acarisuga (Vallot)Canada, Germany, Poland,
Portugal, Spain
Permitted for use on all crops
Macrolophus pygmaeus (Rambur)UK, PolandPermitted for use on all crops
Macrolophus caliginosus WagnerUK, PolandPermitted for use on all crops
Oligota pygmaea SolierChilePermitted for use on all crops
Orius insidiosus (Say)CanadaPermitted for use on all crops
O. tristicolor (White)ChilePermitted for use on all crops
O. insidiosusChilePermitted for use on all crops
Orius spp.,
Orius leavigatus (Fieber)
Poland, UKPermitted for use on all crops
Parastethorus histrio (Chazeau et al.)ChilePermitted for use on all crops
Stethorus punctillum (Weise)Canada, Portugal, SpainPermitted for use on all crops
Coccinella transversalis Fabricius,
Hippodamia vareigata (Goeze)
AustraliaPermitted for use on all crops
Parastethorus-OligotaChilePermitted for use on all crops
H. variegata,
Hyppodamia convergens Cassey,
Adalia angulifera (Musland),
A. bipunctata (Linnaeus),
Eriopis connexa (Germar)
UKPermitted for use on all crops
Insects and mitesFeltiella acarisuga (Vallot),
Transeius montdorensis
UKPermitted for use on all crops
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Jakubowska, M.; Dobosz, R.; Zawada, D.; Kowalska, J. A Review of Crop Protection Methods against the Twospotted Spider Mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods. Agriculture 2022, 12, 898. https://doi.org/10.3390/agriculture12070898

AMA Style

Jakubowska M, Dobosz R, Zawada D, Kowalska J. A Review of Crop Protection Methods against the Twospotted Spider Mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods. Agriculture. 2022; 12(7):898. https://doi.org/10.3390/agriculture12070898

Chicago/Turabian Style

Jakubowska, Magdalena, Renata Dobosz, Daniel Zawada, and Jolanta Kowalska. 2022. "A Review of Crop Protection Methods against the Twospotted Spider Mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods" Agriculture 12, no. 7: 898. https://doi.org/10.3390/agriculture12070898

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop