
Citation: Chen, G.; Deng, Y.; Sarkar,

A.; Wang, Z. An Integrated

Assessment of Different Types of

Environment-Friendly Technological

Progress and Their Spatial Spillover

Effects in the Chinese Agriculture

Sector. Agriculture 2022, 12, 1043.

https://doi.org/10.3390/

agriculture12071043

Academic Editor: Gonçalo C.

Rodrigues

Received: 4 June 2022

Accepted: 15 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

An Integrated Assessment of Different Types of Environment-
Friendly Technological Progress and Their Spatial Spillover
Effects in the Chinese Agriculture Sector
Guang Chen 1 , Yue Deng 2, Apurbo Sarkar 1 and Zhengbing Wang 1,*

1 College of Economics and Management, Northwest A&F University, 3 Taicheng Road,
Xianyang 712100, China; guangchen0516@nwafu.edu.cn (G.C.); apurbo@nwafu.edu.cn (A.S.)

2 School Management, Xi’an University of Science & Technology, Xi’an 710054, China; dengyue@xust.edu.cn
* Correspondence: wzb1964@nwafu.edu.cn

Abstract: The progress of environment-friendly technology is an important means and fundamental
way to achieve high-quality agricultural development. Based on the panel data of 30 provinces of
China from 2000 to 2010, the study used the slack-based models (SBM) to measure the progress
of China’s environment-based technology and its different types and discusses its dynamic evolu-
tion characteristics over time. First, the study adopted MATLAB software and used a slack-based
models (SBM) method to split the environment-friendly technology progress (AGTP) into agricul-
tural emission-reduction environment-friendly technology progress (AEGTP) and the agricultural
re-source-saving environment-friendly technology progress (ARGTP). Then, global and local spatial
autocorrelation analysis, spatial model testing, and Spatial Durbin Model (SDM) were performed on
different types of environment-friendly technology progress using STATA15. Moreover, OpenGeoDa
and ArcGIS software was used for visualization. The empirical results showed that: (i) from the
perspective of time and space, the AGTP showed a slightly higher level in technological regression
trend from 2000 to 2012, and rebounded rapidly from 2012 to 2019. In the spatial dimension, the
spatial autocorrelation test results of environment-friendly technology progress at the global Moran
I level showed a significant positive correlation; however, the phenomenon of the regional level
showed a negative correlation. (ii) From the perspective of the type of heterogeneity, only the spatial
distribution has a high degree of chance, and the aggregation area is more concentrated. Various
influencing factors have a very significant impact on ACGTP but are less significant on agricultural
resource-saving environment-friendly technology progress. However, various influencing factors
have a more significant impact on the ACGTP than AEGTP. (iii) From the perspective of the spatial
spillover effect, labor level, per capita agricultural gross product, and agricultural internal structure
are positively and significantly related to environment-friendly technology progress and its differ-
ent types. Agricultural price policy, financial support policy, economic environmental regulation,
and administrative environmental regulation have significant negative effects on the progress of
environment-friendly technology and its different types.

Keywords: different types; dynamic evolution in space and time; spatial spillover effect; slack-based
models (SBM); spatial data model

1. Introduction

Promoting environment-friendly agricultural development is an inevitable require-
ment for implementing new development concepts and promoting agricultural supply-side
structural reforms [1–3]. In 2017, the General Office of the Central Committee of the Com-
munist Party of China and the General Office of the State Council issued the “Opinions
on Innovating Systems and Mechanisms to Promote Environment-friendly Agricultural
Development”. It is a major measure to accelerate agricultural modernization and pro-
mote sustainable agricultural development in China [4]. In 2014, the Central “No. 1
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Document” particularly emphasized that China needs to establish a long-term mecha-
nism for environment-friendly agricultural development, increase agricultural ecological
protection, and allow over-exploited resources to recuperate to promote the develop-
ment of environment-friendly agriculture [5]. Among them, the use of new knowledge
and new technologies to reduce environmental pollution, improve resource utilization
efficiency, and promote energy conservation and emission reduction through the advance-
ment of environment-friendly technology are important means for the development of
environment-friendly agriculture [6,7]. Recently, the Ministry of Agriculture of China
issued a notice of “Technical Guidelines for Environment-friendly Agricultural Develop-
ment (2018–2030)” which proposes technologies for new varieties of high-efficiency and
high-quality multi-resistance environmentally friendly and high-efficiency fertilizers, agri-
cultural drugs, and biological agents [8]. Environmental friendly technology broadly deals
with various resource-saving farming techniques to improve the optimal use of critical nat-
ural resources by the means of reducing the potential environmental impacts and ensuring
the effective utilization of improved fertilization, water, and other critical resource-saving
technology. Various regional and international organizations are also extensively support-
ing the expansions and promotions of environmentally friendly technology within the
agriculture sector to make the sector more resilient to climate change, global warming, and
ever-increasing resource depletion [9]. Therefore, the progress of environment-friendly
technology has attracted extensive attention from scholars. However, the existing literature
comprehensively evaluated the impacts of environmentally friendly agricultural technology
to promote high and stable yield and high-quality agricultural products [10–13].

The general view is that environment-friendly technology progress is a key supporting
factor for the development of modern agriculture [14,15]. However, the technological
progress may not have similar effects on various regions and territories, and there must
be some specific condition by which the impacts can be altered substantially [16]. There-
fore, the following research question needs to be explored comprehensively: what is the
changing trend of these environment-friendly technologies, whether environment-friendly
technology progress has been enhanced over time, and whether environmental-friendly
technology can foster agricultural pollution reduction and agricultural resource-saving. In
particular, China has a vast territory, and there are obvious differences in the endowment
of agricultural production factors between regions [17]. There may also be spatial and
temporal differences in the factors affecting the progress of environment-friendly technol-
ogy [18,19]. To make dynamic changes in the level of environment-friendly technology
progress in plantation agriculture between regions in China, it is necessary to conduct
serious exploration and research. In addition, from the perspective of the role of the classifi-
cation of environment-friendly technology progress, it is to achieve the “triple” benefits of
economic growth, resource efficiency improvement, and environmental performance im-
provement, that is, efficiency enhancement, energy saving, and emission reduction [20–22].
Therefore, from the perspective of type heterogeneity, it also needs to explore, the differ-
ences in the progress of different agricultural environment-friendly technologies. Only by
grasping the mechanism of action of environment-friendly technology progress and the
current characteristics of environment-friendly technology progress can we make more
accurate use of environment-friendly technology progress and give full play to the driving
value of environment-friendly technology progress [23]. A comprehensive investigation of
these issues will help to make clear and specific recommendations for policymakers.

