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Abstract: Preservation and promotion of agroforestry systems entails the ideology for more ecosystem
services, additional biodiversity benefits and climate change mitigation. Furthermore, farmland and
forest landscapes and the consequent benefits to the environment from their combination, enhance
the importance of agroforestry systems towards sustainable environmental policies. Nevertheless,
traditional agroforestry systems face significant adaptation problems, especially in the EU, due to
continuous economic reforms and strict agri-environmental measures. In this context our main goal
is to assess the current managerial framework of two agroforestry systems and more specifically
the olive agroforestry practices in Northern Greece. The economic and environmental implications
of four different production plans are highlighted following the Life Cycle Costing and the Life
Cycle Assessment protocols. The production plans include the simultaneous cultivation of annual
crops, such as vetch and barley, along with olive groves. Potential environmental impacts are
depicted in CO2 equivalents, while the economic allocation of costs is divided in targeted categories
(e.g., raw materials, labor, land rent, etc.). The results indicate significant deviations among the
four production plans, with the combination of olive trees and barley being heavily dependent on
fertilization. Furthermore, the open-spaced olive trees intercropped with a mixture of barley and
commonly depicted the lowest CO2 eq. emissions, though the economic cost was significantly higher
than the other agroforestry system intercropped with barley only. The authors suggest that the
formulation of a decision support system for agroforestry systems should be taken into account in
order to preserve current agroforestry systems.

Keywords: agroforestry systems; olive growing systems; Life Cycle Assessment; Life Cycle Costing;
Activity-Based Costing

1. Introduction

Agriculture represents one of the oldest and more extensive uses of human land that
has supported life through time. Farming practices, developed by the timely and restless
testing and observations of farmers, have defined past civilizations’ fate, rendering agricul-
tural production security as a critical factor sought for human survival [1]. Approximately
two-billion people (26.7% of the world population) derive their livelihoods from agricul-
ture [2]. Whilst increased food production is imperative, it is also quite often accompanied
by negative impacts on the natural environment. Regrettably, agricultural intensification at
field, farm and landscape scales, is the leading cause of deforestation resulting in shrinkage
of ecosystem services, native habitat destruction, groundwater aquifer depletion and biodi-
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versity reduction. The conventional agricultural model, based on crop specialization and
on the massive use of external inputs, is currently facing a deep crisis [3].

Moreover, climate change is one of the biggest contemporary challenges many ecosys-
tems face, posing a major threat to food security through its strong impact on agriculture.
Agriculture is dependent on climate; therefore, farming activities will need to adapt, es-
pecially in the southern and south-eastern EU regions where the negative effects will be
greater than the others [4].

Due to the adverse impacts both climate change and the conventional arable pro-
duction system pose on the environment, alternative production systems are required to
maintain the multifunctional landscape needed for producing food, fodder, and energy [5]
(Lehmann et al. 2020). Agroforestry has been identified as one of the most promising
tools capable of integrating these adverse impacts [6]. Agroforestry systems (AFS) are
environmentally friendly traditional land-use practices, which combine trees and crops
and/or grazing on the same land, simultaneously or sequentially. The composition of
agricultural production in such systems can have diverse, mainly positive, effects in several
categories (biodiversity, global warming potential, etc.) [7], therefore, alternatives must be
considered, in order to develop an environmentally sustainable production plan. The inclu-
sion of trees in agricultural areas is not a novel idea, though the necessity for agricultural
sustainability, environmentally friendly practices, biodiversity conservation and carbon
sequestration, have reestablished this notion as one of the most effective and sustainable
interventions [8]. Agroforestry is an evolving concept used in many different environments
to improve resource-use efficiency and the resilience of traditional agricultural systems, as
it is supported by nature and can simultaneously provide multiple environmental, social,
and economic benefits [9]. Several international bodies, for example the Global Research
Alliance, FAO, IPCC (Intergovernmental Panel on Climate Change), identify agroforestry
as a negative emission technology that should be expanded to reduce atmospheric GHG.

