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Abstract: Affected by the temporal and spatial changes of natural resources, human activities, and
social economic system policies, there are many uncertainties in the development, utilization, and
management process of irrigation district agricultural water resources, which will increase the
complexity of the use of irrigation district agricultural water resources. Decision makers find it
challenging to cope with the complexity of fluctuating water supplies and demands that are critical
for water resources’ allocation. In response to these issues, this paper presents an optimization
modeling approach for agricultural water allocation at an irrigation district scale, considering the
uncertainties of water supply and demand. The minimum cross-entropy method was used to estimate
the parameters of hydrologic frequency distribution functions of water supply and demand, which
are the basis for agricultural water resources’ optimal allocation and the evaluation of water resources’
carrying capacity in the Hetao Irrigation District. Interval Linear Fractional Programming was
used to find water availability, shortage, and use efficiency in different irrigation areas of the Hetao
Irrigation District (HID) under different scenarios. The denominator of fractional planning is the
environmental goal, and the numerator is the economic goal; so, the objective function of fractional
programming is the utility rate required in the post-optimization analysis. Future water availability
and shortage scenarios are adopted consistent with the Representative Concentration Pathways’
(RCPs’) framework, and future water use scenarios are developed using the Shared Socioeconomic
Pathways’ (SSPs’) framework. Results revealed that under SSP1, the annual water consumption
increased from 30 billion m3 to 60 billion m3, almost doubling in Urad. The annual water consumption
under SSP2 and SSP3 increased slightly, from 30 billion m3 to about 50 billion m3. The amount of
water available for well irrigation in Urad decreased from 300 to 250 billion m3, while the amount of
water available for canal irrigation in Urad remained at 270 billion m3 from 2010 s to 2030 s, only
dropping to 240 billion m3 in 2040 s. The entropy-weight-based Technique for Order Preference by
Similarity to an Ideal Solution (TOPSIS) method was applied to evaluate agricultural water resources’
allocation schemes because it can avoid the subjectivity of weight determination and can reflect the
dynamic changing trend of irrigation district agricultural water resources’ carrying capacity. The
approach is applicable to most regions, such as the Hetao Irrigation District in the Upper Yellow
River Basi with limited precipitation, to determine water strategies under the changing environment.

Keywords: interval linear fractional programming; water supply and demand; minimum
cross-entropy; entropy-weight-based TOPSIS method

1. Introduction

Ecological economics, landscape ecology, and agricultural sustainable development
are the theoretical bases of a water-saving ecological irrigation district [1]. The target
system of water-saving ecological irrigation district construction includes high agricultural
productivity, functional irrigation district, water and soil environmental health, reasonable
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allocation and efficient utilization of water resources, high biodiversity, and optimal water
resources’ ecological and economic service functions [2,3]. The reasonable allocation of
multiple agricultural water resources and improvement of water resources’ utilization effi-
ciency, soil health quality maintenance and controlled irrigation, ecosystem and biodiversity
restoration, comprehensive treatment of pollution sources and gradual interception control,
water landscape and water culture construction in the irrigation district, and participatory
innovation management are supporting technologies to achieve the goal of the system of
water-saving ecological irrigation district construction [2–4]. Ecological irrigation district
management includes the following aspects: water shortage, water pollution, flooding,
ecological deterioration, economy development, environmental protection, and climate
adaptation. The complexities of an integrated ecological irrigation district management are
related to many factors, including dynamic and interactive relationships between different
aspects, and multi-objective, multi-stage, and multi-uncertainty aspects in the process of
ecological irrigation district planning and management. Effective system analysis methods,
for example, robust simulation and optimization tools, are needed in the construction of
a water-saving ecological irrigation district. The theoretical basis, research content, and
research tools of the research on the optimal allocation of water resources are constantly
enriched [3]. Among them, research on agricultural water resources can be divided into
four categories according to different research scales, namely, the optimal allocation of
water resources in multi-irrigation districts, the optimal scheduling of water resources in
irrigation canals, the optimal allocation of water and soil resources for multi-crops, and the
optimization of crop irrigation schedules [4]. Christine Sweetapple et al., established the
multi-objective optimization of a wastewater treatment plant control to reduce greenhouse
gas emissions. Zarghami and Szidarovszky coupled stochastic and fuzzy methods by
orderly weighted average calculation and established a stochastic, fuzzy, multi-criteria
decision-making model to deal with the multiple uncertainties encountered in water re-
sources’ management. Guo et al., fully considered the multi-objectives and uncertainty in
the process of optimizing water distribution in a canal system and used multi-objective
programming and a genetic algorithm to optimize the water distribution process of a
three-level system of the trunk branch-lateral in the Xijun Irrigation District in the middle
reaches of the Heihe River. Aiming at the nonlinear and uncertain characteristics in the
optimal allocation of irrigation water resources and considering the interests of decision-
making subjects at different levels in the irrigation area, Li et al., respectively constructed an
Interval Linear Fractional Programming (ILFP) model considering the interests of the upper
managers to obtain the maximum irrigation water productivity and Interval Quadratic
Programming (IQP) model considering the interests of the lower tier farmers to obtain a
maximum yield. Taking the middle reaches of the Heihe River as the research object, Li com-
prehensively considered the characteristics of four different water use scales in the middle
reaches of the Heihe River to establish an optimization model to optimize the allocation of
agricultural water resources in the middle reaches of the Heihe River. Aiming at improving
irrigation water use efficiency, Zhang et al., used a multi-objective model to optimize the
planting structure of six main crops in Minqin County, Gansu Province. Combined with the
virtual water theory, Su et al., optimized the irrigation water volume for seven main crops
in the Shiyang River Basin. Zhang et al., established an optimization model of irrigation
water resources for three administrative regions in the middle reaches of the Heihe River
and three main crops in the administrative region based on a two-layer model; they made
an attempt to combine research with different study scales. Shang optimized the winter
wheat irrigation system in Beijing based on the farmland water balance simulation model,
crop water production function, and water sensitivity index accumulation function. Yin
et al., established multi-objective, optimization-based reactive nitrogen transport model-
ing for the water–environment–agriculture nexus in a basin-scale coastal aquifer. In the
above research on optimal allocation of system resources and risk management models
in irrigation districts under uncertainty, most of them used multi-objective optimization
models [4–10]. However, the determination of the objective function of the multi-objective
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optimization model, especially the determination of multi-objective weight parameters,
has always been a challenge. To overcome the limitations of multi-objective optimization
programming, an interval linear fractional programming model is established through
coupling interval parameter programming and linear fractional programming. The denom-
inator of fractional planning is the environmental goal, and the numerator is the economic
goal, which reflects the correlation between two goals very well. In addition, the objective
function of fractional programming is the utility rate required in the post-optimization
analysis, which fully reflects the interaction between the environmental dimension and the
economic dimension [5,6,9].

