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Abstract: Climate change (CC), which causes temperatures to rise steadily, is causing global warming.
Rising temperatures can reduce plant yield and affect pollen characteristics. In particular, heat
stress strongly influences pollen viability for its sensitivity to this extreme environmental condition.
This work evaluated the effect of heat stress on olive pollen after in vitro incubation at different
temperatures (20, 30, and 40 ◦C). Furthermore, the potential of selenium-methionine (Se-met) in
mitigating the detrimental effects of heat stress on olive pollen was investigated. In particular,
how thermal stress can affect pollen was evaluated by testing the effect of temperature on pollen
germinability and morphology and cytosolic Ca2+ content. The results suggest that the heat stress at
40 ◦C caused a marked reduction in the germination rate, changes in the morphology of the external
pollen wall, and a decreased response to Ca2+-agonist agents. On the contrary, in vitro treatment
of pollen with Se-met improved the germination rate and Ca2+-cytosolic homeostasis under heat
stress conditions and confirmed the protective role of this compound in containing the hydrogen
peroxide (H2O2) toxicity. Therefore, this study revealed that organic selenium could play a crucial
role in promoting heat tolerance in olive tree pollen.

Keywords: Olea europaea L.; selenium; heat stress; Ca2+-cytosolic; pollen germination

1. Introduction

Environmental stress is a significant issue and is already considered one of the main
factors limiting crop growth, production, and yield [1]. In addition, ongoing climate
change (CC) must be considered in this context, as it can further exacerbate the adverse
environmental stress on crop systems [2]. Among the effects of CC, rising temperatures,
which significantly impact agricultural systems, will play an even more crucial role over
time [3–5]. Indeed, global warming is expected to negatively affect agriculture, with a
temperature increase of 1–3 ◦C expected by the 21st century [6]. This will result in a
significant reduction in crop yields and quality [6].

High temperatures can cause significant crop changes, altering their morphology,
physiology, and biochemistry [7]. In particular, high temperature can reduce plant growth
(roots and shoots) and biomass production, cause premature leaves senescence, hinder the
ability of seeds to germinate, and decrease pollen viability [8]. In addition, exposure to high
temperatures can induce severe physiological and biochemical changes in crops. The most
frequently observed events are an increase in respiration and membrane permeability, a
decrease in photosynthesis, and the production and accumulation of reactive oxygen species
(ROS) [9]. In fact, high temperatures can cause ROS overproduction and, consequently,
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their accumulation in cells to very high concentrations. In addition, ROS can be very toxic
to cells due to their reactivity toward many cellular components [7].

ROS can also control specific molecular signals, including those related to cytosolic
Ca2+. Ca is essential for plant nutrition and plays a dual role as a structural component of
cell walls and membranes and as an intracellular second messenger [7]. In particular, as a
messenger, this element is involved in numerous processes concerning pollen tube growth
and fertilisation and the response to abiotic stresses [10]. Therefore, Ca homeostasis must
be finely controlled and maintained [7].

Higher plants have a specialised sexual reproduction system and can produce abun-
dant pollen that is transported long distances by wind or insects during habitat coloni-
sation [11]. After landing on the stigma in angiosperms, the dehydrated pollen rapidly
hydrates and begins to germinate. Germination of the pollen grain and proper pollen
tube elongation are essential processes in plant sexual reproduction [12,13]. Nevertheless,
high temperatures can damage the reproductive tissues of plants, causing asynchrony
between the development of male and female floral structures and the formation of de-
fective gametes and fertility problems [14]. Likewise, floral receptivity has a critical role
in pollination dynamics and reproductive success, with consequences for fruit produc-
tion [5,14,15]. In this regard, ROS accumulation under stress conditions can lead to pollen
infertility, with detrimental effects and repercussions on agricultural production [16,17].
The correlation between Ca2+ dynamics and ROS during pollination and pollen tube for-
mation has been widely described [11,18,19]. ROS act as agonists, stimulating the Ca2+

mobilisation from internal stores and triggering its entry into the cell from the extracellular
spaces [16,17,20–23].

About the olive tree, this crop is adaptable to severe summer conditions, i.e., exces-
sive heat load, low rainfall, and high daily irradiation [24,25]. However, due to CC, the
gradual increase in temperatures can compromise this plant, hampering some stages of
reproductive growth and development and the quality of the olive oil [25]. In addition,
high temperatures may anticipate full flowering and shorten the duration of the flowering
period. Despite this, the effects on pollen production and yield have not been sufficiently
studied and understood to date [25,26]. However, recent scientific evidence has revealed
the involvement and positive action of selenium (Se) on the cytosolic Ca2+ homeostasis and
olive pollen germination [10,17,27–29].