Olive is the most widespread cultivated tree in Greece, covering an area of 700.000 ha,
classifying Greece as the third EU country in olive groves after Spain and Italy [10]. A great
portion of 124.311 ha forms agroforestry systems with various crops or pastures established
in the understory of olive trees [11]. Olive trees alone or in groves are found in all parts
of the country that have a mild Mediterranean climate [12]. Intercrops of olive trees with
cereals and legumes may increase the profitability and sustainability of the farm by the
production of biomass and grains from the understory crops while positively affecting
olive tree productivity [10,13]. This indicates intercropping combination as a promising
practice that may contribute not only to increased economic returns to the farmer but also
as an environmentally friendly option that decreases fertilizer use and, subsequently, soil
and water contamination.

Assessing the economic and environmental sustainability of agroforestry systems
(AFS) is a complicated task since the applied agricultural practices differ significantly from
the relevant conventional (intensive) production. In this context, agroforestry systems are
less profitable thus undermining their adoption by farmers [14] since profit maximization
is the major goal for most of them [15]. On the other hand, the environmental benefits
of agroforestry systems are manifold (in the form of ecosystem services, carbon seques-
tration, etc.) [16,17], developing an uneven regime between economic and environmental
management for both policy makers and farmers.

Considering the environmental sustainability of AFS, several studies emphasize the
methodological framework of Life Cycle Assessment (LCA) [18–20], underlining the ap-
plicability of LCA in AFS. Apart from the abovementioned, the holistic and analytical
step-by-step procedure is suitable for characterizing agricultural activities (namely fertil-
ization, sowing, harvesting, etc.) in one indicator expressed in CO2 equivalents (GWP).
Furthermore, challenges and potential improvements have been considered, studied closely
and illustrated over the last years [21,22], sealing the gap of incompatibility between LCA
and agricultural systems. Focusing on olive production systems in the Mediterranean basin,
LCA has been implemented in order to depict the disparities of different management



Agriculture 2022, 12, 851 3 of 15

practices, along with the respective impacts to the environment [5,23,24]. The emissions
of agricultural activities (e.g., agrochemical application, irrigation, fertilization, etc.) are
heavily dependent on the management practices of farmers, though the allocation of
environmental impacts are not on par with the economic impacts [25].

Consequently, the policy framework beyond 2020 is considered inadequate and the
economic lure of subsidies is not strictly connected to environmentally friendly practices on
the field [26]. Thus, the economic sustainability of AFS should be investigated in addition
to the magnitude of the respective impacts to the environment. The difficulty of assessing
the economic impacts of AFS encompasses the intangible, in many cases, ecological and
social benefits of AFS [27]. Therefore, the methodological framework for the economic
assessment of AFS is usually based on a cost–benefit analysis approach [28,29], or on similar
ratio approaches [27,30]. Nevertheless, the connection of LCA and Life Cycle Costing (LCC)
develops a powerful tool for the holistic assessment of AFS, integrating the ideology of
time and money allocation, through the life cycle of crop cultivation [31]. In this context
the methodology framework should be consistent with the objectives of the study, in order
to generate comparable results between LCA and LCC [32]. The main aim of the current
study is the assessment of carbon footprint in conjunction with an economic analysis
regarding cases of AFS in Greece, following the principles of LCA and LCC. A total of four
production schemes are presented along with their respective impacts, since there is a lack
of knowledge of AFS in the Greek territory.

2. Materials and Methods
2.1. Study Area

The study referred to the Kassandra peninsula of Chalkidiki (X 450,089.747 and
Y 4,428,217.075) and included plots with open-spaced olive trees, monocultures of ce-
reals and olive groves. There are also scattered agroforestry systems composed of olive
trees intercropped with cereals and grasses, as cover crops, with tree densities ranging from
20 to 60 trees/ha [33]. The mean annual precipitation of the area is 602.5 mm and the mean
monthly temperature is 16.2 ◦C [10]. The soils of the area derived from luvisols have an
average pH of 8.2.

