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Abstract: Proximity sensing approaches with a wide array of sensors available for use in precision
viticulture contexts can nowadays be considered both well-know and mature technologies. Still,
several in-field practices performed throughout different crops rely on direct visual observation
supported on gained experience to assess aspects of plants’ phenological development, as well as
indicators relating to the onset of common plagues and diseases. Aiming to mimic in-field direct
observation, this paper presents VineInspector: a low-cost, self-contained and easy-to-install system,
which is able to measure microclimatic parameters, and also to acquire images using multiple
cameras. It is built upon a stake structure, rendering it suitable for deployment across a vineyard.
The approach through which distinguishable attributes are detected, classified and tallied in the
periodically acquired images, makes use of artificial intelligence approaches. Furthermore, it is
made available through an IoT cloud-based support system. VineInspector was field-tested under
real operating conditions to assess not only the robustness and the operating functionality of the
hardware solution, but also the AI approaches’ accuracy. Two applications were developed to
evaluate VineInspector’s consistency while a viticulturist’ assistant in everyday practices. One was
intended to determine the size of the very first grapevines’ shoots, one of the required parameters of
the well known 3–10 rule to predict primary downy mildew infection. The other was developed to
tally grapevine moth males captured in sex traps. Results show that VineInspector is a logical step in
smart proximity monitoring by mimicking direct visual observation from experienced viticulturists.
While the latter traditionally are responsible for a set of everyday practices in the field, these are
time and resource consuming. VineInspector was proven to be effective in two of these practices,
performing them automatically. Therefore, it enables both the continuous monitoring and assessment
of a vineyard’s phenological development in a more efficient manner, making way to more assertive
and timely practices against pests and diseases.

Keywords: precision viticulture; grapevine downy mildew; pest count; Scaled-YOLOv4; Internet
of Things

1. Introduction

Decision-making in Precision Agriculture (PA) everyday practices is progressively
becoming more reliant on data, which can be periodically acquired from both environment
and crop alike. Indeed, knowing the value of parameters that may have some bearing in
crops’ phytosanitary condition and their development throughout a season, but that also
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enable a characterisation on both spatial and temporal variabilities with different degrees
of granularity, can only be considered a great asset toward sustainable PA practices.

Data is usually acquired through remote and/or proximity sensing. Remote sensing
data consists mostly of aerial imagery acquired by sensors that are coupled to one of three
platforms: satellites, manned aircrafts and unmanned aerial vehicles (UAVs). Both sensors
and platforms enable a multitude of application scenarios: while the former are able to
acquire several types of data on different spectra ranges—e.g., RGB, near-infrared (NIR),
thermal, multispectral, hyperspectral, LiDAR, ground penetrating radar (GPR)—, the lat-
ter provide options with regard to coverage, autonomy, cost, payload capacity (whose
restrictions have been largely put aside due to the miniaturisation of sensors), geographic
and atmospheric contexts, detail level, access, and the temporal frequency of data acqui-
sition. It is fair to recognise the meaningful role that unmanned aerial systems (UAV +
sensor + ground station) have had in PA in the last few years. Conversely, proximity
sensing data derives from in-field sensors, able of acquire agrometeorological parameters’
samples—e.g., temperature, relative humidity, solar radiation, precipitation—, but also
of those that characterise plants’ development, through the so-called phytosensors—e.g.,
dendrometers, granier probes to estimate sap flow. Deploying electronics in both harsh
and remote environments has its own set of challenges, such as power, robustness, data
transmission and granularity [1]. While the latter directly affects cost—more spatial detail
usually means placing additional sensors—, power requirements are a direct consequence
of the number and type of parameters to be measured, but also from the temporal detail
intended (i.e., more readings mean more power).

Either in remote or in proximity sensing, image sensors have been proven to provide
rigorous qualitative and quantitative assessments of plants’ phenological development, as
well as of their context [2,3]. Indeed, valuable information can be extracted from this im-
agery, including plants’ phenological status—upon which many cultural practices are based
of—, and morphological/other changes that may indica the existence of several anomalies,
such as nutritional deficiencies [4,5], diseases manifestation [6], thermal stress [7], water
stress [8], among others. However, there are still many contexts—geographical, environ-
mental, crop-related, socio-economic and technological—where the trained human eye is
critical in evaluating parameters in the field, so simply technological approaches are not
yet able to mimic a trained human eye. Therefore, image sensors are capable of acquiring
data that can potentially become useful in training automated approaches to measure
parameters traditionally assessed by the trained human eye.

Viticulture has been steadily knowing significant technological advances from research
& development work done worldwide [9]. Whereas the technology integration rate could be
better in Precision Viticulture (PV), both the food and wine markets remain very relevant in
the world’s economy and social structure. However, viticulture continues to be perceived
as largely traditional and reliant on human’s experience has a support to the decision-
making process. All things considered, using image sensors able to capture different
spectra coupled together with monitoring systems dully scattered in the field can be
particularly relevant in vineyard management practices. In fact, they will enable the
training of artificial intelligence (AI) systems capable of mimicking the human eye and
therefore of somehow incorporating acquired experience. This approach is presented herein
and it will change today’s reality in viticulture regarding periodic trips that experts need
to do to the vineyard—e.g., in the harvesting season, a daily in situ assessment is needed
to determine following day operations—when just one observation could eventually be
enough to support the decision-making process. Some examples of practices that require an
expert’s direct and frequent observation in the vineyard are the budding of vines, checking
for signs of diseases, assessing vines phenological status and also their evolution.