Se is a micronutrient that, although not required by higher plants, can positively affect
olive trees by promoting plant growth, alleviating UV-induced oxidative stress, stimulating
chlorophyll biosynthesis, increasing the antioxidative defences of senescent plants and
regulating the water status of drought-exposed plants [30–32].

Concerning olive trees, some positive effects of Se were documented. In particular,
in this crop, this element was found to improve drought and salt stress tolerance [33,34]
and phenol content [35,36] and stimulate pollen germination [27,37]. However, in this
context, and to the best of our knowledge, no studies have been performed on the possible
beneficial effects of Se in reducing or mitigating the detrimental effect of high temperature
on olive pollen. Therefore, in this work, the effects of high temperatures on Ca2+-cytosolic
germination and morphology of olive pollen and the possible beneficial effects of selenium
in heat stress tolerance have been deeply investigated. Furthermore, concerning the study
of the effects of oxidative stress in different temperatures, hydrogen peroxide (H2O2) was
used, as it is considered one of the most critical ROS that accumulates when oxidative
perturbations occur.

2. Materials and Methods
2.1. Reagents

FURA-2AM (FURA-2-pentakis (acetoxymethyl) ester), PBS (Phosphate Buffered Saline),
Triton X-100, EGTA (ethylene glycol-bis (β-aminoethyl ether), selenium methionine, hy-
drogen peroxide (H2O2), sodium chloride (NaCl), potassium chloride (KCl), magnesium
chloride (MgCl2), glucose, Hepes, and dimethyl sulfoxide (DMSO) were obtained from
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Sigma-Aldrich corporation (St. Louis, MO, USA). All other chemicals and reagents (reagent
grade) were high-quality.

2.2. Plant Material, Growing Conditions, and Pollen Collection

The study was carried out in 2020 in a thirty-year-old orchard near Perugia (Central
Italy, 42◦57′39.2′′ N, 12◦25′02.5′′ E) on Leccino cultivar. The planting distance was 5 × 6 m,
and the training system adopted was the “vase” system (single trunk 1 m high and 3–4 main
branches). The soil texture was clay loam. The climate of the area was semi-continental,
and the average temperature difference between the coldest (January) and warmest (July)
months was 19–20 ◦C. The average annual air temperature was 13–14 ◦C, while the average
diurnal temperature range of 10–11 ◦C. The maximum and minimum temperatures were
36 ◦C and −7 ◦C, respectively. The precipitations were distributed mainly in autumn,
winter, and spring, and the annual average precipitation was about 800 mm.

The starting of the olive flowering was assessed when the pollen was freely released by
shaking the anthers of different branches at different tree canopy heights and exposures [28].
When the 1st flowering stage was reached (end of May), three branches (70–80 inflorescences
each) for each tree were bagged with white double-layered paper bags (0.65 × 0.35 m) to
collect pollen. The bags were removed at the end of the flowering phase, and then the
pollen was filtered through a cell strainer (40 µm).

2.3. In Vitro Thermal Stress of Olive Pollen

Aliquots of olive pollen (100 mg) were incubated at 20, 30, and 40 ◦C. The incubation
carried out for 20, 48, and 62 h allowed the appearance of the maximum effect on cytosolic
Ca2+ and on germination to be highlighted.

2.4. Measurement of Cytosolic Ca2+

FURA-2AM probe enabled the measurement of intracellular calcium levels [29]. In
particular, 100 mg of control and thermal stressed olive pollen were placed in 10 mL PBS
and left to hydrate for 2 days. Hydrated pollens were collected by centrifugation at 1000× g
4 min and then resuspended in 2 mL Ca2+-free HBSS buffer (120 mM NaCl, 5.0 mM KCl,
MgCl2 1 mM, 5 mM glucose, 25 mM Hepes, pH 7.4). The pollen suspensions were incubated
in the absence of light with FURA-2AM (2 µL of a 2 mM solution in DMSO) for 120 min.
Then the samples were centrifuged at 1000× g 4 min, and the pollens were collected and
suspended in 10 mL of Ca2+-free HBSS containing 0.1 mM EGTA. The latter was used
to exclude or minimise the potential background due to contaminant ions (to obtain a
suspension of 1 × 106 hydrated pollen granules per mL).