The four production systems in the Kassandra peninsula are described below:

(i) open-spaced olive trees intercropped with barley (BOT)
(ii) open-spaced olive trees intercropped with a mixture of barley and common vetch (VBOT)
(iii) olive orchards (OT)
(iv) monocultures of cereals (barley) (BF),

Olive trees of the BOT and VBOT regime were 80 years old, cultivated for the produc-
tion of olives and olive oil in a density of 100 trees/ha and tree spacing of 10 × 10 m. Olive
trees were pruned every year to improve olive production [10]. The crops of barley and the
mixture of barley and common vetch were sowed in the autumn of three consecutive years
(2014, 2015 and 2016). Seed and fertilizer quantities were the following: a. BOT and BF:
barley 240 kg/ha and fertilizer 130 kg/ha (24–10–0, N–P–K) and b. VBOT: barley 80 kg/ha,
common vetch 120 kg/ha and fertilizer 120 kg/ha (0–46–0, N–P–K). The barley crop was
harvested early June by a harvest machine and was used as grain for livestock feeding. The
mixture of barley and common vetch was cut by the end of May and harvested as hay for
livestock feeding [10]. Olive orchards were 40 years old and similar to previous systems
cultivated for the production of olives and olive oil. The density was 250 trees/ha and
managed as VBOT and BOT production systems.

2.2. LCA Background

LCA is a holistic assessment and estimation framework regarding the environmental
impacts throughout the lifetime of a product or process [34]. Although the International
Organization for Standardization provides guidelines and principles via the published
standards ISO 14040-14044 [35], the method’s framework is vague especially regarding
agricultural production [11]. Nevertheless, in order to conduct a complete LCA, four
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interconnected phases should be introduced and defined, namely: (i) Goal and scope
definition, (ii) Life Cycle Inventory (LCI), (iii) Life Cycle Impact Assessment and (iv)
Interpretation [36]. The versatility of the defined methodological framework of LCA is a
strong asset if used accordingly along with the integration of economic assessment via the
LCC method [37]. Since the evaluation of environmental sustainability should not neglect
the economic aspects of an action, especially in agriculture [38], LCC is considered as an
optimal decision-making tool, when applied simultaneously with LCA.

2.3. Goal and Scope Definition

The main aim of the current study is a holistic environmental and economic assess-
ment of agroforestry systems in the region of Chalkidiki, Northern Greece. The comparison
among the agroforestry systems is enhanced by the depiction of single crop production
plans (barley and olive trees), in order to comprehend the pros and cons of farm man-
agement in the area of interest. The framework of agroforestry is not widespread in the
farming community of Greece, though such practices are considered environmentally
friendly. However, maximization of income is the key element for the majority of farmers
in order to adopt new or different cultivation techniques. Therefore, the gist of the study is
the evaluation of trade-offs between the economic and environmental sustainability of AFS,
in comparison to conventional agricultural practices, which are dominant in the area [25].

Concerning the environmental assessment, all the inputs used and their respective
impacts on the field are accounted as well as the indirect impacts from raw materials extrac-
tion. Furthermore, farming activities, machinery operations and transportation of inputs
and outputs to the respective destinations are also considered. The system boundaries are
depicted in Figure 1, including all the relevant operations for one production (agricultural)
year, starting from sowing to the harvesting procedure, including the transportation of
the products to the processing unit. The cradle to factory gate variation of the system
boundaries is chosen, since the expected yield in a mixed production plan could generate
manifold types of outputs (e.g., kg of olives, liters of olive oil, tons of barley fodder, etc.)
simultaneously. Thus, the functional unit is set to 1 ha of arable land, in order to minimize
potential incompatibilities among different yield types. Apart from the abovementioned,
the economic assessment follows a similar approach (EUR/ha) since area-based payments
play a significant role to the subsidiary policy of the CAP [39]. In this context, four cropping
management schemes will be thoroughly analyzed, comparing the emissions in equivalents,
with the latest Global Warming Potential coefficients (GWP, explained below), and their
economic performance in a competitive environment of progressive sustainability.

2.4. Life Cycle Inventory (LCI)

Formulating a credible inventory database is a complex and time-intensive proce-
dure, while access to the appropriate datasets is considered an additional obstacle to
overcome [40]. Each stage of the assessment process is conveyed to an assortment of
products and services, which are expressed in units of energy per amount of output or units
of emissions per area accordingly. Therefore, the necessity for accurate inventory databases
regarding a variety of inputs (e.g., raw materials, energy, wastes, etc.) has motivated
the generation of public and private databases [41], especially in relation to agricultural
production [42]. The inventory analysis for primary energy usage and GHG emissions for
the current study is presented in Table 1.