Therefore, in response to the above anxieties, this study aimed to develop an interval
linear fractional programming (ILFP) model combined with POMCE and Clayton copula
estimation for solving the problem of allocation of agricultural water in the Hetao Irrigation
District under uncertain conditions [7,8,10]. The main content of this research included the
following: (1) the establishment of an ILFP model through the integration of the methods of
interval parameter programming and linear fractional programming into an optimization
model; (2) the introduction of the POMCE to express distribution functions of rainfall
and evaporation, and the formulation of the concept of Clayton copula that spatializes
all elements of estimating the joint probability distribution function (JPDF) of rainfall
and evaporation; (3) the combination of the ILFP model with the POMCE and Clayton
copula estimation and applying it to the Hetao Irrigation District (HID) in the Yellow River
Basin for managing agricultural water allocation; and (4) the utilization of the entropy-
weight-based TOPSIS method to evaluate the water resources’ carrying capacity of the
Hetao Irrigation District (HID). Therefore, optimal schemes can help manage limited water
resources under different irrigation methods and shared socioeconomic pathways (SSPs) in
irrigation districts; these findings are helpful for decision makers to promote agricultural
sustainable development in arid and semi-arid areas. The framework of this study is shown
in Figure 1.

Figure 1. Decision-making framework of resource management for the Hetao Irrigation District.
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This paper is organized as follows. Section 2 describes the methodology of estimating
the joint probability distribution function (JPDF) of rainfall and evaporation, including the
minimum cross-entropy principle, the copula function, the formulation of an ILFP model
and its solution process, and the entropy-weight-based TOPSIS method. Section 3 provides
the problem details, modeling framework, and data collection of the Hetao Irrigation
District. The results, analysis, and discussions are presented in Section 4, and the paper is
concluded in Section 5.

2. Methods
2.1. Minimum Cross-Entropy Principle

POMCE is a powerful principle with the building blocks of the entropy theory. The
minimum cross-entropy principle was formulated by Kullback and Leibler (1951) and
detailed by Kullback (1959). We consider a probability distribution Q = {q_1, q_2,· · · , q_N}
for a random variable X, which takes on N values [11]. To derive the distribution P = {p_1,
p_2,· · · , p_N} of X, we should minimize the distance between P and Q. As the distance
between P and Q is closer, the uncertainty will be greater. The principle of minimum
cross-entropy is expressed as

D(P, Q) =
N

∑
i=1

pi ln
pi
qi

(1)

where D is the cross-entropy or distance.
If no prior distribution is obtainable in the shape of constraints and Q is chosen to be a

uniform distribution, Equation (1) takes the form

D(P, Q) =
N

∑
i=1

piln
[

pi
I/N

]
= ln N +

(
N

∑
i=1

pilnpi

)
= lnN − H (2)

where H is the Shannon entropy.

H = −
N

∑
i=1

pi lnpi (3)

In Equations (2) and (3), minimizing D (P, Q) is equal to maximizing H. Since D is a
convex function, its global and local minimum are equivalent.

A posterior distribution P is acquired by combining a prior Q with specified constraints,
and minimization of cross-entropy results asymptotically from Bayes’ theorem [11,12].

POMCE involves two major concepts. One is a prior probability distribution and the
other is a measure of distance.