Current technological development in electronics, communications and embedded sys-
tems provides solutions to master both in-field data acquisition processes and devices [10].
Furthermore, these solutions are compatible with an autonomous operation, have a low
energy consumption that enables them to function by harvesting power from the environ-
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ment, can be integrated in the landscape so that the impact in both the culture and also in
the cultural practices is minimised, and often present a very low cost [11]. These solutions
can incorporate image sensors enabling the assessment of parameters that would otherwise
be very difficult to quantify. VineInspector system is presented in this paper. It is based on
a low-cost, autonomous single-board computer (SBC), which can easily be installed in a
vineyard. It has a set of RGB cameras whose sole purpose is to enable the early detection
of vine diseases incidence. Two example applications were developed within this study:
downy mildew incidence risk calculation and the counting of grape moth, captured in
insect traps. Image analysis through AI is used in both applications. The potential risk
of downy mildew infection occurrence can be estimated through the automatic detection
of vines’ phenological state [12]—specifically sprouting, as grapevine shoots’ size is key
to estimate the potential risk of downy mildew infection—based on the well-known 3–10
rule [13]. The rule is called 3–10 because it assumes that primary infections are likely to
happen when the following conditions occur simultaneously: air temperature is equal or
higher than 10 °C during the previous 24–48 h, at least 10 mm of continuous rain has fallen
during the previous 24–48 h, and grapevine shoots measure at least 10 cm long [14]. As
for grape moth, the analysis, classification and tally of insects that contain a pheromone
to attract grape moth males and that were captured in traps, enable an automatic risk
assessment and the triggering of both preventing and mitigating interventions.

The paper is organised as follows: Section 2 presents the state-of-the-art of image
classification with regard to grapevine downy mildew detection and prediction, as well as
to the evolution of trapped insects automatic tally. Section 3 has a detailed description of
Vineinspector’s hardware and software components. Moreover, the methodology followed
to implement an experimental AI-based classification engine is also presented, together
with the two case-study applications developed. Section 4 presents the results and a
detailed discussion. Lastly, Section 5 finishes the paper with some conclusions drawn from
practical infield evaluations and presents future work.

2. Image Classification

Having still images or video captured by in-field data acquisition devices represents
(i) an added cost of equipping them with cameras; and (ii) the ability to transmit larger
data files to a digital structure locate elsewhere. The upside is that crops’ dynamics may
be monitored using proximity image-based approaches, provided that acquired images’
features are (automatically) detected and classified. While well-known computer vision
techniques—such as feature descriptors for object detection—may be used to this purpose,
they mostly require that important features are to be chosen in each image. Given both
the complexity and heterogeneity present in in-field crop-related images—e.g., there are
not two plants that develop exactly the same way—, together with the environmental
context—e.g., lighting conditions—the number of classes to classify is bound to increase.
Therefore, image’ features classification becomes more and more cumbersome, requiring
more resources to be accomplished in a timely manner. An end-to-end learning concept
was introduced with Machine Learning (ML). Indeed, the most common approach in PA
(supervised learning) is to have a set of annotated images—where different object classes
that may be present in each image are outlined—processed by learning algorithms to train
neural networks. After that, the latter should be capable of automatically classifying these
same object classes in other images. Since each solution is trained rather than programmed,
applications such as image classification, semantic segmentation and object detection have
become faster, more accurate, highly flexible and require less intervention from experts.

Image classification in PA is currently being extensively researched and has already
some applications deployed. However, this paper deals specifically on proximity images
acquired by in-field data acquisition devices to support PV practices. Both case studies—
one to predict primary downy mildew infection by determining the size of the very first
grapevines’ shoots (one of the required parameters in the 3–10 rule); and the other to tally
grapevine moth males captured in sex traps—address key issues in vineyard management.
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As such and for the sake of conciseness, this section will only present published work that
is somewhat related with these two case studies.

2.1. Downy Mildew

Downy mildew is a disease originating in the American continent and accidentally
brought to Europe in the 1870s, through French territory [15,16]. It spread quickly and
is now the most destructive pathogen in wine growing regions with rainy springs/sum-
mers [17]. Downy mildew is caused by the Plasmopara viticola (Berk. & M.A. Curtis)
fungus [18]: an endoparasite that develops inside grapevine’ organs and can infect virtually
each and every green organ, particularly the shoots, leaves, inflorescences, tendrils and
even the petioles [19,20]. With favourable weather conditions, this disease can cause heavy
losses for grape growers. Indeed, in extreme situations it can lead to a total production
loss [21]. Early detection is not simple, given that observable symptoms usually appear
7 to 10 days after the infection. However, it is key in controlling the spread of downy
mildew [22]. This is the main reason why the potential risk of infection is determined by
government agricultural agencies in many countries, through prediction models that are
based on weather forecasts and in data acquired from meteorological stations [23–25]. Mon-
itored regions’ variability associated with data granularity coming from weather stations,
makes forecasts often less accurate and timely. Furthermore, to the best of our knowledge
all readily available monitoring techniques make use only common agrometeorological
data, such as air temperature and accumulated precipitation. They may also include data
from leaf wetness sensors, among others. However, the beginning of the vegetative cycle—
bud break—varies in different agrometeorological contexts, as well as with the grapevines’
varieties. Indeed, it is usually detected by in-field direct visual observation, even though it
can be predicted considering the evolution of climatic conditions.

This section reviews the most relevant published research work on the prediction
and/or detection of downy mildew in crops, especially those that use images to assess the
existence of early symptoms of the disease.

The 3–10 rule is used by Pérez-Expósito et al. [14,26] in their VineSens system: a
platform to provide decision support in vineyard management. This work is relevant
mainly because it provides further validation on the use of the 3–10 rule in downy mildew
risk assessment. VineSens relies on a wireless sensor network made up of autonomous
sensor nodes that acquire and store meteorological data. Through this data and using
epidemiological models—specifically the 3–10 rule—the system alerts when the downy
mildew infection risk reaches a certain threshold and therefore preemptive measures must
be taken. Resorting to image processing, Sobolu et al. [27] developed a technique for
the automatic detection of downy mildew. Segmentation techniques were applied in
various colour spaces and the experimental results showed that in HSV colour space the
disease was quite correctly recognised. The authors state that this technique can detect
leaf symptoms even in the onset phase and is therefore able to help prevent the spread of
infection throughout the whole vineyard.