Nevertheless, the abundance of databases ranging from manifold countries to different
perspectives, develops a multiplicate decision-making process in order to appropriately
choose input and output units. The key elements for the formulation of a robust LCI
are quality and consistency [40], taking into account credible data documentations and
reliable elementary and physical flows inside the boundaries of the studied system. In
relation to the reference system of the current study, the approximation of primary energy
and emission outputs follows mostly the BioGrace II greenhouse gas (GHG) standard
values [47], which are in line with Directive (EU) 2018/2001 [55]. The estimation of material
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inputs includes fertilizers, pesticides, seeds, fuel and energy consumption for one growing
season of each cropping system, while transportation of inputs and outputs, human and
mechanical labor are calculated as well (Table 1). Furthermore, indirect emissions are
estimated to strengthen the outputs of the study, since these are considered significant in
agricultural production systems [56,57].
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Table 1. Inventory analysis for primary energy usage and GHG emissions.

Inputs Unit Primary Energy GHG unit GHGs Remarks

Seeds
Barley seeds MJ/kg 2.95 gCO2eq/kg 300.85 [43]
Vetch seeds MJ/kg 10 gCO2eq/kg 488.80 [44–46]

Agrochemicals
N MJ/kg 48.99 gCO2eq/kg 4524.41 [47]
P MJ/kg 15.23 gCO2eq/kg 541,67 [47]
K MJ/kg 9.68 gCO2eq/kg 416.67 [47]
Pesticides MJ/kg 268.40 gCO2eq/kg 12,003.33 [47]

Energy
Lubricants MJ/kg 53.28 gCO2eq/kg 947.00 [47]
Diesel MJ/kg 56.80 gCO2eq/MJ 95.10 [47,48]
Petrol MJ/kg 60.20 gCO2eq/MJ 93.30 [47,48]
Electricity MJ/MJ 2.73 gCO2eq/MJ 243.49 [47]

Operations, maintenance and manufacturing
Tractor MJ/h 16.42 gCO2eq/h 9800 [49,50]
Human MJ/h 1.80 gCO2eq - [49]
Machinery MJ/h 11.90–35.05 gCO2eq/h 0.10–1.70 [51,52]
Irrigation
system MJ/ha 373.7 gCO2eq - [53]

Use of diesel MJ - gCO2eq/MJ 0.9 [47]

Transportation
Supplies MJ/t*km 0.87 gCO2eq/t.km 71 [47,54]
Biomass MJ/t*km 0.81 gCO2eq/t.km 71 [47,54]
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In order to elicit accurate and updated conclusions, the latest GHG lifetimes, radiative
efficiencies and metrics are adopted, following the Sixth Assessment Report of the Inter-
governmental Panel on Climate Change (IPCC) [58]. CO2 equivalents in a time horizon
of 100 years were calculated as follows: CO2 = 1, CH4 = 27.9 and N2O = 273. The GWP
values of the three chemical formulas were altered accordingly via the BioGrace-II GHG
calculation tool. Nevertheless, the thorough analysis of emission coefficients is limited to
specific inputs (agrochemicals and energy), whereas GHGs of other inputs (e.g., seeds, op-
erations, etc.) are directly aggregated into CO2 equivalents, based on the relevant remarks.
The selection of the GWP100 indicator and the importance of the three major GHGs are also
highlighted in other similar studies [25,59], taking into account short-term and mid-term
implications of agricultural systems.