A Perkin-Elmer LS 50 B spectrofluorometer (Markham, ON, Canada) was used to
determine fluorescence (excitation 340 and 380 nm, emission 510 nm), set with a slit width
of 10 nm and a 7.5 nm in the excitation and emission windows, respectively. Fluorometric
measures were taken after 300–350 s. CaCl2, H2O2, and Se-met were added to pollen
samples for specific purposes, as described in the Results section. Cytosolic calcium concen-
trations ([Ca2+]c) were calculated according to Grynkiewicz [38], while the concentration of
Se-met and H2O2 were established based on previous studies [27,28] and allowed to obtain
beneficial effects without toxicity risks that can occur at higher concentrations.

2.5. Pollen Germination

The olive pollen samples (control and heat-stressed) were rehydrated by incubation
for 30 min at room temperature in a humid chamber [39]. Then, pollen samples were placed
on culture plates (6-well culture plates with 1.0 mg of pollen per plate) containing 3 mL
of an agar-solidified culture medium composed as follows: agar 1%, sucrose 10%, boric
acid (H3BO3) 100 ppm, and calcium chloride (CaCl2) 1 mM, at pH 5.5 [40]. Subsequently,
a uniform distribution was obtained on the surface of the substrate using a brush. Then
the pollen grains were incubated for 24–48 h in a growth chamber at 25 ◦C. The number
of germinated and non-germinated pollen grains was counted using a microscope with a
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10× objective lens. Germination rates were estimated using two replicates of 100 grains. In
particular, the grains were considered germinated if the pollen tube size was larger than
the diameter of the grain [40]. The experiments were carried out according to a completely
randomised design with four replicates.

2.6. Pollen Morphology

The morphology of the pollen was investigated using Field Emission Gun Electron
Scanning Microscopy LEO 1525 ZEISS (Zeiss, Jena, Germany) after the pollen deposition
on conductive carbon tape and metallisation with chromium (8 nm).

2.7. Statistical Analysis

Graph Pad Prism 6.03 software for Windows (La Jolla, CA, USA) was used for sta-
tistical tests. For the variance assumptions, different tests were conducted. In partic-
ular, homogeneity of variance was assessed by Levene’s test and normal distribution
by D’Agostino-Pearson omnibus normality test. The obtained results are expressed as
mean values ± standard error of the mean (SEM). The significance of differences was
analysed with Fisher’s least significant differences test after analysis of the variance ac-
cording to the 2-way split-plot design with complete randomisation with temperatures as
the main plot and the treatments as sub-plot. Differences with p < 0.05 were considered
statistically significant.

3. Results
3.1. Scanning Electron Microscopy Analysis of Olive Pollen

Olive pollen grains incubated in vitro at 20 (Figure 1A) and 40 ◦C (Figure 1B) for 62 h
were analysed by Field Emission Scanning Electron Microscopy (FE-SEM).
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Figure 1. FE-SEM images of olive pollen incubated at 20 (A) and 40 ◦C (B) for 62 h.

The two populations showed no differences in size and shape, while differences
appeared at high magnification (50 K×) in the sculpture of the outer pollen wall. In
particular, the network of the reticulum showed a lower number of external elements
(granules) in the pollen incubated at 40 ◦C than in that incubated at 20 ◦C (Figure 1). Images
of pollen incubated at 30 ◦C were similar to those incubated at 20 ◦C (data not reported).

3.2. Ca2+-Cytosolic ([Ca2+]c) Changes in Olive Pollen in Heat Stress

The effects of Se-met, H2O2, and Se-met + H2O2 were studied on pollen incubated
in vitro at 20, 30, and 40 ◦C, investigating Ca2+-cytosolic (∆[Ca2+]c). The ∆[Ca2+]c increased
with Se-met, H2O2, Se-met + H2O2, mostly at 20 ◦C, less at 30 ◦C, and even less at 40 ◦C.
Se-met and H2O2 individually increased Ca2+-cytosolic, but they did not show an additive
effect when both were present in the incubation medium (Figure 2).
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Figure 2. Changes in Ca2+-cytosolic (∆[Ca2+]c) in olive pollen incubated at 20, 30, and 40 ◦C, in
the presence of Se-met (3.4 µM), H2O2 (10 mM), and Se-met (3.4 µM) + H2O2 (10 mM). Values are
expressed as means ± SEM. Different letters indicate statistically significant differences (p < 0.05).