Both Lloret et al. [28] and Kim et al. [29] approaches rely on images acquired from
fixed spots within the field. The former presents a wireless sensor network in which each
node has the capability not only to acquire images, but also to detect any abnormal state in
plant’ leaves through image processing techniques. If a deficiency is identified, the sensor
node notifies the farmer by sending a message. Although no images are transmitted to
outside the sensor nodes, this approach resorts to proximity images and local processing to
extract useful information for decision support systems. Indeed, the authors suggest that it
will be possible to add a database with images of symptoms, together with a trained neural
network to provide accurate diagnosis from a local perspective. As for Kim et al. [29], the
authors have developed an automatic real-time disease monitoring system, for the early
detection of downy mildew symptoms in onions. Images are acquired using a PTZ (pan,
tilt, zoom) camera and leaves’ infected regions are identified by using a DNN (deep neural
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network) model, based on the VGG16 architecture. Hence, both works enable to identify
the infection as soon as it onsets on leaves’ color and/or shape.

As for Abdelghafour et al. [30,31], they studied the potential of using proximity colour
images to detect downy mildew symptoms in grapevines. Images are acquired through
an in-field imaging sensor coupled to a tractor. Furthermore, an algorithmic strategy for
the detection of various forms of leaf symptoms in high-resolution proximal images is also
presented. The authors concluded that this approach enables both the reliable detection of
downy mildew symptoms and is able to estimate affected tissues’ area.

2.2. Insect Tally

A possible way to deal with some crop’ pests is by installing pheromone diffusers in
fields. They work by saturating the nearby atmosphere with pests’ female sex pheromones,
thus creating sexual confusion in males. This technique aims at mislead the adult moth
male by hindering chemical communication between sexes, therefore preventing moth
females from laying fertile eggs and significantly reduce pests impact on crops [32]. These
pheromones are used in sticky traps, where males are captured.

Therefore, traps yield information about the timing of the appearance and activity
of certain pests and auxiliaries, allowing treatments to be carried out at the right time.
However, the tally of captured insects is still mainly done visually through field work, which
is time consuming, expensive and can always introduce delays in the decision-making
process. There are a few more papers to address in this application, when comparing with
downy mildew detection and/or infection risk prediction.

Espinoza et al. [33] proposed an approach to detect and monitor two of the most
aggressive pests affecting tomato-producing greenhouses on southern Spain: the whitefly
(Bemisia tabaci—Gennadius, 1889) and thrips (Frankliniella occidentalis—Pergande, 1895).
Both are caught using sticky traps. This detection and monitoring is carried out based
on the combination of image processing and artificial neural networks. Digital images of
sticky traps are obtained using an image acquisition system and the detection of objects
in the images, segmentation and estimation of morphological and colour properties are
performed by an image processing algorithm for each of the detected objects. Classification
is performed using a feed-forward multi-layer artificial neural network. The proposed
whitefly identification algorithm achieved an accuracy of 96% and thrips identification an
accuracy of 92%. Song et al. [34] proposed a method that can be applied to noisy images
from sticky traps to identify and classify three insect species—Harpalus affinis (Schrank,
1781), Sternolophus rufipes (Fabricius, 1792), and Hydrophilidae spp. (Latreille, 1802)—, also
enabling the tally of each species’ individuals. The authors’ aim was not to propose a
method that stood out from the existing ones with regard to general performance, but
rather to develop a method that had the best performance for the considered species. These
species have the particularity that individuals’ body reflects light, which is key to the
insect identification process. Individual insects are distinguished through the light points
created by the light reflection on their backs. Accuracy was of 99.47%, 96.41% and 89.91%
when identifying Harpalus affinis, Sternolophus rufipes, and Hydrophilidae spp., respectively.
Ramalingam et al. [35] proposed a remote and real-time monitoring system for insect sticky
traps, as well as an insect detection method using Deep Learning (DL) techniques. The
monitoring system consists of end nodes with a smart wireless camera oriented to the
sticky trap. Insects detection and classification is done by using a Faster Region-based
Convolutional Neural Network (R-CNN) ResNet-50 that was trained using images of
built environment insects and farm field insects. According to the experimental results,
the authors found that the proposed system can automatically identify insects present
in the traps with an average accuracy of 94%. Liu et al. [36] featured a new end-to-end
convolutional neural network-based automatic pest detection architecture called PestNet.
It consists of three main parts: automatic resource extraction is performed using a channel-
spatial attention (CSA) module; the second part is called the region proposal network (RPN),
which is adopted to provide region proposals such as positions of potential pests based
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on feature maps extracted from images; lastly, the third part consists of using a position-
sensitive score map (PSSM) that was used instead of fully connected layers to reduce the
classification computational cost. In addition, the authors also applied contextual regions
of interest (RoIs) as contextual information of pest characteristics to improve detection
accuracy. The authors tested this approach using a 10-year dataset they created (Multi-class
Pests Dataset 2018—MPD2018) and the experimental results show that PestNet performs
well in detecting multi-class pests, achieving an average accuracy of 75.46%. Ding et al. [37]
proposed an automatic detection system based on DL for identifying and counting pests in
images obtained from field traps. The pest detection method is based on a convolutional
neural network (ConvNet), which offers the advantage of being accurate and fast, requiring
minimal data pre-processing. Qualitative and quantitative experiments demonstrate the
effectiveness of the proposed method on a codling moth dataset. Compared to other insect
detection approaches, this method does not use pest-specific engineering, which allows it
to be easily extended to other species and environments.