POMCE is a measure between two probability distributions. One of them is related
to the system to be characterized and is assumed to be unknown. The other is related
to the model chosen to describe the system, for example, concretely. For the models to
characterize a system, the set of moments are considered. The mean and any symmetrical
part of the covariance matrix of the scheme are called constraints.

The POMCE measure is gained by minimizing the discrimination information while
considering the given prior distribution, extending all probabilistic descriptions of the
system that agree with the given constraints. One of the causes is of root square sense as
the measure of distance [11–13].

2.2. Copula Function

When random variables with different marginal probability distributions are not
independent of each other, it becomes very difficult to model the joint distribution. At this
time, under multiple random variables with known marginal probability distributions, the
copula function is a very good tool to model their correlation.

Sklars gave this theory in 1959: Any multivariate joint distribution can be written
according to univariate marginal distribution functions and one copula, which represents
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the dependence structure between the two variables. In this way, the randomness and
coupling of variables are separated. Among them, the randomness of random variables is
described by the marginal probability distribution, and the coupling characteristics between
random variables are represented by the copula function. In other words, correlation
properties of a joint distribution are completely determined by its copula function.

Assuming X_1, X_2,· · · , X_N are N random variables, their respective marginal
distributions are F_1 (x_1), F_2 (x_2),· · · , F_N (x_N) and their joint distribution is H(x_1,
x_2,· · · , x_N), then there is a function that “connects” the marginal distribution and the
joint distribution C(·), making H(x_1, x_2,· · · , x_N) = C(F_1 (x_1), F_2 (x_2),· · · , F_N (x_N)),
according to the inverse transformation of the CDF of the edge distribution, which is x_i =
F_i(−1) (u_i) (i = 1, 2,· · · , N). The expression form of the copula function can be obtained:
C(u_1, u_2,· · · , u_N) = H[F(−1) (u_1), F_2(−1) (u_2),· · · , F_N(−1) (u_N)].

There are many kinds of copula functions, such as Frank copula, t-copula, Clayton
copula, Gumbel copula, and Gaussian copula [14,15].

2.3. Interval Linear Fractional Programming (ILFP)
2.3.1. Interval Parameter Programming (IPP)

Interval parameter programming (IPP) addresses the problems of uncertainty that can-
not be studied through probabilistic and possibilistic analyses. However, it cannot provide
adequate information about the nature of output uncertainty, and all the uncertainties are
forced into one arithmetic interval. The typical IPP model is:

max f± = c±X±

a±X± ≤ b±

X± ≥ 0
(4)

where f± is the objective function, a±, b±, c± are the interval coefficients, X± is the interval
decision variable, “±” represents the interval value, “+” is the upper bound, and “−” is
the lower bound.

2.3.2. Linear Fractional Programming (LFP)

Linear fractional programming (LFP) refers to a mathematical programming whose
objective function is a fractional function under linear constraints. The typical LFP model is:

min f (x) = cT x+α
dT x+β

s.t. Ax = b
x ≥ 0

(5)

where f(x) is the objective function; A∈R(m × n); b∈Rm; p, q, x∈Rn; α, β∈R; and rank A = m.

2.3.3. ILFP

An interval linear fractional programming model is established by coupling interval
parameter programming and linear fractional programming. Its representation is presented
as follows: 

max f±(X) = C±X±+α±
D±X±+β±

A±X± ≤ B±

X± ≥ 0
(6)

where f± is the objective function; X± is the independent variable of model; C±, D±, α±,
β±, A±, B± are interval parameters; and A−, A+ are known matrices. Then, A± = [A−, A+]
= {A∈R(m × n) a_ij− ≤ a_ij ≤ a_ij+}, a_ij± is an element in matrix A±, and a_ij− and a_ij+ are
the upper and lower bounds of a_ij±. Other interval parameters can also be expressed in
this way [16–18].

The solution of an interval linear fractional programming model is based on the
following three fundamental theorems.
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Theorem 1: Let A = [A−, A+], B = [B−, B+], Amv = (A− + A+)/2, and Bmv = (B− +
B+)/2. Then, according to expression (1), for any parameter A, B, the lower bound model
solution set is expressed as P_ = {A− X ≤ B−, X ≥ 0}, the upper bound model solution set
is expressed as P+ = {A+ X ≤ B+, X ≥ 0}, and the median model solution set is expressed as
Pmv = {Amv X ≤ Bmv, X ≥ 0}, giving P_− ⊆P_mv⊆P_+.

Theorem 2: If X± ≥ 0, D± X+ β± > 0, and f± (X) > 0, then, for each interval parameter,
the upper limit expression of the objective function can be obtained as maxf+ (X) = (C+ X+

α+)/(D− X+ β−) and the lower bound expression is maxf− (X) = (C− X + α−)/(D+ X+ β+).
When Cmv = (C− + C+)/2, then Dmv = (D− + D+)/2, αmv, and βmv. By analogy, the median
expression of the objective function is maxf mv (X) = (Cmv X+ αmv)/(Dmv X+ βmv), giving f−

≤ fmv ≤ f+.
Theorem 3: When f± (X) > 0, the partial derivative of the objective function with

respect to the independent variable can be represented as f+/x_j = (c_j+ − d_j− f +)/(∑_(i =
1)n
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2.4. Entropy-Weight-Based TOPSIS Method

In the first step, a decision matrix D containing n attributes and m options is estab-
lished.