The primary objective is to comprehensively explore the environment-friendly techno-
logical progress (AGTP) by dividing it into two distinct aspects: (i) agricultural resources-
saving environment-friendly technological progress (AEGTP) and (ii) agricultural emission
reduction environment-friendly technological progress (ACGTP). More specifically, we tend
to explore the three-in-one effect of efficiency enhancement, energy-saving, and emission re-
duction, and discuss the heterogeneity of types that will help to understand the differences
in different environment-friendly technological progress. The study focused on the impact
of green technology progress on carbon emissions to make up for the previous theoretical
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and empirical gaps in the analysis of carbon emissions based on agricultural technology
progress. Secondly, we referred to the existing literature (Such as Northrup et al. [24],
Yang et al. [25], and Wollenberg et al. [26]) and divided environmentally friendly technol-
ogy progress into resource-saving and emission reduction technology progress according
to the definition of green technology progress, and analyzed carbon emission reduction
of different types of agricultural green technology progress in different time and space
dimensions. The research tends to improve the previous research on carbon emission
reduction of technological progress from a single perspective, which is conducive to re-
ducing the problem of one-size-fits-all [27,28]. In the path research of emission reduction,
technological progress is considered to play a leading role. However, to the best of our
knowledge, there is no empirical support for exploring the spatiotemporal relationship
between the progress of environmentally friendly technology and carbon emissions, and
what kind of different carbon emission reduction effects will be formed by the progress
of different types of agricultural environmental friendly technology. At the same time,
accurately grasping the status quo characteristics and action mechanisms of different types
of environment-friendly technological progress will assist the policymaker to foster more
accurate use of environment-friendly technological progress and its diffusions into the
industry. Therefore, from the perspective of heterogeneity, it has certain theoretical and
practical significance to study the impact of agricultural green technology progress in
reducing carbon emissions.

2. Literature Review

Environmentally friendly technological progress refers to technological progress that
can promote resource conservation and emission reduction [29,30]. Existing literature
(Tian et al. [31], Mostashari-Rad et al. [32], and Jantke et al. [33]) has formed the basic
idea of green or pro-environmental technological progress measurement that incorporates
pollutant emissions into the scope of analysis. Some scholars have studied the agricultural
technology progress rate index and technical efficiency change index based on environ-
mental factors and found that ignoring environmental factors will overestimate the growth
of China’s agricultural productivity [34–36]. Hu et al. [37] studied the green productivity
of China’s agriculture under the dual constraints of resources and the environment and
highlighted the impacts of environmentally friendly technology on the reduction of carbon
emissions and resource depilation. Xie et al. [38] found that the spatial spillover effect
of environmental regulation on the progress of environmentally friendly technology has
obvious attenuation and boundedness, and its local effect exhibits a “U-shaped” trend
of first inhibition and then promotion. In a study of the Australian agriculture sector,
Hamman et al. [39] found that the interaction of local environmental regulation policies
strengthens the spatial spillover effect of environmentally friendly technology progress
between regions. According to the study of Farooq et al. [40], the intensity of environmen-
tal subsidies will significantly affect the technological progress effect of environmental
regulation policy combinations. However, China’s environmentally friendly technology
progress can be decomposed into positive technology spillover effects and negative product
structure effects [18]. By building a game model, Xiong et al. [41] found that environmental
research and development is an important transmission path for environmental regulation
to promote the progress of environmentally friendly technology.

The above research provides important analytical ideas for the in-depth discussion of
agricultural environmentally friendly technology progress. In addition, some scholars have
also discussed the factors affecting the progress of agricultural environmentally friendly
technology. Luo et al. [42] and Mozzato et al. [43] found that the income level of rural
residents, the level of agricultural human capital, the proportion of grain sown area, the
urban–rural income gap, and the strength of agricultural policy support contribute to the
degree of green output bias of agricultural technological progress, and the increase in
urbanization level and fertilizer application will hinder its development. Zhang et al. [44]
found that technology promotion and scale factors are the key factors for the progress
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of environmentally friendly technology in marine aquaculture, while the impact of sci-
ence and education input factors is not significant. Interestingly, most of the existing
studies (such as those by Li et al. [45], Fang et al. [46], Lansink and Reinhard [47], and
Sherlund et al. [48]) have focused on total factor productivity or technical efficiency to
analyze the spatial relationship between agricultural environmental friendly technology
progress and environmental constraints, while there is a lack of in-depth analysis of the
spatiotemporal dynamic evolution trend of China’s agricultural environmental friendly
technology progress. In particular, most of them focus on agriculture in the broad sense
and lack research on agriculture in the narrow sense or specific clusters of agriculture
such as the planting industry. Since the planting industry is an important part of the
development of green agriculture and its development is inseparable from the progress
of environmentally friendly technology, an in-depth analysis of the temporal and spatial
dynamic evolution trend of environmentally friendly technology progress in China’s plant-
ing industry is of great importance to providing policy suggestions for further promoting
China’s agricultural green development.

The above literature has laid an important foundation for the spatial spillover effect
of China’s agricultural green progress, but the spatial spillover effect of environmentally
friendly technology progress in the planting industry still needs to be proved by the
literature. A comprehensive and accurate analysis of the spatial spillover effects of en-
vironmentally friendly technological progress in various provinces can scientifically and
effectively promote the green development of regional agriculture. There are few studies on
the progress of agricultural environmentally friendly technology. This study explored the
connotation and extension of agricultural technology progress and divided agricultural en-
vironmentally friendly technology into resource-saving technology and emission-reduction
technology progress from the perspective of function goals.

3. Materials and Methods
3.1. Model Construction
3.1.1. Measurement Model of Agricultural Environmental Friendly Technology Progress

There are many methods for measuring the progress of agricultural environmentally
friendly technology. For a more in-depth analysis of agricultural environmentally friendly
technology progress and its different types, the study concerned the methods of van der
Werf [49], Zhuang et al. [50], and Pang et al. [51] and simulated the method based on the
improved SBM measurement method. The deflection process of the production frontier
measures agricultural pollution reduction (ACGTP) and the agricultural resource-saving
(AEGTP) technology, and finally measures the overall agricultural environmental friendly
technology progress (AGTP). The specific formulae are shown below:
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where x, e, y and b are the input factors (capital and labor), energy input, desired output,
and undesired output, respectively; s is the slack variable. Therefore, we can establish
the Malmquist Index (ACGTP) of pollution-reducing agricultural environmental friendly
technology progress as:

ACGTP
√

DB/Db=

√
ρs

b(xs, ys)/ρs
b(xT , yT)

ρT
b (xs, ys)/ρT

b (xT , yT)
/

ρs
x(xs, ys)/ρs

x(xT , yT)

ρT
x (xs, ys)/ρT

x (xT , yT)
(2)

If ACGTP > 1, there may be technological progress in pollution reduction, that is,
the greater the ACGTP value, the more significant the progress in pollution reduction in
agricultural environmental friendly technology. Similarly, the Malmquist Index (AEGTP) of
the progress of the environmentally friendly technology of agricultural resource-saving
agriculture is:

AEGTP
√

DB/Db=

√
ρs

E(xs, ys)/ρs
E(xT , yT)

ρT
E(xs, ys)/ρT

E(xT , yT)
/

ρs
X(xs, ys)/ρs

X(xT , yT)

ρT
X(xs, ys)/ρT

X(xT , yT)
(3)

If AEGTP > 1, there may be progress in agricultural environmentally friendly tech-
nology that saves resources, that is, the larger the AEGTP value, the more significant the
progress in energy-saving technology. Since the improvement of environmental quality
requires energy conservation and emission reduction at the same time, we define the com-
prehensive agricultural environmental friendly technology progress index by adjusting the
methods used by Long et al. [52] as:

AGTP = AEGTP × ACGTP (4)

3.1.2. Kernel Density Estimation Method

There are many methods for measuring the progress of agricultural environmentally
friendly technology. For a more in-depth analysis of agricultural environmentally friendly
technology progress and its different types, this study concerned the methods of van der
Werf [49], Zhuang et al. [50], and Pang et al. [51] and simulated the method based on the
improved SBM measurement method. The deflection process of the production frontier
measures agricultural pollution reduction (ACGTP) and the agricultural resource-saving
technology progress (AEGTP), and finally measures the overall agricultural environmental
friendly technology progress (AGTP). The specific formulae are shown below.