2.5. Life Cycle Impact Assessment

The stage where all the accounted emissions are transformed into environmental
scores based on specific characterization factors is called Life Cycle Impact Assessment
(LCIA) [60]. Apart from the mandatory process of calculating the environmental burden in
the form of impact category indicators, other optional key elements (e.g., normalization,
weighting, grouping, etc.) could facilitate the decision-making process and generate
additional results [61]. The implications of scenarios reside not only in the differences
among methodological choices, but in the time horizon of pollutants as well [60]. GWP
is a common emission metric, which is calculated by the integration of radiative forcing
over a specified time-period due to emission pulses [62]. GWP has been criticized as a
forecast estimator related to temperature targets [63], though further improvements are still
proposed in order to calculate emissions more effectively [64]. The conversion of climate
pollutants into one unified indicator of CO2 equivalents is based on the multiplication of
the respective conversion factor with the quantity of each pollutant as follows [65]:

GWP = ∑ Em × C f100 (1)

where GWP is the LCIA indicator in CO2 equivalents and Em is the emissions of each pollu-
tant. Cf 100 is the characterization factor for a time horizon of 100 years for each pollutant
emitted by agricultural activities on the field. Nevertheless, agricultural production consists
of manifold on-field activities and calculating GHGs via the emissions factor approach [66]
in a more elaborate manner is necessary [25]:

CEi = Eagrochem

[
kg CO2

ha

]
+ Een

[
kg CO2

ha

]
+ Emach

[
kg CO2

ha

]
+ Etrans

[
kg CO2

ha

]
(2)

where CEi is the total kg of COeq per agroforestry system. Eagrochem, Een, Emach, and Etrans are
the aggregated amounts of emissions from agrochemicals (fertilizers and pesticides, plus
seeds) application, energy consumption (diesel, petrol, electricity, lubricants), machinery
usage (operation, maintenance, manufacturing) and transportation of inputs and outputs
to the respective destinations. Nitrogen fertilization is a parameter of direct and indirect
emission augmentation, therefore, 1% of N2O emissions are considered as indirect [67].

Apart from the environmental assessment, the reciprocal influence of farm manage-
ment to the economic and environmental sustainability of rural areas develops complex
decision-making schemes, which is highlighted by many studies [67–69]. Therefore, the
annual equivalent costs for the four production plans in Chalkidiki, following a Life Cycle
Costing (LCC) approach are calculated as well. LCC takes into account the costs or cash
flows, i.e., relative costs (both income and externalities, if included in the agreed scope)
arising from acquisition and operation until the final disposal [70]. The full initial anal-
ysis of the LCC methodology and the parameters to be studied are presented in detail
by Woodward [71]. The ultimate goal of LCC is to provide a framework for finding the
overall cost of developing, producing, using and selling the product with the intention of
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reducing overall costs [72] and in this context, a variety of LCC approach methods have
been developed.

The Activity-Based Costing (ABC) method identifies costs through activities performed
on cost targets (production or service activities), providing more accurate and traceable
cost information [73]. The use of ABC can lead to the classification of value-added and
non-value-added activities and allows the elimination of non-value-added activities. ABC
is a life cycle assessment method with a similar scope to that known to ISO 14000 but has
several significant advantages over the ISO approach [74]. ABC is relatively easier and
provides a clear methodological framework, while its model is general and can be applied
whenever activities are described in detail [75]. In agriculture, the approach consists of the
decomposition of a project into factors (or activities) and the assignment of each production
input cost to the respective factor, considering the actual level of consumption in each
operation as follows:

TCi = ∑ Craw + ∑ Clab + ∑ Cmach + ∑ Cland + ∑ Cen + ∑ Cover (3)

where TCi represents the total costs for each agroforestry system i, Craw represents the
aggregate costs for the acquisition of raw materials, Clab depicts the cost of labour, Cmach
is the capital service cost for machinery usage (including maintenance, insurance and the
depreciation factor), Cland represents the cost of landowning which depends on several
factors, Cen is the total costs for energy consumption (diesel, petrol and electricity) and Cover
accounts for the overheads for each system. Calculations and data analysis for the economic
data are performed by the ABC software© v.2.1.2.0, which is an advanced cost analysis
modelling software for the agribusiness industry (abcsoftware.org). Illustrations and
graphs are created via the ABC software© v.2.1.2.0 and the R Studio Version 1.4.1106 [76].

3. Results

The first section of the results includes the depiction of emissions in CO2 equivalents
and the consumed energy in MJ for every cropping system in the area of Kassandra, based
on the LCA approach. The economic and the LCA and LCC evaluation are also presented.