D =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (7)

Step 2: Use the entropy method to modify the weight of each attribute.
Entropy was first introduced into thermodynamics by R. Clausius in 1865 as a physical

concept, usually called thermodynamic entropy. After Shannon founded the theory of
information, the concept of entropy had a new interpretation, which is now generally called
information entropy. It has been widely used in financial engineering, social economy, and
other fields. Entropy can be used to explain the uncertainty of the discrete distribution
function Pl. For the k-th attribute, its uncertainty can be expressed as:

Plk = xlk/
m

∑
l=1

xlk (8)

EEk = −H
m

∑
l=1

[Plk × lnPlk] (0 ≤ EEk ≤ 1) (9)

Among them, m is the scheme where H = (ln m)−1.
For the calculation index difference coefficient, ddk = 1− EEk, normalize the difference

coefficient, Wk = ddk/ ∑n
k=1 ddk.

If the decision maker focuses on the importance of the attribute λk, the following
formula can be used to modify its weight:

IWk =
λk ×Wk

∑n
k=1 λk ×Wk

(10)

where IWk is the entropy weight of the evaluation index and λk is a certain attribute to
which the decision maker in the evaluation index system pays attention.

rlk =
xlk√

∑m
l=1 x2

lk

=

x11 · · · x1k
...

. . .
...

xl1 · · · xlk
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vlk = Wkrlk =

IW1r11 · · · IWkr1k
...

. . .
...

IW1rl1 · · · IWkrlk


where rlk is the standardized decision matrix and vlk is the decision matrix after adding
entropy weight.

The fourth step is to find positive and negative ideal solutions. The positive ideal
solution v+k refers to the largest positive effect indicator and the smallest negative effect
indicator in each column. Similarly, the negative ideal solution v−k refers to the smallest
positive effect indicator and the largest negative effect indicator in each column.

v+k =
(

max vlk|k ∈ k+, min vlk|k ∈ k−
)
(l = 1, 2, · · · , m) (11)

v−k =
(

min vlk|k ∈ k+, max vlk|k ∈ k−
)
(l = 1, 2, · · · , m) (12)

Step 5: Calculate the distance SS+
l and SS−l for each plan between the positive ideal

solution plan and the negative ideal solution plan.

SS+
l =

√
n

∑
k=1

(
vlk − v+k

)2 (13)

SS−l =

√
n

∑
k=1

(
vlk − v−k

)2 (14)

Step 6: Calculate the average value of the distance between each scheme and the
negative ideal solution scheme. The expression is:

Cl =
SS−l

SS+
l + SS−l

l = 1, 2, · · · , m (15)

The schemes are classified according to the Cl value. The larger the Cl value is, the
higher the efficiency of the scheme will be [18–20].

3. Application
3.1. Study Area and Data Collection

The Hetao Irrigation District is located in the southern part of Bayannaoer City, just
as the Figure 2 shows, with Langshan Mountain in the Yinshan Mountains to the north
and the alluvial fan at the southern foot of Wula Mountain, the Yellow River in the south,
the suburbs of Baotou in the east, and the Ulan Buh Desert in the west. Wuliangsuhai is
located in Wulate Front Banner, Bayannaoer City, at the east end of the Hetao Plain, 22 km
away from Wulashan Town.

The planned area has a mid-temperate continental climate and is located on a plateau.
Affected by Mongolian high pressure, there is heavy sand and low rainfall. The annual
average temperature is 3.7–7.6 ◦C, the annual precipitation is 100–300 mm, the average
evaporation is 2032–3179 mm, and the annual average wind speed is 3 m/s, with mostly a
northwest wind and a northeast wind.

The planned area belongs to the Yellow River system. According to Project Planning
Report of Hetao Irrigation District, the Yellow River passes through the southern end of
Bayannaoer City, enters Ershililiuzi in Dengkou County of Bayannaoer City, and exits at the
Labor Canal of Wulate Front Banner in the east. The total length of the territory is 340 km,
and the average annual runoff is 237 million m3, accounting for 71.6% of the city’s average
annual runoff.
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Figure 2. The geographical position of study area.

The planning scope includes Linhe City and six banner counties, including the entire
area of Wuyuan County, Dengkou County, Hangjinhou Banner, and the southern foot of
Yinshan Mountain in Urd Front, Middle, and Back Banners. The planned total population
is 1.5717 million, accounting for 93% of the city’s total population. Social-economic data in-
volved in the optimization model were selected from the Bayannaoer Statistical Yearbook 2018
and related references. In 2018, the city’s GDP of Bayannaoer was CNY 81.31 billion, and
the GDP of the main banner counties within the planning area reached CNY 67.48 billion,
accounting for 83% of the city’s GDP. The ratio of tertiary production is 20.2:53.4:41.1. Agri-
culture has developed in an all-around way. In 2018, the total output value of agriculture,
forestry, the animal industry, and the fishery industry was CNY 16.28 billion, account-
ing for 23.2% of the city’s total output value. The total sown area of crops in the city is
11.128 million mu, of which the sown area of grain is 5.375 million mu, and the total grain
output is 5.24 billion jin [16,17,19].