The nonparametric estimation method of Kernel Density Estimation (KDE) has become
a common method to study uneven distribution due to its weak dependence on the model
and robustness (Doudou and Yuanping [53]). It is a non-parametric technique for estimating
a randomized variable’s probability distribution. KDE is an essential dataset smoothing
issue where such demographic assumptions are obtained from a fixed sampling size [54,55].
The study used this method to analyze the dynamic distribution characteristics of China’s
agricultural environmentally friendly technology progress. The specific formula is:

F(x) =
1

Nw

N

∑
i=1

K(
Xi − x

w
) (5)

In Formula (5), F(x) represents the density function of agricultural environmental
friendly technology progress, which x is the mean value, N represents the number of
observations, Xi is the independent and identically distributed observations, w is the
window width, and the larger w is, the higher the rate. The smoother the density function
curve is, the lower the estimation accuracy will be, so a smaller window width is generally
chosen in practical research.

K(x) =
1√
2π

exp(− x2

2
) (6)
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According to the different expressions of the Kernel density function [56], the kernel
function can be divided into the uniform kernel, quadratic kernel, and Gaussian kernel.
Since there is no definite function expression for the nonparametric estimation, it is neces-
sary to compare the position, shape, and ductility of the graph distribution to examine the
change in the distribution. In this study, the Gaussian kernel density function was selected
to estimate the distribution dynamics of China’s agricultural environmentally friendly
technology progress as suggested by Ji et al. [57]. The function expression of the Gaussian
kernel is shown in Equation (6).

3.1.3. Spatial Autocorrelation

Global autocorrelation (Moran’s I) and local autocorrelation analysis (Anselin Local
Moran’s I) are analytical methods widely used to study spatial correlation [58]. Thus,
we used both methods to verify the spatial correlation between China’s agricultural and
environmentally friendly technology progress. The specific formulae are:

I =
n ∑ i ∑ jWij(Xi − X)(Xj − X)

∑ i ∑ jWij(Xj − X)
(7)

Ii =
n(Xj − X)

S2
X

Wij(Xj − X) (8)

Among them, Formula (7) is the global spatial autocorrelation “Moran’s I”, n is the
total number of regions, Wij is the spatial weight (queen contiguity weight matrix), Xi and
Xj are the attributes X of the province, i and j, respectively, and are the attribute mean. In,
Equation (8) the “Moran’s I” denotes the local spatial autocorrelation and S2

X is the observed
value variance, and its expression is S2

X = ∑
j

WijXj − X )/n.

3.1.4. Spatial Dubin Model

At present, the mainstream research methods of spatial metrology include the spatial
lag model (SAR) [59], spatial error model (SEM) [60], and spatial Durbin model (SDM) [61].
Compared with the SAR and SEM models, the SDM model considers the spatial corre-
lation of dependent variables and the spatial correlation of independent variables and
has both spatial autocorrelation and spatial interaction effects [62]. At the same time, for
endogeneity problems, the SDM model can be used to obtain estimates that are not biased
by amplification [63]. Therefore, the article used this model to investigate the impact of
each variable on the progress of agricultural environmentally friendly technology and the
spatial spillover effect. The model was set as follows:

Y = ∂ + βWy + βX + WXγ + ε (9)

Among them, Y is the dependent variable, β is the spillover effect of neighboring
provinces, X is the independent variable, β and γ are the parameters to be estimated, and
W is the weight. In this paper, the spatial adjacency weight matrix was selected as the
spatial weight matrix.

3.1.5. Data Sources

The study took 30 provinces in mainland China (excluding Hong Kong, Macao, and
Taiwan) as the research object, and took 2000–2019 as the research interval. The relevant
data used for spatial spillover effects were all from the China Rural Statistical Yearbook,
China Agricultural Statistical Yearbook, China Statistical Yearbook, and the National Bureau
of Statistics of China (https://data.stats.gov.cn/index.htm, accessed on 1 January 2021).

https://data.stats.gov.cn/index.htm
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3.2. Variable Selection and Data Interpretation
3.2.1. Variable Selection and Data Description

In general, the factor inputs involved in agricultural production mainly include labor,
land, resources, and technology. The study quantified the labor input by the number
of employees in the planting industry, the land input by the total sown area of crops,
and the resource input by the use of chemical fertilizers, pesticides, agricultural films,
and the total power of planting machinery, and the output data include the total output
value of the planting industry and the non-point source pollution index of undesired
output. Among them, the total power data of the planting industry were calculated by
subtracting the total power of forestry, animal husbandry, and fishing industry from the
total power of agricultural, forestry, animal husbandry, and fishery industry in that year.
However, the non-point source pollution is the main component of the current agricultural
pollution discharge, which mainly includes the residual pollution of chemical fertilizers,
pesticides, and agricultural film [64]. The study used the method of BaoYi and WeiGuo [65]
for measuring the non-point source pollution: (i) the fertilizer loss is calculated by the
amount of chemical fertilizer used multiplied by the fertilizer loss coefficient of 65%,
(ii) the calculation method of pesticide invalid utilization is the pesticide use amount
multiplied by the pesticide invalid utilization coefficient 50%, and (iii) the calculation
method of agricultural film residue is the amount of agricultural film used multiplied by
the correlation coefficient of agricultural film residue coefficient by 10%. Interestingly, the
study used the entropy method to synthesize the amount of chemical fertilizer, pesticide,
and agricultural film pollution into one integrated index to characterize agricultural non-
point source pollution. The remaining missing data were filled by the weighted average
value of adjacent areas and the fitted predicted value in different periods instead of the
principle and method of the equal single value imputation method as recommended by
Ferrari and Ozaki [66], Harrell [67], and Pažek and Rozman [68].

3.2.2. Variable Selection and Data Description of Spatial Spillover Effects

To explore the spatial spillover effect of agricultural green technology progress, the
corresponding indicators selected in the study are as follows. (i) The per capita agricultural
gross product (PGDP) is the embodiment of economic capacity, which can provide relevant
supporting facilities, human resources, industrial foundation, technological foundation,
and resources for the development of green technology [69,70]. In addition, regions with a
better economy have more job opportunities, better infrastructure, and a better supervision
system, forming the agglomeration effect of capital and labor, enhancing the level of
innovation in the region, and eventually fostering environment-friendly technological
progress [27,71]. Therefore, the study proposes Hypothesis 1 as:

H1. Per capita agricultural product has a positive impact on fostering environment-friendly
technological progress.