These last few works are even more closely related to VineInspector. Rustia et al. [38]
developed and tested a system based on a wireless sensor network that uses camera mod-
ules and environmental sensors to simultaneously and continuously acquire insect traps
images and measure temperature, relative humidity and light intensity in greenhouses.
Each wireless sensor network node is based on a Raspberry Pi 3, to which a Raspberry Pi
Camera v2 module and add-on environmental sensors are connected. An image processing
algorithm was developed to automatically detect and count insects present in sticky traps
with 93% average temporal detection accuracy, when compared with manual counting. The
developed processing algorithm runs on a remote server and aims to segment objects from
the background and filter non-insect objects. For this, the authors use colour space change
and colour segmentation techniques to isolate potential insects. Then, a Support Vector
Machine (SVM) classifies data to verify if it is actually an insect or not. Bakkay et al. [39] de-
veloped a method to detect, recognise and tally insects, more precisely European grapevine
moth (Lobesia botrana, Denis & Schiffermüller), in trap’ images. This approach aims to
analyse the tally’s evolution to adapt treatments and thus avoid whenever possible the
application of pesticides. The segmentation process involves two main contributions: (i) the
use of an adaptive k-means clustering that is able to eliminate different types of noise,
i.e., artefacts or non-insect elements; and (ii) the use of a region merging algorithm for
separating touching insects. The authors state that quantitative evaluations show that the
proposed method can detect insects with higher accuracy than other commonly used ap-
proaches. Zhong et al. [40] presented an image-based system to detect, classify and tally six
species of flying insects: bees, flies, mosquitoes, moths, chafers and fruit flies. The system
is composed of a yellow sticky trap installed in the insect monitoring area, which in turn is
observed by a camera that collects images in real time. The detection and coarse counting
method is based on YOLO object detection system. With regard to the training stage, it
was carried out using a single class containing all the six insect species. Classification
and fine counting of insects was performed using a SVM. Based on the YOLO and SVM
combination, the need for training data is minimised. This system has been implemented
on a Raspberry Pi and test results can be sent to an agricultural monitoring service platform,
which is the basis for providing accurate prevention and treatment methods based on
a combination of pest information and other environmental data. An average counting
accuracy of 92.50% and an average classification accuracy of 90.18% were obtained, thus
showing a promising performance.

In Lima et al. [41], Preti et al. [42] and Júnior et al. [43] several other works developed
in the scope of insects identification, classification and tally in traps can be found.

This small set of reference research work does unequivocally show that the use of
proximity images in PA is swiftly progressing. Furthermore, image classification is being
done by using different artificial intelligence approaches. The next section will present
in detail VineInspector: a system designed to be able to capture images by multiple local
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cameras, acquire agro-meteorological data, and use an artificial intelligence approach with
this heterogeneous data to extract valuable knowledge for PV practices.

3. The VineInspector

This section presents the VineInspector system in all it’s dimensions: (i) hardware
setup to manage, acquire and transmit data from both sensors and cameras; (ii) software
to self-manage and to handle acquired data; and (iii) the interaction with a remote cloud-
based platform (mySense [44]) through web-services, whose aim is to classify field-acquired
images. The experimental setup and the two case-study applications are also presented.

3.1. Hardware Architecture

VineInspector was built around a low-cost Single Board Computer (SBC) Orange Pi PC
Plus, OPi, (Shenzhen Xunlong Software Co., Ltd., Shenzhen, China) and a shield specifically
designed to accommodate auxiliary power control circuits for the entire system, as well as to
provide a GSM/GPRS 2G/3G connection with a remote cloud-based platform. Furthermore,
a 3S 18650 lithium battery charger and balance protection board (Sure Electronics, George
Town, Malaysia) is used to recharge three 3000 mAh batteries with energy harvested from
the sun through a 10 W solar panel. A simplified hardware diagram is presented in Figure 1.

Figure 1. VineInspector’s hardware setup architecture.

The shield has a low-power microcontroller (PIC32MM0064GPL028 from Microchip
Technology Inc., Chandler, AZ, USA) responsible for managing OPi’s power supply. Com-
munication between the shield and the OPi is done through a serial communication inter-
face (RX/TX). To ensure that the OPi is never left permanently on, a watch-dog timer (WDT)
function has been implemented in this microcontroller. The WDT timeout is reset always
that the OPi changes the state of a control pin. If this change does not occur within 20 s, the
WDT causes a system restart by a power cycle. With regard to communication with the
cloud-based remote platform, the shield uses a GSM/GPRS 2G/3G Telit GL865-QUAD-V3
modem (Telit Wireless Solutions, London, UK). As for local connections, an IEEE 802.11x
(Wi-Fi) network is also available. Through this local network, VineInspector can both be
configured and/or have it’s data accessed, via a smartphone app. This connection is turned
on and off by a push button on the shield (not shown in Figure 1).

Orange Pi PC Plus was chosen because it is one of the best price/features ratio SBCs.
Moreover, it also includes an embedded Multi-Media Card (eMMC) memory, where the
entire file system can be kept. This solution makes it less vulnerable to failures such as those
that occur with the traditional microSD flash memory card and corresponding mechanical
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contact/spring interface. One last reason to have chosen OPi is that it has a sleep mode that
saves power when not in use. To extend OPi’s capability to interact with different types of
sensors and also to be able to have them acquire data during the long periods in which OPi
is turned off, an external data acquisition system—SPWAS’21—was used. It is important
to mention that this low-cost and low-power system has a fully OPi-compatible serial
interface and was developed in a previous work. It can be found at [45]. With regard to
image acquisition, low-cost USB cameras are used. Each has associated an image channel.

3.2. Software Architecture

VineInspector has three software components worth to mention: (i) firmware embed-
ded in the shield’s microcontroller, which ensures the system’s correct operation; (ii) OPi’s
software that fundamentally enables data gathering, temporary storage and transmission;
and (iii) remote cloud-based platform application, developed based on an AI approach. It
enables the classification of visual elements present in the transmitted images. These three
software components are succinctly explained in the following subsections.

3.2.1. Shield Microcontroller’s Firmware

The shield’s microcontroller is essentially used to manage OPi’s power supply at
regular intervals or at a specific time. To this end, it has a real-time clock that is programmed
by the OPi. Therefore, this very low-power consumption device is continuously powered
on. When the microcontroller boots up for the first time, it enables OPi’s power supply long
enough to have it establish an internet connection. Then, it sends the correct date/time
to the shield, via the TX/RX serial connection. Whenever OPi’s software finishes doing
it’s tasks, it sends a command to the microcontroller instructing it to turn off the power. It
will be turned on again only at the next pre-set time. Firmware’s flowchart is illustrated in
Figure 2.