3.2. Parameter Estimation

Based on the rainfall and evaporation data of the Wu Liang Su Hai Ecological Posi-
tioning Station, the changes of rainfall and evaporation from 2000 to 2020 are depicted in
Figure 3. In this research, the Pearson III distribution function is employed to describe the
hydrological distribution of rainfall and evaporation. Based on the minimum cross-entropy
principle for Pearson III distribution function, the MATLAB (MathWorks, Natick, MA,
USA) program is applied to estimate the related parameters. The scale, shape, and location
parameters for annual rainfall were 12.98, 3.56, and 16.66, respectively [16]. Thus, the
distribution function of rainfall was expressed as:

F(x) =
1

12.98Γ(3.56)

∞∫
0

(
x− 16.66

12.98

)2.56
e−(

x−16.66
12.98 )dx (16)
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Figure 3. Changes of rainfall and evaporation.

The scale, shape, and location parameters for evaporation were 14.62, 5.88, and 296.87,
respectively. Thus, the distribution function of evaporation was expressed as:

F(x) =
1

14.62Γ(5.88)

∞∫
0

(
x− 296.87

14.62

)4.88
e−(

x−296.87
14.62 )dx (17)

These two distributions were regarded as marginal distributions of the rainfall and
evaporation’s joint distribution function.

3.3. Joint Probability of Water Supply and Water Demand

Based on the marginal distribution functions of rainfall and evaporation, the commonly
used t-copula, Gaussian copula and Archimedean copula (including the Clayton copula,
Gumbel copula and Frank copula in this study, which are continually used in hydrology-
related analysis) were selected to establish the joint distribution function. This article
sought to select a best copula function from the Clayton copula function, Gumbel copula
function, Frank copula function, t-copula function, and Gaussian copula function. The
specific equations of these copula functions are expressed in Appendix A. In this research,
a non-probabilistic measure for goodness of approximation, named Euclidean distance (d2),
was used to evaluate the performance of each copula function. The value of d2 was 0.0372,
0.0593, 0.183, 0.0587, and 0.2064 corresponding to the above copula functions [17–19]. The
results showed that, for the Clayton copula, the value of d2 was the smallest; thus, the
Clayton copula was selected, and the joint distribution function of rainfall and evaporation
could be expressed as:

C(U, V) =
(

µ−θ + v−θ − 1
)−1/θ

(18)

where U represents the runoff, V represents the evaporation. In this research, θ = −3.6.
And the joint probability density function of rainfall and evaporation can be expressed

as:

c(U, V) = (1 + θ)(µv)−θ−1
(

µ−θ + v−θ − 1
)−2− 1

p (19)

Based on the joint probability distribution function and joint probability density
function, the 3D image of c(u,v) and C(u,v) was drawn, as the Figure 4 shows:
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Figure 4. Joint distribution of runoff and evaporation.

3.4. Agricultural Water Resource Optimal Allocation under Uncertainty

Agricultural water resources planning is an effective means to construct ecological
irrigation districts [15]. It can make a reasonable allocation of agricultural water resources
from an overall perspective, improve the utilization efficiency of agricultural water re-
sources, and solve the problem of agricultural water shortage to a certain extent [16–18].
When optimizing the allocation of agricultural water resources, the expected goals are
usually set first, building a model according to the actual situation. Finally, according to
the objective function value that satisfies the constraints, it provides a decision-making
basis for decision makers [17]. However, in most cases, the target demand for agricultural
water resources’ allocation is not a single demand; different requirements will make the
model results completely different [18]. Therefore, in order to avoid the drawbacks of
the agricultural water resource optimization model simply pursuing economic benefits,
research at home and abroad have introduced multi-objective planning into the agricultural
water resources’ optimal allocation, seeking to explore the results of optimal allocation
of agricultural water resources from different target angles [19]. At present, the more
common multi-objective optimization methods include the target weight method, gray
analysis method, compromise constraint method, entropy weight coefficient method, fuzzy
optimization theory, evolutionary algorithm, etc. [20]. These methods have promoted the
research progress of multi-objective optimization models for agricultural water resources,
but most of the above methods have a lack of a unified and objective scientific basis for
the determination of coefficients and the calculation of objective function weights [21].
Making the model results susceptible to the subjective factors of the researcher, the intro-
duction of linear fractional programming can weaken the influence of subjective factors.
In addition, due to the complexity of the agricultural water resources system, the related
socio-economic and ecological environment system, and the current technical conditions,
it is difficult to use absolutely accurate data in the model application process. Due to the
random distribution and fuzzy characteristics of the uncertain parameters of the model, the
interval uncertainty method can reflect the uncertainty of the model parameters to a certain
extent and can easily reflect the uncertainty in the output results in the form of interval
values. This research intended to establish an interval linear fractional programming model
through coupling interval parameter programming and linear fractional programming.
We conducted research on the multi-objective optimal allocation of agricultural water
resources in an irrigation distract in order to better reflect the uncertainty in the process of
optimal allocation of agricultural water resources and to reduce the degree to which the
multi-objective optimal allocation model is affected by subjective parameter calculations
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and inaccurate data [22–24]. The objectives of the optimization model can be expressed
as follows.