(ii) Disposable income of farmers (PIC) is an important manifestation of the farmers’
economy. Farmers choose their production direction, production scale, and production
method based on economic rationality and comparative analysis of costs and benefits,
which affect the progress of agricultural green technology to a certain extent [72]. However,
the current level of farmers’ disposable income is far from reaching the role of technological
innovation [73]. Farmers or agricultural enterprises with higher incomes are often more
likely to realize agricultural mechanization and modernization [74], which has a better
effect on the local economy but has little effect on the progress of local agricultural green
technology [16]. Therefore, the study proposes Hypothesis 2:

H2. Disposable income of farmers has a significant impact on the aspects of environment-friendly
technological progress.

(iii) China’s agricultural terms of trade are deeply affected by agricultural price policies,
which are mainly reflected in the changes in terms of trade caused by the reform of
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agricultural product price support policies and target price policies [65]. At the same
time, the agricultural subsidy policy and its improvement also have a complex impact
on the progress of agricultural technology. The agricultural price policy (PP) adopts the
ratio (price) of the price index of agricultural products to the price index of agricultural
means of production. The implementation of the minimum grain purchase price and the
temporary purchase and storage policy has reduced the risk of farmers selling agricultural
products [6], improved farmers’ enthusiasm for production, and increased the output of
agricultural products significantly [70]. In addition, for a green environment, agricultural
financial policies will change the relative prices of agricultural inputs and agricultural
products, affect the production behavior of farmers, and thus have different impacts on
resources and the environment [75]. For example, most of China’s agricultural subsidies
are mainly price subsidies and are mainly used in the purchase and sale of agricultural
products and agricultural production materials such as chemical fertilizers, agricultural
films, and pesticides. Such subsidies support agricultural development to a certain extent,
but at the same time seriously pollute soil and water resources, and even endanger the
safety of agricultural products. Most agricultural subsidies are not directly financed but
are indirectly subsidized through circulation channels. Therefore, the subsidy policy
of chemical fertilizers and pesticides may make farmers increase the input of chemical
elements, which relatively reduces the pollution to the environment and is not conducive
to the progress of agricultural green technology. For the Fiscal Supporting Agriculture
Policy (FIN), the indicator data are represented by the ratio of various fiscal expenditures
for agriculture to total fiscal expenditures in each province. Therefore, the study proposes
Hypothesis 3:

H3. Agricultural price policy (PP) and the financial support for agriculture (FIN) has a positive
impact on environment-friendly technological progress.

(v) The article drews on the research of Feng et al. [76] and used the fiscal environ-
mental protection expenditure per unit of the total output value of the planting industry to
measure. Economical Environmental Regulation (EPR) refers to the government’s increased
governance costs to solve actual and potential environmental problems, to encourage, regu-
late and guide the development of the environment in a positive direction. Administrative
Environmental Regulation (CER) has a negative impact on the progress of agricultural
green technology in the region and adjacent areas. However, Guyomard et al. [77] argued
that environmental policies (e.g., emissions fees/taxes, trading permits) act as an external
coercive factor that explicitly or implicitly makes products more expensive, thereby pro-
moting technological innovation. The reason may be that only reasonable environmental
regulations can make technological progress more green [78]. However, agricultural green
technological progress measures technological development in the production process
and is mostly associated with several issues such as pollution emissions. Therefore, only
a reasonable response to administrative environmental regulation policies and the dual
motives of maximizing profits can make green technologies tend to be green [79]. Based on
the discussion, the study proposes Hypothesis 4:

H4. There is a positive relationship between Economical Environmental Regulation (CER) and
environment-friendly technological progress.

(vi) Administrative Environmental Regulation (CER) refers to the normative docu-
ments formulated by the government to solve actual and potential environmental problems.
Fiscal expenditures, subsidies, taxes, and investment in infrastructure construction are
important means of implementing green agricultural policies which play an important
role in regulating, promoting, and guiding the process of green technology [39]. There-
fore, the study measured the command-type environmental regulation by the number of
environmental regulation policies implemented by each province in that year [80]. Policy
supervision is an opportunity to realize the transformation of the production mode to
green production, and finally realize the coordinated development of the economy and
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environment [81,82]. On the contrary, due to the low level of technology and traditional
production methods in economically underdeveloped areas, economic environmental reg-
ulation will reduce their economic scale. The overall agricultural economic operation of
the region has been impacted, and some regions may even have relaxed law enforcement
to avoid the adverse impact of environmental policies on the economy. Therefore, the
current domestic imperative environmental policies are weak and cannot effectively pro-
mote the development of agricultural green technology progress. Thus, the study proposes
Hypothesis 5:

H5. Administrative Environmental Regulation (CER) positively impacts environment-friendly
technological progress.

Labor level refers to the labor achievements created by laborers in a certain period. The
accelerated development of agricultural technology is the direct cause of the accelerated
transfer of the rural labor force [83]. The combination of it and the relaxation of the
household registration system can well promote the rural labor force and transfer and
agricultural economic development [84]. From the perspective of human capital, the level of
labor quality and quantity also affects technological progress to a certain extent [85]. Based
on the research object, we measured the level of the labor force by the employees in the
planting industry and assumed that more employees mean a greater impact on the progress
of agricultural green technology. The degree of dependence on the original, production
technology and production equipment is high, and extensive production is carried out
by intensive use of unskilled and low-skilled labor. This forms the path dependence of
the extensive development model of the input of tangible factors such as labor, which in
turn hinders the progress of agricultural green technology and has a low-end lock-in effect.
Therefore, in social development, creating more adequate employment opportunities,
providing a more stable employment environment, and improving the social security
system will help provide important guarantees for the green and high-quality development
of agriculture [86,87]. Agricultural industry structure (PS) reflects the adjustment and
change of the industrial structure of agricultural internal management. The adjustment
of agricultural structure is affected by the price mechanism. If the production structure of
agricultural products is adjusted and optimized according to resource and environmental
constraints and market demand, the effective supply of agricultural products can be
achieved, the total factor productivity of agriculture can be improved, and the progress of
agricultural green technology can be promoted [88,89]. Therefore, the study selected the
ratio of grain sown area to total crop sown area to measure agricultural industry structure.
Based on the above assumptions, the study proposes Hypothesis 6:

H6. Labor level and Agricultural Industrial Structure have positively connected with environment-
friendly technological progress.

3.3. Model Validation

Before measuring and analyzing the model, we should judge the reasonableness
of the model. Commonly used test methods are the Lagrange multiplier test (LM test),
likelihood ratio test (LR test), and Wald test (Wald test). The Lagrangian test value (LM
test) and the robust Lagrangian test value (Robust LM) of the spatial lag model and the
spatial error model under the economic weight matrix were positive at the 1% significance
level. Meanwhile, the LR value and Wald test rejected the original hypothesis at the 1%
significance level, indicating that the SDM model should be the best choice. The results are
shown in Table 1.



Agriculture 2022, 12, 1043 10 of 24

Table 1. LM, LR, and Wald test results.

Model Index AGTP AEGTP ACGTP

SAR

LM 39.691 *** 54.134 *** 63.117 ***
Robust LM 103.136 *** 39.710 *** 126.750 ***

LR 93.850 *** 49.370 *** 98.340 ***
Wald 24.189 *** 103.515 *** 30.168 ***

SEM

LM 476.079 *** 737.994 *** 440.713 ***
Robust LM 2070.075 *** 811.531 *** 1256.248 ***

LR 90.270 *** 49.067 *** 92.340 ***
Wald 31.936 *** 37.380 *** 36.776 ***

Note: *** represent the significance levels of 1%.