3.3. Ca2+-Entry in Olive Pollen in Heat Stress

The effects of Se-met, H2O2, and Se-met + H2O2 on Ca2+-cytosolic were studied on
pollen incubated at 20, 30, and 40 ◦C, with the addition of 1 mM CaCl2 in the incubation
medium. The entry of extracellular Ca2+ (Ca2+-entry) was tested by monitoring the increase of
∆[Ca2+]c. Under basal (control) conditions, Ca2+-entry was similar in pollen incubated at all
three temperatures. In contrast, Se-met promoted the extracellular Ca2+-entry, while the effect
of H2O2 was to reduce the Ca2+-entry. Finally, Ca2+-entry returned to values similar to the
basal conditions when the H2O2 was added to the pollen pre-treated with Se-met (Figure 3).
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Figure 3. Ca2+-entry in olive pollen incubated at 20, 30, and 40 ◦C, in basal conditions (control), in the
presence of Se-met (3.4 µM), H2O2 (10 mM), and Se-met + H2O2 and CaCl2 1 mM in the incubation
medium. Values are expressed as means ± SEM. Different letters indicate statistically significant
differences (p < 0.05).
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3.4. Germination of Olive Pollen Subjected to Heat Stress

Pollen collected from olive trees was subjected to heat stress. As a result, marked
reductions in the germination rate were recorded compared to the control. In particular,
samples incubated at 40 and 30 ◦C showed significant reductions in the germination of
about 80% and 20%, respectively, compared to the control pollen. In addition, hydrogen
peroxide strongly affected pollen germination, reducing it by about 90% at all three tem-
peratures investigated. On the contrary, Se-met positively influenced pollen germination,
increasing it in samples subjected to heat stress and oxidative stress (H2O2—Figure 4).
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3.5. Time-Course of High Temperature on Pollen Germination

Prolonged heat stress at 40 ◦C significantly influenced the germination rate. In particu-
lar, after 24–48 h and 62 h of incubation at 40 ◦C, reductions of 75% and 80% were observed
in control samples, respectively. Furthermore, the treatment with H2O2 severely reduced
the capacity of pollen to germinate, which, in addition, showed no measurable fluctuations
in the exposure time to high temperatures. In contrast, the treatment with Se-met improved
the germination rate when the samples were subjected to thermal (40 ◦C) and oxidative
stress (H2O2), regardless of the incubation time (Figure 5).
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Values are expressed as means ± SEM. Different letters indicate statistically significant differences
(p < 0.05).

4. Discussion

Adverse environmental conditions and abiotic stresses caused by global warming
can lead to a progressive decrease in crop production [1,6]. Among the most impactful
environmental stresses on crops, heat can play a detrimental role for plants. The magnitude
of the effect of this stress on crops depends on the duration, fluctuations, and intensity of
temperatures exceeding the optimal values for plant growth conditions [9].

4.1. Morphological Investigations in Olive Pollen Grains

In this work, to simulate the effects of heat stress on olive pollen, samples were
incubated in vitro at high temperatures (30 and 40 ◦C), and the results were compared to
those obtained for control samples (20 ◦C). The effect and consequences of heating were
assessed by analysing pollen morphology, Ca2+-cytosolic, and germination.

SEM analyses were carried out on pollen subjected or not to heat stress, as morpho-
logical alterations could influence pollen germination, olive tree fertilisation, and fruit set
process [41]. The morphological investigations revealed changes in the sculpture of the
outer wall of pollen incubated at 40 ◦C, but not in its size and shape. In quinoa, although
no morphological differences were found in the pollen surface between heat-stressed and
controls, the pollen wall thickness (intine and extine) increased due to thermal stress [42].

4.2. Fluctuations of Ca2+-Cytosolic in Olive Pollen under Heat Stress Conditions

Ca2+-cytosolic and germination were the parameters examined under thermal stress
conditions, as the temperature can strongly influence them. However, numerous studies
have shown that maintaining proper Ca2+-cytosolic levels can promote pollen germination
and tubules formation [11,18,19]. For these reasons, in this work, Ca2+-cytosolic in pollen
was measured using the “Ca2+ add-back” protocol [43]. In this respect, our experiments
allowed us to discriminate increases in cytosolic Ca2+ due to the release of Ca2+ from
intracellular stores from those resulting from the extracellular ion entry. In addition, as high
temperatures can cause numerous changes in plant physiology and lead to increased ROS
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production [9], it seemed rational to evaluate the individual and combined effects of thermal
and oxidative stress, the latter simulated by the treatments with hydrogen peroxide.