Figure 2. Shield microcontroller’s firmware flowchart.

3.2.2. Opi’s Software

As previously stated, VineInspector is responsible for gathering data, storage it tem-
porarily, and transmit it to a remote cloud-based platform. A script in Python—started
at boot time—automatically executes this process. Typically, OPi is powered up at pre-
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programmed occasions in the shield’s microcontroller, as already mentioned. Therefore, as
soon as the system is started, an internet connection to the remote cloud-based platform is
established using the shield’s 2G/3G modem. Then, instructions are requested by using the
remote platform’s API. This request returns the remote platform’s date and time, as well as
any configuration commands that may be queued for sending. The specific date and time
received are used to set this parameters on both the OPi and on the shield’s microcontroller.

As soon as the date and time setting process is complete, the image acquisition
procedure by the available cameras begins. Images are then stored locally and registered
into a local mySQL database. SPWAS’21 is the external device responsible for acquiring
data from the remainder available sensors. It operates independently. The process to
retrieve this data involves a simple download command from the flash memory. Then,
data—both numeric and images—are sent to the remote cloud-based platform through an
HTTP POST request.

Request’s body has a JSON data envelope or the image data, base64 encoded, depend-
ing on the type of data being sent. The HTTP POST request header may optionally include
Global Positioning System (GPS) coordinates to update device’s location. All requests are
acknowledged by the cloud-based platform. If the acknowledgement message is received,
data is deleted from the local database. Otherwise, data will be re-transmitted at the
next opportunity.

When data exchange between VineInspector and the remote cloud-based platform
(mySense) ends, the python script will signal the shield’s microcontroller that a system
shutdown will soon follow and that therefore the power can be shut-off within just a few
seconds. VineInspector is left idle—with a very reduced power consumption—and will
wake up upon the shield’s microcontroller real-time clock’ (RTC) signal. A simplified OPi’s
software flowchart is presented in Figure 3.

Figure 3. OPi’s software flowchart.

3.2.3. Remote Cloud-Based Platform

Whilst the use of in-field sensors’ data in a wide array of applications for AP is firmly
established and is well-known, VineInspector’s contribution lies in it’s ability to capture
images from multiple channels, classify them and automatically extract relevant features.
This subsection describes with detail the procedure followed to classify and extract elements
of interest from acquired images.

mySense environment (https://mysenseapi.utad.pt, accessed on 17 May 2022) is an
IoT platform specifically tailored to support a range of different applications and services
within the scope of PA/PV practices [44]. Figure 4 depicts the sequence of steps followed
each time an image is sent to mySense by a VineInspector. It should be noted that in each
request the HTTP POST identifies VineInspector’s imaging channel, thus enabling the

https://mysenseapi.utad.pt
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possibility to effectively choose which classification model should be used. Therefore, each
and every imaging channel will have associated a classification model in mySense.

The main purpose of this work revolves around the VineInspector as a whole system,
able to acquire both in-field sensor data and also crops’ proximity images that will support
visual inspection applications. Whilst two case-study applications were developed to
prove that VineInspector is able to reliably perform in harsh field contexts and obtain
accurate information for viticulturists, there was no special concern about the most proper
AI approaches to use in each situation. Indeed, the suitability, accuracy and general
performance of AI approaches is not the focus of this work. Furthermore, it was already
stated that each imaging channel may have a different AI approach assigned so that every
PA application can reach higher efficiency and accuracy levels. As such, future research
will aim at establishing a relation between PA applications and the most suitable AI
approaches, considering the available dataset, computational resources, communications
and socio-economical contexts in which they are deployed. The common denominator
will be VineInspector. Bearing this in mind, the AI approach chosen to implement the two
case study applications—Scaled-YOLOv4 [46]—resulted not only from previous works,
were it performed well in different situations, but also from the knowledge that it is a more
generic approach that may be used in diverse contexts, with good results. Scaled-YOLOv4
is the new state-of-the-art in object detection and emerged from the YOLOv4 model by
efficiently scaling the network design and scale (width, depth and number of stages in the
convolutional neural network backbone and neck). For now that will more than suffice in
proving that VineInspector is able to render quality information to viticulturists.

Figure 4. Remote cloud-based platform software flowchart.

The training process is more complex, as it involves a dataset that should be as exten-
sive and diversified as possible to improve classification’ accuracy. Looking at Figure 4
flowchart, whenever an image is submitted and classified with the previously trained
model, it is also subjected to a supervision process (knowledge base). This enables increas-
ing the dataset to be used in a subsequent training process and also of the dataset that will
evaluate accuracy. In YOLOv4, the classification model is applied to an image at multiple
locations and scales and the image’s high scoring regions are considered detections. The
image is divided into multiple regions and a bounding box prediction is made. Then, the
probabilities for each of these regions are weighed in [47]. This approach yields much faster
classification than traditional R-CNN networks.

3.3. Experimental Setup

A VineInspector equipped with three cameras—one pointing to a grapevines’ row
(ELP 2.2MP USB Camera 2.8 mm focal length with water proof case, Shenzhen Technology
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Co., Ltd., Shenzhen, China), another one pointing to a grapevine with greater detail (ELP
2.2MP USB Camera 3.6 mm focal length with water proof case), and the third one inside a
common delta sticky trap (HVBCAM 5.0MP USB Camera with a 160-degree fish-eye lens,
Huiber Vision Technology Co., Ltd., Shenzhen, China)—was placed in a 2 ha Malvasia Fina
(white grape variety) vineyard located at the University of Trás-os-Montes e Alto Douro
(UTAD) Campus, in Vila Real, Portugal (41.286875, −7.735219), as depicted in Figure 5. The
VineInspector device was installed in the vineyard by direct fastening it to one of the bale
stakes and the cameras pointed at the elements of interest. Through its Wi-Fi connection
(activated by a button), it is possible to check the correct position of the cameras using a
specific smartphone application where the images can be accessed in real time. Both the
VineInspector and the two developed applications were assessed over 2021.