4. Results
4.1. Time Dynamic Evolution of Agricultural Environmental Friendly Technology Progress

To intuitively understand the dynamic evolution characteristics of China’s agricultural
environmentally friendly technology progress, this paper took 2000, 2006, 2012, and 2019
as the investigation years, and used the Kernel density estimation method to evaluate
the agricultural environmentally friendly technology progress (AGTP) and agricultural
pollution reduction (ACGTP) and the agricultural resource-saving (AEGTP) technology
were analyzed, as shown in Figures 1–3 respectively.
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As can be seen from Figure 1, the dynamic evolution of agricultural environmen-
tal friendly technology progress (AGTP) in China’s 30 provinces (municipalities and
autonomous regions) from 2000 to 2019 has the following characteristics. (i) From the
perspective of location distribution, the center of the national overall distribution curve is to
moved to the right, indicating that China’s Agricultural Environmental friendly technology
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Progress (AGTP) was on the rise during the study period. (ii) From the point of view of the
distribution form, the peaks changed from double peaks in 2012 to single peaks in 2019,
and the width of the main peak showed a transition characteristic of “broad peak-spike
peak-broad peak”. Among them, from 2000 to 2006, there were mainly double peaks, the
kurtosis decreased year by year, the peak shape changed from “broad peak” to “spiky
peak”, and the horizontal span of the density distribution curve narrowed. This shows that
the concentration of agricultural environmentally friendly technology progress (AGTP)
increased and regional differences narrowed. From 2006 to 2019, it developed from a double
peak to a single peak, the kurtosis decreased year by year, the peak shape changed from a
“spiky peak” to a “broad peak”, and the horizontal span of the density distribution curve
became wider. This means that the differences in the level of agricultural environmentally
friendly technology progress in different regions were gradually widening. It may be that
the technical level of some provinces was gradually “outdated”, resulting in a decrease in
the concentration of the overall technical level and a widening of regional differences. The
above analysis also shows that the level of China’s agricultural environmentally friendly
technology progress (AGTP) has uneven regional development.

Figure 2, the dynamic evolution of agricultural resource-saving agricultural envi-
ronmental friendly technology progress (AEGTP) in 30 provinces (municipalities and
autonomous regions) in China from 2000 to 2019 has the following characteristics. (i) The
center of the distribution curve experienced a slight “left–right shift” trend, indicating
that China’s agricultural resource-saving agricultural environmentally friendly technology
progress (AEGTP) at this stage showed a slight decline from 2000 to 2012 and a rapid
recovery from 2000 to 2019. Among them, from 2000 to 2012, there was a slight trend of
technological regression. This is similar to the study by Zhang et al. [80]. The possible
reason is that because production technology is not reversible, changes in the production
environment caused by factors such as agricultural policies and the natural environment
are the key to the “regression” of technology. From 2012 to 2019, the rapid recovery of
agricultural resource-saving environmental friendly technology progress (AEGTP) may be
related to the country’s emphasis on establishing a long-term mechanism for agricultural
green development and the release of the “Technical Guidelines for Agricultural Green De-
velopment (2018–2030)” in 2018 and other policies. (ii) From the perspective of distribution
shape, the peaks changed from multi-peaks in 2000 to single-peaks in 2019, and the width
of the main peak showed a transition characteristic of “broad peak-spike–broad peak”.
Among them, from 2000 to 2006, it was mainly multi-peak, the kurtosis decreased year
by year, the peak shape changed from “broad peak” to “sharp peak”, and the horizontal
span of the density distribution curve narrowed, indicating the progress of agricultural
resource-saving technology (AEGTP). The degree of concentration increased, and regional
differences narrowed. From 2012 to 2019, it developed from multi-peak to single-peak,
the kurtosis decreased year by year, the peak shape changed from a weak “spike” to a
“broad peak”, and the horizontal span of the density distribution curve became wider. Like
the Agricultural Environmental friendly technology Progress (AGTP), the differences in
the level of the Agricultural resource-saving environmental friendly technology Progress
(AEGTP) in different regions gradually widened. This also indirectly proves the importance
of discussing the spatial spillover effect policy of agricultural environmentally friendly
technology progress in different regions.

Figure 3 shows that the dynamic evolution of China’s pollution reduction agricul-
tural environmental friendly technology progress (ACGTP) from 2000 to 2019 in China’s
30 provinces (municipalities and autonomous regions) has the following characteristics.
(i) From the perspective of location distribution, the overall distribution curve of the coun-
try has the following characteristics: the center moved to the right, indicating that the
agricultural pollution reduction environmental friendly technology progress (ACGTP) also
showed an increasing trend during the study period. (ii) From the point of view of the
distribution form, the wave peak changed from a single peak in 2000 to a double peak in
2019, and the width of the main peak showed a transition characteristic of “broad peak-
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spike peak-broad peak”. Among them, from 2000 to 2012, the single peak was dominant,
the kurtosis decreased year by year, the peak shape changed from “broad peak” to “spiky
peak”, and the horizontal span of the density distribution curve narrowed, indicating that
the provinces are located in areas where in agricultural pollution-reducing environmentally
friendly technology Progress (ACGTP) was high and concentration increased, and regional
disparities narrowed. From 2012 to 2019, it developed from a single peak to a double peak,
the kurtosis decreased year by year, the peak shape changed from a weak “spike” to a
“broad peak”, and the horizontal span of the density distribution curve became wider. This
means that the differences in the agricultural pollution reduction environmental friendly
technology progress (ACGTP) in different regions are also gradually widening.

Figures 1–3 show that the position distribution, peak shape, and kurtosis of Agri-
cultural Environmental friendly technology Progress (AGTP) and pollution reduction
agricultural environmental friendly technology Progress (ACGTP) are similar, which fully
illustrates the existing agricultural environmental friendly technology in China. Technolog-
ical progress mainly takes pollution abatement technology as the main goal. That is, the
agricultural environmentally friendly technology mainly aims at minimizing the number
of pollutants generated and harmlessly treating wastes. In addition, judging from the
time dynamic evolution trend of agricultural environmental friendly technology progress
(AGTP), agricultural resource-saving environmental friendly technology progress (AEGTP),
and agricultural pollution reduction environmental friendly technology progress (ACGTP),
there are regional imbalances in regional development. The regional gap is widening, and it
is necessary to further analyze the spatial dynamic changes of agricultural environmentally
friendly technology progress.

4.2. Subsection Evolution of Spatial Characteristics of Agricultural Environmental Friendly
Technology Progress

To analyze the spatial correlation of agricultural environmental friendly technology
progress, this paper measured the global Moran’s I index to test China’s agricultural
environmental friendly technology progress (including agricultural resource-saving en-
vironmental friendly technology progress (AEGTP) and agricultural pollution reduction
environmental friendly technology progress (ACGTP)). The spatial correlation and its
evolution characteristics are shown in Table 2. As shown in Table 2, the global Moran’s I
statistical value was partially significant under the confidence interval of 5% or 1% and
both were greater than 0, indicating the progress of agricultural environmental friendly
technology in China’s provinces, the agricultural resources saving environmental friendly
technology (AEGTP), and the reduction of pollution (ACGTP). There is a positive spatial
correlation between the agricultural environmentally friendly technology progress, and it
has the characteristics of spatial aggregation. However, since all “Moran’s I” are prone to
the mutual cancellation of positive and negative correlation regions, resulting in spatially
uncorrelated results, further verification of local spatial autocorrelation is required.