4.3. Effects of Se-Met in Ca2+-Cytosolic during Heat and Oxidative Stress

Preceding studies have suggested the use of selenium in its organic form as Se-met
due to its protective role against oxidative stress and its efficacy in maintaining Ca2+

homeostasis and olive pollen germination [27,28]. Furthermore, it should be noted that
the other reason selenium has been used in this organic form is that it is less toxic than the
inorganic forms. (Na-selenate and selenite) [27,28].

Our experiments showed that high temperatures, namely at 30 and 40 ◦C, attenuated
the effects of H2O2 on the changes of Ca2+-cytosolic, limiting the release of the stored
element. Therefore, these results highlight that high temperatures improved the tolerance
threshold for Ca2+ agonists, represented in this work by hydrogen peroxide. This was
presumably due to the activation of antioxidant defences in response to high temperatures.
In line with this, it has been documented that some antioxidant activities can be activated in
pollen during environmental stress and can maintain cellular redox homeostasis, resulting
in improved germination [44,45]. Moreover, this study showed that the treatment with
Se-met restored Ca2+ homeostasis by counteracting the adverse effects of H2O2 at all the
temperatures investigated. This action is considered beneficial as increases in Ca2+-cytosolic
are generally correlated with immediate increases in ROS content, particularly superoxide
anion, the first reactive oxygen species produced under stress conditions [46]. Finally, it
should be mentioned that Se-met, administered alone during heat stress, prevented alter-
ations in Ca2+-cytosolic, thus indicating that the compound mentioned above did not lose
its antioxidant properties. In particular, these results align with those of Del Pino et al. [28],
who highlighted the beneficial effects promoted by Na-selenate in preventing the onset of
oxidative stress in internal pollen stores.

4.4. Effects of Se-Met on Olive Pollen Germination Subjected to Heat Stress

Numerous studies have reported that damage to reproductive tissues exposed to
high temperatures leads to reduced productivity, yield, and crop quality [5,14,15]. Our
experiments showed that high temperatures strongly affected the germination of olive
pollen, which drastically lost performance. In fact, the pollen germination rate was reduced
by 80% at 40 ◦C and 20% at 30 ◦C. Heat stress can reduce pollen viability and cause poor
fertilisation; in particular, pollen viability during development is severely compromised
if the temperature exceeds 25/35 ◦C [47]. In addition, our experiments showed that
H2O2 strongly reduced the pollen germination at all the temperatures studied, whereas
Se-met, when administered in combination with the oxidant, reversed its negative impact
on pollen germination. Finally, when administered alone to pollen, Se-met counteracted
the detrimental effect of heat stress at 40 ◦C. The stimulating effect of Se-met on pollen
tolerance to abiotic stresses has already been documented. This compound essentially acts
as a ROS scavenger, thus preventing oxidation-related alterations of Ca2+ channels [27].
This beneficial effect is significant for its potential consequences in agriculture, as several
abiotic factors that can lead to ROS accumulation can influence pollen germination [27].

4.5. Effect of Se-Met on Pollen Germination in Time-Course Experiment of Heat Stress

Time-course experiments, in which the temperature was maintained at 40 ◦C for all the
treatments, showed that thermal stress strongly impacted germination. In addition, pollen
germination decreased further, regardless of the treatment applied, when the exposure time
was extended to 62 h. However, Se-met was very effective in counteracting the negative
impact of both high temperature and H2O2, and this beneficial effect may be related to the
ability of this active compound to improve the oxidative status of pollen [27].
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5. Conclusions

The results reported in this study demonstrate the protective role of Se-met in pollen to
cope with heat stress, as evidenced by increased germination and improved Ca2+ homeosta-
sis. Indeed, both high temperature and oxidative stress affected pollen Ca2+ signal but in
different ways. Heat stress reduced the response to Ca2+ agonist stimuli, whereas oxidative
stress increased Ca2+-cytosolic by prompting the release of the ion from internal stores
and depressing its entry. In contrast, Se contributed to the restoration of Ca2+ homeostasis
by enhancing the Ca2+-entry mechanism in both the abiotic stresses. The latter condition
is necessary for the activation of the germination process. In light of the above, we have
shown that Se-met is a possible candidate for improving heat tolerance in olive pollen.
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