3.1. Emissions and Energy Consumed

The GHG emissions of every cropping system are divided into four separate sub-
categories as listed in Table 2, in order to gain a clear perspective on the factors that signifi-
cantly alter the emissions’ total CO2 equivalents. More specifically, the four sub-categories
are (a) Agrochemicals and seeds, (b) Energy (electricity, diesel, petrol and lubricants), (c) Ma-
chinery (direct and indirect) and (d) Other (Transportation of inputs, indirect N2O, etc.). The
total GHG emissions of the two agroforestry systems (BOT and VBOT) are lower compared
to the two monoculture cropping systems (BF and OT), while the agricultural practices for
the OT reach a total amount of 2301.42 kg CO2eq ha−1. This figure (2301.42 kg CO2eq ha−1)
is considerably higher than the rest of the cropping systems due to the requirements of
OT mainly for energy and secondarily for agrochemicals, accounting together for more
than 70% of the total emissions. Nevertheless, the emission pattern is quite similar among
the cropping systems since the emissions for the Machinery and the Other sub-categories
are significantly lower in comparison with the other two sub-categories (Agrochemicals
and seeds and Energy). Regarding the VBOT system, the major difference hinges on the
usage of 0-46-0 triple superphosphate fertilizer, achieving very low emission figures in
the Agrochemicals and seeds (301.12 kg CO2eq ha−1) and Other (13.57 kg CO2eq ha−1)
categories, due to the absence of nitrogenous chemical fertilizers.

Apart from the impacts to the environment, each activity in relation to farming prac-
tices imposes the consumption of energy. In Figure 2, a dual Y-axis bar chart is illustrated,
depicting the total consumed energy in MJ ha−1 and the total kg CO2eq ha−1 for each
cropping system. In terms of energy consumption, the most demanding system is OT
(22,968 MJ ha−1), while the BOT system is the least energy intensive system (8547 MJ ha−1).
Nevertheless, practices adopted by BF and VBOT are also not considered energy demand-
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ing (9027 MJ ha−1 and 11,983 MJ ha−1, respectively). Although the VBOT system emits
lower levels of GHGs, the energy needed for all the relevant cultivation practices exceeds
the ten-thousand marker by a significant margin (11,983.09 MJ ha−1). This difference in the
amount of energy consumed on the VBOT system is due to a mixture of fungicides and
insecticides applied only on the olive trees of this system and not on the BOT system.

Table 2. GHG emissions for each cropping system in the region under study (kg CO2eq ha−1).

Inputs BF OT BOT VBOT

Agrochemicals and seeds 430.65 970.40 308.91 301.12
Energy (electricity, diesel,
petrol and lubricants) 346.67 744.60 380.57 364.21

Machinery (direct and indirect) 66.47 149.48 72.70 129.28
Other (Transportation of inputs,
indirect N2O, etc) 210.30 436.94 155.69 13.57

Total 1054.08 2301.42 917.87 808.17
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3.2. Economic Outcome

The parallel goal of the current study is the economic assessment of the four cropping
systems according to the LCC approach. In this context, essential economic data should
be illustrated in order to present a clear perspective for the economic viability of each
cropping system and how they are translated in economic terms. In Table 3, basic economic
parameters are depicted, whilst the yield and gross revenue aspects for the two agroforestry
systems (VBOT and BOT) generate a two-fold outcome. The economic assessment showed
that the costs of BF cultivation exceed the sum total of gross revenue and subsidy generating
a negative profit figure (EUR −53.44).
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Table 3. Economic data for the four cropping systems.

Cropping System BF OT
BOT VBOT

Barley Olive Trees Vetch-Barley Olive Trees

Annual yield (ton/ha) 2.50 3.56 2.00 0.20 150 0.55
Gross revenue (EUR/ha) 325.00 3312.80 260.00 800.00 375.00 2216.00
Total cost (EUR/ha) 628.44 2805.08 486.94 1776.49
Subsidy (EUR/ha) 250.00 355.00 470.00 680.00
Profit (EUR/ha) −53.44 862.72 1043.06 1494.51