The article used Open GeoDa to measure the local Moran’s I index to test the spa-
tial correlation of China’s agricultural environmentally friendly technology progress as
recommended by Anselin et al. [90]. The evolution characteristics of China’s agricul-
tural environmentally friendly technology in 2000 and 2019 were drawn using ARCGIS
software [91], and the degree of agglomeration was divided into four types: high–high,
high–low, low–high, and low–low. The results are shown in Figure 4. From the local
autocorrelation LISA agglomeration map of China’s agricultural environmental friendly
technology progress index in 2000 and 2019 (Figure 4), it can be seen that the progress
of agricultural environmental friendly technology in China’s 30 provinces (autonomous
regions and municipalities) (including agricultural environmental friendly technological
progress (AEGTP) and pollution-reduction-oriented agricultural environmental friendly
technology progress (ACGTP) showed obvious disequilibrium in space.
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Table 2. Overall Moran’s I statistics of China’s agricultural environmentally friendly technology
progress from 2000 to 2019.

Years
AGTP ACGTP AEGTP

Moran’s I Z Value Moran’s I Z Value Moran’s I Z Value

2000 −0.010 0.245 0.079 1.106 −0.043 −0.085
2001 −0.054 −0.282 −0.030 0.057 −0.169 −1.244
2002 0.020 0.598 −0.045 −0.110 0.244 2.105 **
2003 −0.053 −0.183 −0.189 −1.570 −0.198 −1.615
2004 −0.013 0.376 −0.060 −0.536 0.098 1.338
2005 0.067 0.962 0.002 0.370 −0.150 −1.103
2006 0.021 0.605 0.055 0.928 0.058 1.052
2007 0.228 1.954 * −0.125 −1.195 −0.046 −0.110
2008 0.046 0.947 0.138 1.712 * −0.018 0.204
2009 −0.019 0.214 −0.015 0.198 −0.052 −0.272
2010 0.249 2.970 *** 0.202 2.332 ** 0.220 2.610
2011 −0.137 −0.989 −0.092 −0.544 −0.117 −0.791
2012 −0.168 −1.273 −0.065 −0.288 0.265 2.340 **
2013 0.232 2.666 *** 0.074 1.044 0.258 3.135 ***
2014 −0.047 −0.142 −0.038 −0.041 −0.087 −0.519
2015 −0.005 0.311 0.021 0.131 0.035 0.733
2016 −0.055 −0.248 −0.069 −0.457 −0.097 −0.665
2017 −0.117 −0.847 0.010 0.464 0.120 0.827
2018 −0.047 −0.119 −0.005 0.298 −0.106 −0.724
2019 0.010 0.245 0.071 1.043 −0.086 −0.487

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Agricultural environmental friendly technology progress (AGTP) was obvious, and
there was a Matthew effect. From 2000, it can be seen that the Northeast region showed
high–high aggregation, indicating that the progress of agricultural environmental friendly
technology in these regions is at a high level and is closely related to the development of
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environmentally friendly technology in the surrounding areas, and has strong radiation
driving ability. North China and Northwest China are mainly characterized by low–low
agglomeration, that is, the overall progress of agricultural environmentally friendly tech-
nology in this region is relatively low. The possible reason is that the extensive agricultural
production methods in Northwest China have led to the concentration of non-green agricul-
tural technologies in the region, while North China has superior resources and environment,
but uses high machinery, high chemical fertilizers, and high pesticide production methods
in pursuit of high agricultural output (Deng Yue et al., 2021), forming a cluster of agri-
cultural non-green technologies. In addition, Hunan–Hubei–Guizhou–Jiangxi and other
places are mainly characterized by low–high agglomeration, that is, the development of
agricultural environmentally friendly technology in this region is in a state of scattered
development, and the close relationship with the development of surrounding agricultural
technology is low. It can be seen from 2019 that the high–high agglomeration shifted to
the vicinity of the Yangtze River Delta, indicating that the economy has an important influ-
ence on the progress of agricultural environmental friendly technology (AGTP). Change is
necessary. The low–high aggregation is mainly near Gan–Qing–Chuan, that is, the overall
progress of agricultural environmental friendly technology in this area is relatively low,
while the surrounding areas have a high level of agricultural environmental friendly tech-
nology progress. It is necessary to strengthen the communication between the surrounding
areas and the region. Low–low areas are more scattered. This shows that the level of
agricultural environmental friendly technology progress has been significantly improved
at this stage, and the aggregation of low agricultural environmental friendly technology
progress is not obvious.

The agglomeration characteristics of agricultural resource-saving environmentally
friendly technology progress (AEGTP) are extremely obvious, and most provinces have
similar agglomeration characteristics with neighboring provinces or provinces with similar
economic development levels. Since 2000, it can be seen that high–high agglomeration
is mainly concentrated in southern China. The main reason is that the technical advan-
tages of this area can provide good technical support for the progress of agricultural
environmentally friendly technology. Low–low agglomeration is mainly concentrated in
the northern region. That is to say, in 2000, the ecological environment pressure of agricul-
tural development and the dilemma of resource shortage faced by the northern region was
relatively large, the overall level of agricultural green development was still relatively low,
and the trend of increasing resource utilization intensity continued, and the problem of
agricultural environmental pollution was still relatively prominent. This also makes the
Sichuan–Shaanxi region with better agricultural resource endowments a high–low agglom-
eration area. In 2019, the agricultural resource-saving environmental friendly technology
progress (AEGTP) was relatively scattered, and the high–high agglomeration areas were
also transferred to the eastern coastal areas. The low–high agglomeration area is distributed
in a chain-like manner in the coastal high–high agglomeration area, mainly due to the low
development of its environmentally friendly agricultural technology and the influence of
the coastal high–high agglomeration. This also shows that the advancement of agricultural
environmental friendly technology in the eastern coastal areas has less driving effect on the
low–high agglomeration area, especially the lack of a perfectly competitive agricultural
economic system and the lack of sufficient scientific and technological support, so the
progress of agricultural environmentally friendly technology in this area is evident, and
the low–high agglomeration effect is significant.

However, the income level of residents is relatively low, and they pursue the growth
of output and income while ignoring the protection of resources and the environment. The
demand for natural resources (such as land resources, water resources, etc.) and production
input factors (pesticides, fertilizers, etc.) in agriculture will be reduced. The local agricul-
tural economic development mode is relatively extensive, and attention should be paid to
the coordinated development of agricultural economic benefits and resource and environ-
mental benefits. The high–low agglomeration is mainly in the Hunan–Guizhou–Guangxi
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region, and the low–high agglomeration region is mainly in the Gansu–Qinghai region.
When the government formulates policies on agricultural green development, it can classify
and deal with it according to the geographical characteristics of different provinces and
cities, focusing on the development of “low–low” areas, strictly controlling “low–high” and
“high–low” areas, and actively promoting the “high–high” areas to allow the continuous
penetration of agricultural green development in provinces and cities, and improve the
progress of China’s agricultural environmentally friendly technology.