max f± =
max f±1
min f±2

=
max ∏I

i=1

[
∑C

c=1
(
YicBc

± − Cic
)(

Aic
± − Ac−di

)
+
(
Yic−diBc

± − Cic−di
)

Ac−di

]
min

[
∑I

i=1 Aic
± × (λCOD × PEICOD + λNH3−N × PEINH3−N + λTN × PEITN + λTP × PEITP)

] (20)

The above objective is subjected to the following constraints:

(1) Water availability constraint
0 < Xi ≤ Q±i (21)

(2) Water demand constraint

ETmin,ci ≤ ET±ci ≤ ETmax,ci (22)

ET±ci =
Xiηi

A±ic
(23)

(3) Land availability constraint

Aic,min ≤ A±ic ≤ Aic,max (24)

(4) Drip irrigation water quantity constraint

C

∑
c=1

Ac−di Ic−di >
2
3

Ttr (25)

(5) Crop price constraint
Bc,min < B±c < Bc,max (26)

(6) Food security constraint

I

∑
i=1

(
Yic × A±ic

)
≥

I

∑
i=1

(
POic × Pf

)
(27)

Model Hypothesis: There is a non-linear correlation between the cost of crop flood
irrigation and water price, which is Cic = aP2

ic + bPic + c where f , f1 (RBM), and f2 (kg)
represent utility rate, economic objective and environmental objective, respectively; i is
the index of different areas; c is the kind of crops; Yic. is the yield (kg); Bc is the price
of crops (RMB/kg); Cic is the planting cost (RMB); Aic is the irrigation area, which is the
decision variable (ha); Ac−di is the water rights’ transfer and increased crop drip irrigation
planting area (ha); Yic−di is the crop drip irrigation yield (kg); Cic−di is the drip irrigation
cost (RMB); λCOD, λNH3−N , λTN , and λTP are the parameters of chemical oxygen demand,
ammonia nitrogen, total nitrogen, and total phosphorus, respectively, that inflow the river;
PEICOD, PEINH3−N , PEITN, and PEITP are emissions per unit area of chemical oxygen
demand, ammonia nitrogen, total nitrogen and total phosphorus, respectively (kg/ha);
Xi is the water availability (m3); Qi is the incoming water quantity (m3); ETci is the water
demand (m3); ETmin,ci and ETmax,ci are minimum and maximum water demand (m3); ηi is
the water availability efficiency (%); Aic,min and Aic,max are the minimum and maximum
irrigation areas, respectively, (ha); Ic−di is the drip irrigation water quantity per planting
area (m3/ha); Ttr is the water rights’ transfer water quantity (m3); Bc,min and Bc,max are the
minimum and maximum price of crops (RMB/kg); POic is the population for subarea i and
crop j; Pf is the food demand per capita (kg/capita); and Pic is the agricultural water price
(RMB/m3).

The process of solving the interval linear fractional programming model is as follows.
(1) Take the median value for all interval values in the model objective function and
constraint conditions. Construct the median sub-model and solve the feasible solution of
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the median sub-model Xmv
opt. (2) Determine the upper and lower limits of the independent

variable interval x±j , the objective function interval f±, and the corresponding relationship
between the upper and lower limits of the parameter interval in the constraint condition.
(3) Convert the interval linear fractional programming model into an upper limit sub-model
and lower limit sub-model, respectively. (4) Connect the feasible solution xmv

j,opt obtained by
solving the median sub-model in step (2). Use constraint x−j,opt ≤ xmv

j,opt ≤ x+j,opt to solve the
upper and lower limit sub-models. Obtain the final interval solution based on the feasible
solution obtained from the upper and lower limit sub-models [23–25].

4. Result Analysis and Discussion
4.1. Water Scarcity in the HID

Figure 5 presents from 2010 to 2050, under RCP8.5, in the Wuyuan irrigation area.
Whether it is the upper or lower bound, there is almost no water shortage in summer,
while the water shortage in spring is more serious than that in autumn and winter, about
250 million m3 to 300 million m3. In the Dengkou irrigation area, there is almost no water
shortage problem. In the Linhe irrigation area, the water shortage in winter is the most
serious, about 50 million m3 to 200 million m3. In the Hangjinhou irrigation area and the
Urad irrigation area, the water shortage in winter is also the most serious, 200 million m3

to 300 million m3 and 210 million m3 to 300 million m3, respectively [26,27].

Figure 5. Average monthly water shortage in five areas of the Hetao Irrigation District from 2010 to
2050 (RCP8.5).