On the other hand, OT, BOT and VBOT are profitable cropping systems, justifying
a total income per hectare of EUR 862.72, EUR 1043.06 and EUR 1494.51, respectively.
The major difference among the cropping systems is the amount of total costs, which
fluctuates from EUR 486.94 to EUR 2805.08. This is a significant margin, which is explained
thoroughly via Figure 3 and Table 4. LCC is a methodological framework taking into
account all the relevant costs of a product or process throughout its life cycle, while the
Activity-Based Costing approach develops a segmentation of costs into specific activities,
highlighting potential irregularities in the process. The two major aspects for the cost
deviation in relation to OT and VBOT are land rent (44.3%) and labor (54.9%), respectively,
while raw materials are to a greater or lesser extent about the same (Figure 3).
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Focusing on other costs, the shares of energy are not significantly high with 14.6% for
OT and 8.9% for BF, while the other two cropping systems are below 4% of the total costs.
Moreover, overheads account for one-fifth of the total costs for OT and VBOT due to the
remuneration of olive mills in kind, which translates into the cost figures. Comparing points
of view, the economic analysis per activity illustrates important aspects which were difficult
to identify otherwise (Table 4), neglecting land rent and focusing only on pure agricultural
practices. For BF, sowing and fertilization are the two major activities costing more than
60% of the total expenses together. The benefit of agroforestry systems is illustrated via
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the weed control activities which are performed only on the OT cropping system (EUR
346.53). Moreover, irrigation presents an extra cost for OT (EUR 41.23), since the other three
systems are non-irrigated. Nevertheless, the interaction of agriculture and trees in BOT
and VBOT integrates activities such as sowing and ploughing, which are not applicable to
tree crops. Finally, the important cost factor of labor is explained for VBOT, as harvesting
activities are performed only with human labor accounting for EUR 910.50.

Table 4. Economic analysis for each activity on the field.

Activity BF OT BOT VBOT

Sowing 140.55 99.64 78.19
Ploughing 52.96 42.02 36.18
Fertilization 113.55 240.43 85.25 64.41
Herbiciding 63.26 165.72 66.16 158.23
Irrigation 41.23
Weed control 346.53
Prunning 48.00 124.54
Harvesting 52.12 214.53 65.30 910.50
Total 422.44 1008.44 406.37 1372.05

The economic assessment though, illustrated that the different managerial approaches
towards agroforestry could alter the perception of farmers in the region. More specifically,
BOT and VBOT systems achieve considerable profit, though the total costs from activities
differ to a significant degree, accounting EUR 406.37 and EUR 1372.05, respectively, and a
gap of EUR 965.68.

3.3. LCA and LCC Evaluation

The significance of the gap between economic and environmental assessment could
reveal externalities in relation to agricultural production [77], thus selecting the proper
agricultural management approach is quite difficult. In this context, the results of LCA and
LCC are illustrated via normalized accumulated waffle charts (Figure 4), representing costs
(environmental and economic) in percentages. The waffle charts classify the orientation
of economic and environmental impacts in percentage terms, depicting similarities and
differences between the results.

More specifically, agrochemicals and seeds bear a detrimental environmental and
economic consequence for every cropping system, except from the OT and the VBOT
economic impacts, with the respective shares accounting for 24.57% and 14.17%, respec-
tively. Furthermore, the environmental share of raw materials, regarding the LCA study,
covers a significant amount of the normalized values. Energy requirements generate more
than 30% of the total emissions, highlighting the importance of renewable energy sources.
Nevertheless, the deviation between LCA and LCC results is more evident through the
energy aspects, since the economic percentages are low in comparison to the respective
ones of the environmental impacts. The huge gap between the two approaches hinges on
human and machine labor, which creates a significant economic cost fluctuating between
23.22% and an extraordinary 61.30% of the total costs for VBOT. Therefore, the formulation
of a cropping pattern including an assortment of agricultural activities, such as agroforestry
systems, conceals numerous fluctuations between economic and environmental costs and
should be integrated gradually to the production plans of farmers.
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4. Discussion

The main focus of the study is the environmental and economic assessment of four
cropping systems in Chalkidiki, in order to evaluate the sustainability factor of agroforestry
in Greece. In this context, variation in the GWP can be observed in other agroforestry
systems integrating olive trees. However, this variation is not significant, since silvopas-
toral and organic agroforestry systems in Italy emit 606 kg CO2 eq. ha−1 and 585 kg
CO2 eq. ha−1, respectively [5]. These figures are close to those of the current study, though
in the Italian study, synthetic fertilizers were not applied to the silvopastoral system and
pesticides were not used for the organic system. On the other hand, findings of this study
elicit the same results regarding the application and manufacture of fertilizers to olive
production systems in Spain [78]. For all the investigated systems in Spain, fertilizers have
contributed to the highest burdens in relation to environmental impacts.