(a) (b)

Figure 5. VineInspector installed in a UTAD’s vineyard, located on Campus: (a) the entire sys-
tem, with the common delta sticky trap in foreground; (b) VineInspector’s detail, showing the
upper shield.

VineInspector’s standard operation mode is to have four images acquired by each of
the three cameras throughout the day, in different moments: sunrise, noon, mid-afternoon,
and late afternoon. Each image is then made readily available to viticulturists through
mySense platform.

It is at this stage that artificial intelligence approaches come into play to further process
each image. Automatic classification is then done considering the established requirements
for crop monitoring. Taking the two example applications developed, the aim was to
tally grapevine moth males captured in the sticky trap, and to determine the size of the
grapevine’s shoots to assess downy mildew incidence probability based on the 3–10 rule.
A Scaled-YOLOv4 implementation using PyTorch framework provided by Wong Kin-
Yiu [48] was used for both applications. Training was done on a cloud-based machine
using the Gradient Paperspace platform. This machine is equipped with an octa-core
Intel® Xeon® CPU E5-2623 v4 @ 2.60 GHz, 30 GB of RAM and a NVIDIA Quadro P5000
GPU, with 16 GB GDDR5 memory and 2560 CUDA cores. Mish-CUDA [49], a PyTorch
CUDA implementation of the Mish activation function, was used to run processes on the
NVIDIA GPU.
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3.4. Grapevine’ Shoots Application

An initial dataset of grapevine’ shoots images was built within a time frame in which
grapevines (i) had no shoots growing; (ii) shoots were developing, but their size is still under
10 cm; and (iii) shoots were already developed beyond a 10 cm size. All of these images had
grapevine’ shoots regions annotated and divided into three distinct classes, respectively:
“no_shoots”, “shoots_smaller_than_10”, and “shoots_greater_than_10”. Annotations were
made using Label-Images-Tool [50] that enables to save them in a YOLOv4 compatible
format in .txt files. Figure 6 depicts some examples of grapevines’ shoots images that
resulted from the annotation process.

Figure 6. Grapevine’ shoots images that compose the training dataset: (Top) shoots whose size
surpasses 10 cm; (Middle) shoots whose size is lesser than 10 cm; (Bottom) still no shoots growing.

The artificial intelligence approach was trained based on this dataset, composed of
238 grapevine images. Furthermore, the annotation process rendered 2489 images, from
which 1230 are from shoots smaller than 10 cm, 985 bigger than 10 cm, and 274 of regions
where shoots have not yet grow. Roboflow platform—a development tool for building
computer vision-based applications—was then used to divide the dataset in 70% for train-
ing, 20% for validation, and 10% for testing, to apply data augmentation techniques,
as well as to create three versions of the initial dataset to further assess the impact of
images’ quantity and resolution on the accuracy of both detection and classification pro-
cesses. While one version has the original images with their resolution scaled down from
2592 × 1944 px to 1900 × 1900 px, a data augmentation process was carried out to create
the other two versions. Indeed, it replicated existing training images with transformations
that included different rotations between −5° and +5°, brightness variations between −20%
and +20%, and horizontal flipping and blurring up to 1 px. The result was a total of
3849 images with grapevine’ shoots smaller than 10 cm, 4734 images where they are bigger
than 10 cm, and 982 images without visible shoots at the time. Images’ resolution is the
difference between these two versions: one has the original resolution scaled-down to
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1024 × 1024 px and the other one to 512 × 512 px. It should be noted that whilst the images
that compose the initial dataset have been acquired when all the three classes—“no_shoots”,
“shoots_smaller_than_10”, and “shoots_greater_than_10”—could be represented, to have
grapevines with shoots bigger than 10 cm means that the natural phenological development
dictates that the non-existence of shoots is rarer within that time frame. For that reason
alone, the “no_shoots” class has less images that the other two. Table 1 sums up dataset’
versions data.

Table 1. Grapevine’ shoots initial dataset versions.

Data Augmentation
Techniques

Number of Images
(Total/Training/

Validation/Testing)

Annotations
ResolutionShoots

<10 cm
Shoots
>10 cm

No
Shoots

None were applied 238/167/47/24 1230 985 274 1900 × 1900

Flip: Horizontal
Rotation: Btw. ±5°

Brightness: Btw. ±20%
Blur: Up to 1 px

906/835/47/24 3849 4734 982
1024 × 1024

512 × 512

Two YOLOv4 architectures—YOLOv4-CSP and YOLOv4-P7—were used in five dif-
ferent training studies done with the three versions of the dataset, as described in Table 2.
Besides training with three classes, the cloud-based machine GPU allowed a batch size
of 8 for the dataset versions with 512 × 512 px and 1024 × 1024 px images’ resolution.
As for the version with the 1900 × 1900 px resolution images, only a batch size of 2 was
possible. Furthermore, hyperparameters—e.g., learning rate = 0.01, momentum = 0.938,
decay = 0.0005—were kept at their default values and the number of epochs was set to 500,
since from this value onward precision stabilized.

Table 2. Training studies for grapevine’ shoots detection and classification processes.

Training
Configuration

YOLO
Architecture

Data
Augmentation Resolution Pre-Trained

Weights

4da_512px_csp YOLOv4-CSP Yes 512 × 512 px No

4da_512px_csp_pretrained YOLOv4-CSP Yes 512 × 512 px yolo-csp.weights

4da_1024px_csp YOLOv4-CSP Yes 1024 × 1024 px No

0da_1900px_csp YOLOv4-CSP No 1900 × 1900 px No

4da_512px_p7 YOLOv4-P7 Yes 512 × 512 px No

3.5. Grapevine Moth Males Tally Application

Grapevine moth Lobesia botrana is one of the pests that has a relevant economic impact
in some of the Portuguese wine regions. Hence, it made perfect sense to develop and test
an application capable to detect, classify and tally grapevine moth males captured by field
traps. This was achieved using the same approach described in the previous subsection.
Indeed, a small camera equipped with a fish-eye lens was fitted inside a field sticky trap as
presented in Figure 5a. All acquired images were analysed and every existing grapevine
moth male was dully annotated.