The agglomeration characteristics of agricultural pollution reduction-oriented agricul-
tural environmental friendly technology progress (ACGTP) are also more obvious. Since
2000, it can be seen that the high–high areas are distributed in a chain, including Shaanxi,
Chongqing, Hunan, and Guangdong. This is mainly because, starting from the environmen-
tal protection of the production area and the treatment of the source, the local rural areas
actively carry out environmental protection publicity activities, emphasize the importance
of environmental protection, and implement corresponding pollutant emission reduction
measures. The high–low agglomeration areas are mainly concentrated in the northwest
region, and the low–high areas are concentrated in the Beijing–Tianjin–Hebei and Inner
Mongolia regions, both of which are similar to the agricultural resource-saving environmen-
tal friendly technology progress (AEGTP). In 2019, it can be seen that low–low aggregation
is still concentrated in the eastern coastal areas. The low–high agglomeration area is still
in the Gan–Qing area. High–low clustering is mainly in the Hunan–Guizhou–Guangxi
area. The reasons for these similarities in aggregation may be the same as those for agricul-
tural resource-saving environmentally friendly technology progress (AEGTP). This also
shows that the technological progress of pollutant emission reduction and the technological
progress of agricultural resource conservation have a high degree of overlap. Of course, it
may also be that the overall dimensions of agricultural environmental friendly technology,
progress-oriented by national policy support, are the same, so the aggregation of the two
types of agricultural environmental friendly technology progress is similar.

4.3. Subsection Spatial Spillover Effects of Agricultural Environmental Friendly
Technology Progress

Since agricultural environmentally friendly technology progress has significant spatial
autocorrelation, this paper used a spatial econometric model for estimation. Since the Haus-
man test values under the spatial weight matrix all significantly reject the null hypothesis
of “random effects are better than fixed effects” at the 1% level, and the estimation results
of spatial fixed effects under fixed time, fixed space, and double fixed effects are the best,
this paper adopted the spatial Dobin model based on the fixed space and used the partial
differential method of the SDM model to decompose the total effects under the three spatial
weight matrices into direct effects and indirect effects. The results are shown in Table 3.

Overall, labor level (labor), per capita agricultural gross product (PGDP), and agricul-
tural internal structure (PS) were all positive and significant to the progress of agricultural
environmentally friendly technology and its different types. Agricultural price policy (PP),
financial support policy (FIN), economic environmental regulation (EPR), and adminis-
trative environmental regulation (CER) had significant negative effects on the progress of
agricultural environmentally friendly technology and its different types.
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Table 3. SDM model under spatial fixation and its direct and indirect effects.

AGTP AEGTP ACGTP

Variable Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

PGDP 0.238 0.345 0.583 *** −0.003 0.026 0.024 0.242 0.317 0.559 ***
(0.145) (0.252) (0.223) (0.025) (0.040) (0.038) (0.148) (0.243) (0.211)

PIC −0.632 *** 0.508 ** −0.124 −0.0693 0.090 0.020 −0.564 ** 0.420 * −0.144
(0.238) (0.220) (0.160) (0.075) (0.087) (0.045) (0.232) (0.218) (0.140)

PP 0.762 −1.509 *** −0.747 −0.041 0.083 0.042 0.807 −1.593 *** −0.786 *
(0.545) (0.580) (0.468) (0.096) (0.120) (0.085) (0.515) (0.545) (0.442)

FIN 0.153 −0.346 ** −0.193 ** −0.060 ** 0.032 −0.029 0.214 −0.377 *** −0.163 **
(0.139) (0.139) (0.088) (0.024) (0.036) (0.018) (0.135) (0.126) (0.081)

EPR 0.013 −0.214 ** −0.202 ** −0.009 −0.016 −0.024 0.021 −0.199 ** −0.178 **
(0.032) (0.093) (0.082) (0.011) (0.021) (0.019) (0.030) (0.087) (0.077)

CER −0.001 * 0.001 −0.000 0.001 −0.001 −0.000 −0.001* 0.001 −0.001
(0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

labor 0.437 *** −0.004 0.434 * 0.129 *** −0.172 *** −0.043 0.311 ** 0.172 0.483 **
(0.140) (0.237) (0.228) (0.032) (0.045) (0.049) (0.137) (0.225) (0.218)

PS −0.111 1.071 0.960* 0.048 0.175 0.224 ** −0.165 0.892 0.727
(0.400) (0.805) (0.528) (0.051) (0.124) (0.111) (0.374) (0.767) (0.507)

rho 0.052 0.063 0.045
(0.056) (0.060) (0.061)

sigma2_e 0.278 ** 0.008 *** 0.244 **
(0.111) (0.002) (0.106)

Number 600 600 600
R2 0.004 0.015 0.004
Id 30 30 30

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

5. Discussions

Per capita agricultural product (PGDP) is an important reflection of the level of
agricultural economic development [69,70]. The study found that PGDP has a positive
impact on Agricultural Green Technology Progress (AGTP) and Abatement Agricultural
Green Technology Progress (ACGTP), which has greatly contributed to the progress of
green technology in the region. The outcomes are parallel with the study of Abdulai
and Huffman [92] and Xue et al. [93]. In terms of economic development, the economic
growth of a region can effectively promote innovation activities, provide external and
internal support for innovation, create a good innovation environment, and strengthen
information exchanges [94,95], which are conducive to the accumulation of technology,
knowledge, and talents [96,97]. The study also found similar findings. Therefore, the
government should pay full attention to strengthening the research, development, and
promotion facilities of green production technology with market application value, which
will become the core driving force for agriculture to improve profitability. At the same
time, the per capita agricultural product (PGDP) does not play a significant role in the
progress of agricultural material-saving agricultural green technology (AEGTP). However,
the findings are quite different from the study of Milenković et al. [98]. The possible
reason is that, in China, the growth of the agricultural economy will lead to new market
demands, including changes in the consumption form and consumption structure of
residents’ agricultural products, and new demands for farmers’ production technology. On
this basis, the government should improve the labor productivity of agricultural enterprises,
extends the support of agricultural cooperative organizations to improve the marginal
efficiency of agricultural production factors, and promote the improvement of agricultural
green technology progress.

The direct effect of farmers’ disposable income (PIC) on the progress of agricultural
green technology is −0.632, and the indirect effect is 0.508, which reflects that farmers’
disposable income (PIC) has a significant negative effect on the progress of local agricultural
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green technology, while it has a significant positive effect on the progress of agricultural
green technology in other places. This result different from the existing literature (Such as
Chiputwa et al. [99], Anastasios et al. [100], and Akinola and Sofoluwe [101]). The study
suggests that, when the economic level of a place is high, the surrounding area will be dom-
inated by the local market demand, and there should be innovations in green technology.