Comparing the results to other studies integrating conventional agricultural prac-
tices in Greece, the GHG emissions from olive tree production accumulate to 2772.93 kg
CO2 eq. ha−1 [25]. This figure is close to the respective environmental impacts of the OT
system of the current study (2301.42 kg CO2 eq. ha−1), but far less than the two agro-
forestry systems (BOT and VBOT). Nevertheless, the balance between the environmental
and economic scale is disrupted, since the economic gain from conventional agricultural
practices (EUR 3686.60 ha−1) is at least two-times greater than the ones of the current
study. Similarly, De Luca et al. [79] highlight notable profitability rates for conventional
agricultural practices in Italy, though the olive market price and the discount rate create
significant fluctuations on the final profits.

The Activity-Based Costing approach presents a totally different perspective in olive
tree production, since specific fixed costs are neglected on purpose focusing solely on the on-
field practices. In this context, another study in Italy integrating olive trees in the production
stage depicts annual operating costs equal to EUR 2032.0 ha−1 and EUR 1667.7 ha−1 for
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organic and conventional agricultural practices, respectively. These figures are much higher
than the BOT system of the current study; however, are close enough to the VBOT system
considering that there is no irrigation cost for this agroforestry system. Another aspect to
consider are the disparities in relation to labor compensations and rented services among
the presented studies. For future work, the authors suggest the analysis of more mid-
point and end-point indicators, in order to obtain a holistic view towards environmental
sustainability of agroforestry systems in Greece. Furthermore, the assessment of more
agroforestry systems could be integrated into a bio-economic model, taking into account
future agricultural policies (CAP 2021–2027), environmental impacts (GWP indicator),
climatic conditions (evapotranspiration, etc.) and farmers’ profitability, generating an
optimum production plan that mutually satisfies farmers and policy makers.

5. Conclusions

The assessment of olive farming systems, accounting for environmental and economic
aspects of sustainability via an LCA and LCC approach was conducted by comparing
four types of cropping systems that were applied in Kassandra. The environmental per-
spective of the study concluded that the agroforestry systems (BOT and VBOT) exhibited
better results in comparison with monoculture farming due to the N2O emissions from
N fertilizer application. The impact of N fertilization application is strongly connected to
direct N2O emissions and the differences among the studied farming practices illustrated
significant deviations of impacts due to intensive application of fertilizers in the OT system.
Furthermore, the energy requirements for the OT cropping system (22,967.52 MJ ha−1)
were significantly higher than those of the other three cropping systems, while the VBOT
system was the second most energy-demanding system with 11,983.09 MJ per hectare.
Nevertheless, the concept of energy efficiency could provide a more thorough insight into
the balance between consumed and potential generated energy from the selected cropping
systems [80]. The energy-efficiency index could also highlight the effects of the selected
cropping patterns and technologies on GHGs to the atmosphere [81].

Regarding the economic analysis, LCC generated interesting results in relation to
the GWP indicator. More specifically, VBOT and BOT are less energy demanding, pro-
ducing lower GHG emissions and simultaneously generating greater profits in relation
to the monoculture farming systems in total. Nevertheless, if land rent is removed from
the equation and based only on the activities performed on the field, VBOT is the most
cost-intensive cropping system and BOT is the least. Therefore, the holistic assessment
highlighted conflicting results regarding the shares of impacts in LCA and LCC. In eco-
nomic terms, the cost of labor and other factors are more important when compared to
the environmental impacts, in which agrochemicals and energy requirements play a more
significant role. The field-based evidence from the current study can contribute to the
facilitation of decision-making by policy makers, highlighting the LCA results and the re-
spective environmental and economic impacts of agroforestry systems towards sustainable
agricultural management.
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