The initial dataset of captured insects is composed of 36 images. After properly
annotated, it yielded 1014 images of grapevine moth males. Again, Roboflow platform was
not only used to divide the dataset in 70% for training, 20% for validation, and 10% for
testing, but also to create a new version of the dataset, by means of a data augmentation
process. Indeed, it replicated existing training images with transformations that included
different rotations between −45 ° and +45 °, varying brightness between −25% and +25%,
exposure variation between −15% and +15%, and blurring up to 0.25 px. This dataset
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version resulted in a total of 146 trap images with a 1024 × 1024 px resolution, where
3239 grapevine moth males were annotated. Figure 7 depicts some examples of grapevine
moth images obtained after the annotation process. Considering that the initial dataset had
yet a reduced number of images, this augmented version was the one used to train the AI
approach. Table 3 sums up dataset-related data.

Figure 7. Grapevine moth males images that resulted from the annotation process.

Table 3. Grapevine moth males augmented dataset version.

Data Augmentation
Techniques

Number of Images
(Total/Training/

Validation/Testing)

Grapevine Moth Males
Annotations Resolution

Rotation: Btw. ±45°
Brightness: Btw. ±25%
Exposure: Btw. ±15%

Blur: Up to 0.25 px

146/135/7/4 3239 1024 × 1024

Training was done considering one class only and using a batch size of 8. As in the
grapevine’ shoots approach, hyperparameters—e.g., learning rate = 0.01, momentum = 0.938,
decay = 0.0005—were also kept at their default values. The number of epochs was set to
500, since precision did stabilised from then on.

Unlike the approach used in the grapevine’ shoots application and considering that
the existing dataset was still quite small, there were no different training configurations
compared. Indeed, the aim was just to validate this approach as an automatic way to
tally grapevine moth males captured in field traps, and assess it’s performance as a viable
VineInspector service. Therefore, training was done using images with a 1024 × 1024 px
resolution. Moreover, YOLOv4-CSP architecture was selected as it was one of which
presented the best overall results in detecting and classifying grapevine shoots, as will be
shown in the results section.

VineInspector acquired images from a coupled field trap between 13 August and 27
September 2021. Each had their grapevine moth males tallied by this application and the
results sent to mySense platform. This rendered them available to users, allowing a remote
monitoring of the tally process evolution.

4. Results and Discussion

This section presents the results from both the case study applications, as well as the
classification algorithm training process evaluation. With regard to the downy mildew
infection prediction application, occurrences—days in which warnings were generated—
during the year 2021 are compared with those issued by Direcção Regional de Agricultura
e Pescas—Norte (DRAPN), an official government entity who is responsible for generating
these type of warnings for the north of Portugal. For the other case study, and as for keeping
tabs on the number of grapevine moth males captured in sticky traps, the application
returned the tallies over the several days in which the a trap was monitored. Finally,
VineInspector device operation is analysed to better characterise the power consumption
profile, as well as data exchange with the remote platform.
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4.1. Grapevine’ Shoots Application

Training assessment was done using a mean Average Precision of 0.5 (mAP@0.5),
precision, recall and F1-score. While Figure 8 depicts the mAP@0.5, precision and recall
curves, Table 4 shows the best results obtained for each training study.

Figure 8. mAP@0.5, precision and recall curves: (Dark blue) 4da_512px_csp; (Green) 4da_512px_
csp_pretrained; (Orange) 4da_1024px_csp; (Light blue) 0da_1900px_csp; (Red) 4da_512px_p7.

Table 4. Assessment results for the different training studies related with grapevine’ shoots detection
and classification.

Training Configuration mAP@0.5 Precision Recall F1-Score

4da_512px_csp 0.78 0.73 0.83 0.78

4da_512px_csp_pretrained 0.80 0.66 0.85 0.74

4da_1024px_csp 0.81 0.75 0.85 0.80

0da_1900px_csp 0.84 0.72 0.90 0.80

4da_512px_p7 0.80 0.68 0.83 0.75
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Results support that image resolution has a direct bearing in each model training
process performance. Indeed, the training studies carried out with the lowest resolution
images (512 × 512 px) where those that had the worst overall performance, even when
resorting to a more complex architecture (YOLOv4-P7). It happens because these lowest
resolution images portrait an highly complex natural environment, where no two grapevine
shoots are similar. As for the training studies in which higher resolution images—1024
× 1024 px and 1900 × 1900 px—were used, they presented the best overall performance
results: “0da_1900px_cps” had both a higher mAP@0.5 and recall with only less 0.03%
precision, when compared with “4da_1024px_csp”. Still, “0da_1900px_cps” precision curve
shows an upward tendency. As such, training it during more epochs may eventually lead
up to have it surpass “4da_1024px_csp” precision value. Lastly, the training study with the
worst performance with regard to precision and F1-score was the one that used pre-trained
weights (“4da_512px_csp_pretrained”). Considering these results, the chosen model to run
with the testing portion of the dataset was the one from “0da_1900px_csp” training study.
Figure 9 shows the detection results in four grapevine shoots images.

Figure 9. Grapevine’ shoots detection and classification results over acquired images.

By automatically identifying grapevine’ shoots measuring more than 10 cm and an en-
vironmental context with an average air temperature greater than 10 ° C and rainfall above
10 mm within a 24–48 h period, a system is capable of issuing alerts in a timely manner to a
setting favourable to the development of grapevine downy mildew. Action can therefore be
taken swiftly to reduce or even completely avoid damage caused by the disease. Between
March and July 2021—months of interest for downy mildew monitoring—these three
parameters were monitored and the generated events are presented in Figure 10 timeline.
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Figure 10. Timeline of generated events within the downy mildew prediction process. T48 represents
the last 48 h average temperature and R48 the last 48 h total rainfall.