Interestingly, the study found that agricultural price policy (PP) and fiscal support for
agriculture (FIN) cannot support the progress of agricultural green technology. The reason
may be that agriculture is fundamental and weak, and financial support for agriculture
is used as a means of agricultural protection and support, but there is a serious shortage
of financial support for agriculture in the development of agricultural environmental
protection, which is not conducive to the progress of agricultural green technology. On the
other hand, the agricultural price policy improves the agricultural trade conditions, reduces
the risk of farmers’ sales, and increases the enthusiasm of farmers for production [102].
Subsidies for fine seeds and the purchase of agricultural machinery are conducive to
the advancement of agricultural mechanization and the use and promotion of advanced
agricultural machinery, but they do not support green ecology. This is parallel with
the studies of Tang and Sun [103], Qin et al. [104], and Gao et al. [105]. Economical
Environmental Regulation (EPR) has a positive but insignificant impact on the progress
of agricultural green technology in the region. Economical environmental policies have a
significant negative impact on the progress of agricultural green technology in adjacent
areas. This is inconsistent with the results of He et al. [106] and Viaggi et al. [107]. The
possible reason is that the study selected pollution control fees, which only control the
pollution that has already been generated, and do not support the progress and innovation
of green technology. On the other hand, economically developed regions have strong
economic strength, and various command policies have a limited impact on them and are
environmentally friendly. The outcome is supported by the study of Khan et al. [108] and
Syed et al. [109].

The level of the labor force (labor) has a negative impact on the progress of agricultural
green technology in the region. The possible reason is that the labor factor has become
relatively cheap, and the price distortion has destroyed the market-oriented principle of
allocating labor resources to farmers or agricultural enterprises with advanced agricultural
green technology. In addition, the spatial spillover effect of labor level on the progress
of agricultural green technology in adjacent areas is not significant. The main reason is
that the surplus rural labor force is generally transferred to the urban sector to obtain
more employment opportunities, so the impact on the progress of agricultural green
technology in adjacent areas is not significant. However, the study of Ghana Conley
and Christopher [110] found similar results. The direct effect of agricultural internal
structure (PS) has a significant negative impact on the progress of agricultural green
technology in the region. It shows that for every 1% increase in the internal structure of
agriculture, the probability of agricultural green technology progress in local and non-
local planting industries will decrease by 0.0373 and 0.2588, respectively. Compared with
other agricultural planting industries such as forestry and animal husbandry, planting
production will increase the input of carbon source products such as fertilizers, pesticides,
and machinery [111,112]. With the popularization of agricultural mechanization and
chemical products, ordinary farmers tend to have extensive management and have little
demand for green technologies that require a lot of labor [113]. To obtain higher economic
profits, the planting industry is more suitable for large-scale planting, which intensifies the
extensive management mode of farmers and reduces the possibility of green technology
for farmers. In addition, in the face of local technological progress, the mode of obtaining
market profits based on chemistry and mechanization will adapt to the market model,
which greatly reduces the adoption of green technology by foreign farmers and agricultural
green technology progress [114].

In addition, from the perspective of type indicators, various influencing factors have a
very significant impact on the progress of emission reduction-oriented agricultural green
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technology (ACGTP), but a less significant impact on the agricultural green technology
progress of agricultural material-saving (AEGTP). Among them, farmers’ disposable in-
come (PIC), agricultural price policy (PP), fiscal support policy (FIN), economic environ-
mental regulation (EPR), etc. have no significant effect on agricultural material-saving
agricultural green technology progress (AEGTP). When people’s living standards improve
and their lifestyles change, they will inevitably have a certain degree of impact on the use
of resources, and the overall development is an inverted U-shape. Only if the economic
level reaches a certain level will these economic variables possibly have an impact on the
progress of agricultural material-saving agricultural green technology (AEGTP). The out-
comes are supported by the study of Marra et al. [115], Norton and Alwang [116], Schewe
and Stuart [117] and Yang et al. [118].

It is an important issue to strengthen the protection of the rights and interests of
local farmers in the innovation, promotion, and application of environmentally friendly
technology, shorten the cycle of their research and development, application, and promotion
areas, and continue to promote the benefits of surrounding areas. At the same time, the
government should objectively view the negative impact of agricultural environmentally
friendly technology progress on economic growth. It is destined to see the production
capacity of green technologies catching up or even surpassing polluting technologies.
There is a possibility of coordinated development between green production and economic
growth. Vigorously promoting the transformation of technological progress from polluting
technology to environmentally friendly technology will be beneficial to the healthy growth
of China’s economy in the long run.

6. Conclusions

Measurement and dynamic monitoring of agricultural environmentally friendly tech-
nology progress have received widespread attention among general consumers, the govern-
ment, academia, and international organizations. Therefore, analyzing its spatiotemporal
dynamic evolution characteristics and influencing factors is the key to effectively formu-
lating green development policies and implementing environmental protection measures.
The article took the planting industry in the narrow sense as the research object and used
the improved SBM model to measure the progress index of agricultural environmentally
friendly technology. Moreover, we discussed its spatial spillover effect from three aspects:
direct effect, indirect effect, and total effect. The main conclusions and implications are
as follows:

(i) From the perspective of time and space dimensions, China’s Agricultural Environ-
mental friendly technology Progress (AGTP) showed an overall upward trend during
the study period. Among them, from 2000 to 2012, the agricultural resource-saving
technological progress (AEGTP) showed a slight technological regression trend, and
from 2012 to 2019, it rebounded rapidly.

(ii) From the perspective of type, the emission reduction environmental friendly technol-
ogy progress (AEGTP) had similar spatial and temporal development patterns and wa
only spatially similar to agricultural resource-saving technology progress. The distri-
bution has a high degree of coincidence, and the aggregation area is more concentrated.
Various influencing factors had a more significant impact on the emission reduction
of agricultural environmentally friendly technology progress (ACGTP) than the agri-
cultural resource-saving environmental friendly technology progress (AEGTP).

(iii) From the perspective of the spatial spillover effect, labor level (labor), per capita
agricultural gross product (PGDP), and agricultural internal structure (PS) were posi-
tively and significantly related to agricultural environmentally friendly technology
progress and its different types. Agricultural price policy (PP), financial support policy
(FIN), economic environmental regulation (EPR), and administrative environmen-
tal regulation (CER) had significant negative effects on the progress of agricultural
environmentally friendly technology and its different types.
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(iv) However, as the aggregation characteristics of agricultural environmentally friendly
technology progress are extremely obvious, most provinces with adjacent locations
or provinces with similar economic development levels showed similar aggregation
characteristics. High–high agglomeration areas are mainly concentrated in North
China and East China, and low–low agglomeration areas are mainly concentrated in
Northwest and Southwest China. Factors affecting the income level of rural residents
include the selection of advanced agricultural production technology, the populariza-
tion and application, and the utilization efficiency of agricultural resources.

Though the study comprehensively explored the different types of environment-
friendly technological progress within 30 provinces of China, portraying a broad view,
there is still lots of room to explore the interesting topic within specific regions. Future
studies should focus on smaller regions as every region has its unique characteristics and
therefore it will them to grasp more accurate outcomes. Moreover, future studies should
measure the impacts of control variables by integrating them into the core model. Finally,
the model used in the study can be explored and tested by several other complex modeling
tactics such as structural equation modeling (SEM) and composite structure diagram.
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