4.2. Regional Water Use in the HID

Figure 6 shows, with 2010 and 2020 as the baseline scenarios, the forecast of water
use for different irrigation methods in the Dengkou irrigation area and the Urad irrigation
area from 2030 to 2050; trend analysis was carried out. The annual water consumption
in the Dengkou irrigation area peaked around 2030 at 20 billion m3 under all three SSPs
and declined thereafter. However, in 2050, the annual water consumption under SSP2
and SSP3 was about 10 billion m3, falling faster than 15 billion m3 under SSP1. The
annual water consumption in the Urad irrigation area showed an upward trend under
three pathways. Under SSP1, the annual water consumption increased from 30 billion m3

to 60 billion m3, almost doubling. The annual water consumption under SSP2 and SSP3
increased slightly, from 30 billion m3 to about 50 billion m3. The water consumption of
drip irrigation increased significantly from 2010 to 2050, and the water consumption of
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furrow irrigation remained basically unchanged. The water consumption of traditional
border irrigation was about 5 billion m3 in 2050, which was lower than that in 2010 [25–27].

Figure 6. Irrigation water consumption prediction of three methods for the Dengkou and Urad
irrigation areas under different scenarios.

4.3. Water Availability Changes in the HID

Figure 7a,b shows the water availability in the Dengkou and Urad irrigation areas from
2010 s to 2040 s for both well and canal irrigation. In general, the available water volume in
Dengkou and Urad decreased from 2010 s to 2040 s. The available water volume of well
irrigation decreased from 50 billion m3 to 45 billion m3 in Dengkou, and the available water
volume of canal irrigation decreased from 48 billion m3 to 40 billion m3 in Dengkou, with
a small degree of decline. The amount of water available in Urad decreased more than
that in Dengkou [28]. Specifically, the amount of water available for well irrigation in Urad
decreased from 300 billion m3 to 250 billion m3 while the amount of water available for
canal irrigation in Urad remained at 270 billion m3 from 2010 s to 2030 s, only dropping to
240 billion m3 in 2040 s.

4.4. Water Shortages in the HID

Correspondingly, Figure 7c,d shows that from SSP1 to SSP3, the water shortage in
Dengkou and Urad increased, and the water shortage in canal irrigation was more than that
in well irrigation for both irrigation areas. Specifically, the water shortage of well irrigation
at Dengkou increased from 200 million m3 under SSP1 to 250 million m3 under SSP3, and
the water shortage at Dengkou of canal irrigation increased from 250 million m3 under
SSP1 to 280 million m3 under SSP3. In the Urad irrigation area, the water shortage of well
irrigation increased from 800 million m3 under SSP1 to 1.100 million m3 under SSP3, and
the water shortage under SSP1 and SSP2 was similar, both 1.000 million m3, and greatly
increased to 1.300 million m3 under SSP3 [29].
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Figure 7. Annual average water availability of two irrigation methods in two irrigation areas (a,b) and
annual average water shortage from 2010 to 2050 under the SSPs (c,d).

4.5. Evaluation of Water Resources’ Carrying Capacity in the HID

According to results obtained from the optimization model and the TOPSIS entropy
weight coefficient method, the water resources’ carrying capacity of the Hetao Irrigation
District was analyzed. Considering that the numerator in the optimization model is the
economic goal and the denominator is the environmental goal, we analyzed the water
resources’ carrying capacity of the Hetao Irrigation District from the perspective of sustain-
able development. The design of the evaluation index system should follow the principles
of systematics, representativeness, and quantification. There are, at least, dozens of in-
dicators involved in the evaluation of water resources’ carrying capacity in an irrigation
district. For comprehensive evaluation, a few indicators should be selected to reflect the
most important and comprehensive information. Each indicator should be independent,
comparable, and universal. Therefore, as Table 1 shows, the indicator system included
three dimensions: economy, environment, and society. Each dimension contained three
parameters. For the economic dimension, the benefits of unilateral water, water production
efficiency, and crop output were selected. For the social dimension, it contained the three
parameters of the proportion of green and high-quality agricultural products, land produc-
tivity, and resource consumption per unit of GDP. For the environmental dimension, the
aging rate of the engineering facilities, Global Warming Potential per output, and agricul-
tural non-point pollution discharge were involved. According to the entropy-weight-based
TOPSIS method, the water resources’ carrying capacity prices for five different areas in
the HID were obtained, as shown in the Figure 8. This research divided the price of water
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resources’ carrying capacity into five grades: [0, 0.2) means I grade, [0.2, 0.4) means II
grade, [0.4, 0.6) means III grade, [0.6, 0.8) means IV grade, and [0.8, 1.0) means V grade.
The higher the grade means the better the water resources’ carrying capacity. From the
Figure 8, the water resources’ carrying capacity in the Yichang subarea was the worst,
with the average value containing the three dimensions being 0.3; in the Yongji subarea, it
was the best, with the average value containing the three dimensions being 0.6 [30]. The
water resources’ carrying capacities of the Jiefangzha subarea and Yongji subarea were
higher than the average value; the other three irrigation areas’ water resources’ carrying
capacities were lower than the average value. The social dimension was in a high ratio of
the water resources’ carrying capacity in the Wulanbuhe, Jiefangzha, and Urad irrigation
areas; however, the proportion of the three dimensions was basically the same for water
resources’ carrying capacity in the other two subareas.

Table 1. Index system and weights.

Dimension Index Unit Index
Attribute Weights

Economic dimension (A)
The benefits of unilateral water (A1) RMB/m3 + 0.1012

Water production efficiency (A2) kg/ha + 0.1058
Crop output (A3) RMB + 0.1026

Social dimension (B)

Proportion of green and high-quality
agricultural products (B1) % + 0.1324

Land productivity (B2) kg/ha + 0.0988
Resource consumption per unit of GDP (B3) kg/RMB − 0.1259

Environmental
dimension (C)

Aging rate of engineering facilities (C1) % − 0.0992
Global Warming Potential per output (C2) kg/CO2e − 0.0984

Agricultural non-point pollution
discharge (C3) kg − 0.1357

Note: “+” means the index belongs to the property of “the larger, the better”, while “−” means the index belongs
to the property of “the smaller, the better”.

Figure 8. Water resource carrying capacity for different subareas in HID. (Note: (1) WRCC means
water resource carrying capacity; and (2) the yellow, dashed line is the average value of WRCC in the
different subareas of HID).

In comparison with bi-level, multi-objective optimization model (BMPSOM) for op-
timizing a crop planting structure in “Optimal management of cultivated land coupling
remote sensing-based expected irrigation water forecasting”, the ILFP was short of the
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“Yield constraint”. Therefore, it cannot be used for a crop planting structure programming.
However, it contained “Water demand constraint” and “Drip irrigation water quantity
constraint”; so, the water availability changes of the different irrigation methods in the HID
can be obtained.

5. Conclusions

In this paper, a decision-making framework for resource management in the Hetao
Irrigation District was designed [31]. The minimum cross-entropy principle was used in
the parameter prediction process of rainfall and evaporation distribution functions [31,32].
Through the optimization selection of five copula functions, the Clayton copula was used
to determine the parameter of probability density function and joint distribution func-
tion of rainfall and evaporation [32–34]. The determination of the weight parameters
of the objective function in the multi-objective optimization model has always been a
challenge [35–38]. Therefore, in the uncertainty optimization model module, we adopted
the interval linear fractional programming model [39,40]. The numerator of the objective
function is the economic goal, the denominator is the environmental goal, and the result
is the utility rate in economics, which is used for post-optimization analysis [41,42]. In
the post-optimization analysis, taking 2010 to 2020 as the baseline scenario and 2020 to
2050 as the forecast scenario, the obtained results included the upper and lower limits of
the average monthly water shortage in five irrigation areas of the Hetao Irrigation District
and the water consumption, availability, and shortage of Dengkou and Urad under border
irrigation, furrow irrigation, drip irrigation, and a well–canal combination under different
RCPs and SSPs [43]. Based on the optimization results, through the entropy-weight-based
TOPSIS method, an index system including three dimensions of economy, society, and
environment was established to deeply analyze the dynamic change of the water resources’
carrying capacity of the Hetao Irrigation District [44,45].

The results of the case study showed that the established model framework based on
interval linear fractional planning can objectively reflect the uncertainty and complexity
in the planning and management of agricultural water resources in the Hetao Irrigation
District [39,44]. The results demonstrated the applicability and feasibility of using the
minimum cross-entropy principle and the entropy-weight-based TOPSIS method on agri-
cultural water resources’ management in an irrigation district in northeast China. It can
provide decision support for the construction of a high-quality ecological irrigation district
in arid and semi-arid areas under the conditions of climate change and human activi-
ties [40,43–45]. This study aimed to construct a modeling framework for agricultural water
resources’ management; however, specific details for some sections were simplified. Such
as the objective functions and constraints of the optimization model were simple, the
relationship between leaders and followers was not reflected, cropping area constraints and
food demand constraints should have been considered, and the dynamics of the modeling
framework were overlooked. These deserves future research to improve the framework.
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Appendix A

Table A1. Equations of the copula functions in this study.

Function Name C(u,v) Interpretation

Clayton copula
(

µ−θ + v−θ − 1
)−1/θ

θ > 0 and τ = θ
θ+2 . τ is the Kendall

coefficient of rank correlation, and the
same below.

Gumbel copula exp
[
−
(
(−lnµ)θ + (−lnv)θ

)1/θ
] θ ≥ 1 and

τ = 1− 4
θ

[
− 1

θ

∫ 0
θ

t
exp(t)−1 dt− 1

]
.

Frank copula − 1
θ ln
[

1 + (e−θµ−1)(e−θv−1)
e−θ−1

] θ ≥ R and
τ = 1− 4

θ

[
− 1

θ

∫ 0
θ

t
exp(t)−1 dt− 1

]
.

t-copula
∫ tk

−1(µ)
−∞

∫ tk
−1(v)
−∞

1
2π
√

1−ρ2

[
1 + s2−2ρst+t2

k(1−p2)

]
dsdt

tk
−1 is the inverse function t distribution

function while the degree of freedom is k;
ρ is the correlation coefficients

between variables.

Gaussian copula
∫ ∅−1(µ)
−∞

∫ ∅−1(v)
−∞

1
2π
√

1−ρ2
exp
[
− s2−2ρst+t2

2(1−p2)

]
dsdt

∅−1 is the inverse function of standard
normal distribution function; ρ is the

correlation coefficients between variables.
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