On 2, 3 and 11 April, temperature and rainfall conditions were favourable for downy
mildew development. However, as grapevine’ shoots had not yet exceeded 10 cm in length,
no warning was issued. On 16 April, shoots began to exceed 10 cm and from that point
onward, whenever there were favourable temperature and rainfall conditions, warnings
were generated: it happened on 22, 23, 25 and 27 April; 10, 12, 14, 16 and 17 May, and
finally 19, 20 and 21 June. These dates were compared with those of official warnings
issued by DRAPN. For the same region in which VineInspector was installed, DRAPN
generated warnings on 1 April—advising treatment only if grapevine’ shoots had exceeded
10 cm—, 10th, 21st and 25th. Hereinafter, DRAPN advised continuous treatment for mildew
prevention without stating specific days, as weather conditions remained unstable during
the following months. By comparing VineInspector and DRAPN warning dates, the former
was spot on. Indeed, warnings were even more precise as they enabled knowing downy
mildew risk for a specific parcel and not for an extended region. Moreover, VineInspector
issues warnings continuously and throughout all season, specifying each day were risk
exists, so that prevention and treatment interventions can be managed in the best possible
way. Warnings issued after 25 April meet DRAPN’s continuous treatment advice.

4.2. Grapevine Moth Males Tally

Figure 11 depicts the mAP@0.5, precision and recall curves obtained by the training
process. The highest mAP@0.5, precision and recall values were 0.93, 0.73, 0.97, respectively.
They are quite acceptable considering the dataset size.

Figure 11. Training process for grapevine moth males detection and classification: mAP@0.5 (green),
precision (blue) and recall (orange) curves.

Figure 12 presents the classification process in four example images and Figure 13
depicts the tally evolution throughout the entire monitoring period.
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(a) (b)

(c) (d)

Figure 12. Evolution of the number of individuals of Grapevine moth males caught in the trap: (a) 18
August—1 detection; (b) 24 August—18 detections; (c) 27 August—43 detections; (d) 5 September—
58 detections.

Figure 13. Grapevine moth males tally plot during the entire monitoring period.

By paying a closer look at Figure 13, the first grapevine moth males were captured
and classified only one day after placing the field trap. Late August, around 40 moth males
were tallied, and at the end of September, 60. It is also clear that 25 August, 30 August
and 16 September were the days that had a steeper climb in the number of moth males
captured and classified. A fact worth noting is that the tally value happens to decrease
several times during the monitoring period. This can be explained by the time in the day
when some images were acquired. Indeed, late afternoon acquired images have a portion
directly affected by the sun. As a consequence, some captured grapevine moth males are
not identified. Furthermore, another reason may be that in the first few days after being
captured, grapevine moths are still alive, even tough stuck on the trap’s glue. In fact, they
remain capable of small movements and changing positions, which may lead to not being
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detected. Increasing the training dataset with more images and having some acquired in
roughly these same conditions will probably solve these issues. It will be done next year,
rendering the grapevine moth males tally application even more reliable and accurate.

4.3. Operating Record

VineInspector is based on a low-cost autonomous SBC, as presented in Section 3.1.
While power consumption can be considered reduced within a regular operating context, it
cannot be discarded as it represents an important limitation when configuring the overall
system’s operation, and when selecting (and developing) power harvesting and storing
solutions in the field (in this case, the source is exclusively the sun). Figure 14 depicts a
common operation cycle that begins right when the shield’s microcontroller powers on the
VineInspector system. VineInspector had an average current consumption of 386.51 mA
during the 18 min and 10 s that it took to complete this cycle. Outside the active period,
current consumption is about 1 mA. Considering the consumption profile and that this
operation cycle is repeated four times a day, the average power consumption is of 20.45 mA.

Figure 14. VineInspector common operation power consumption profile over a 18 min period.

Acquired images transmission is undoubtedly the process in which most of the VineIn-
spector operation time—and thus energy budget—is spent. Indeed, the modem used (2G
version) has an upload rate of around 64 kbps, which means a lengthy transmission time
for an image whose size can be around 1 MB. Low-bandwidth and poor network coverage
are also very common issues in PV applications that require data to be transmitted from
the field. This can also weight in when considering limiting factors that may restrict the
reduction of the VineInspector power consumption profile. Even so, reducing this long
upload time is a mandatory improvement in an upcoming version of VineInspector.

VineInspector was thoroughly tested in the field in real operation conditions, during
a year. No bugs or malfunctions that could have resulted in a data loss were detected. In
about 3.9% of the operating period, data link was loss during the image upload process.
However, in each case data was successfully transmitted in a second attempt. This comes
to show both the robustness and reliability achieved with VineInspector.

5. Conclusions and Future Work

Data is becoming increasingly important within PA/PV context. Indeed, getting to
know the context—both physical and environmental—in which a crop grows is key to
have sustainable management practices, to optimise development, and to improve yield
and quality. Whilst reliability and precision are often sold as two of the most important
characteristics in a crop monitoring system (and they really are), spatial and temporal
granularity are also equally important to have a continuous feel on what goes on with a
crop in the field. Plagues and diseases are of particular relevance due to their seasonal
phytosanitary and economic impacts: to be able to identify plant characteristics and/or
environmental conditions favourable to their development can trigger localised and timely
treatments to mitigate losses. Early detection can also do the same, while in a more
advanced stage as there are already visible signs in the plants. To include proximity
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image sensors in the (already) wide array of monitoring technologies available enables a
more realistic perception on crop dynamics, but also the use of AI/ML algorithms with
locally captured images, which can render valuable automatic information for decision
support systems.

The VineInspector is a mature approach on acquiring, storing and transmitting prox-
imity field data, featuring detection/classification in captured images by means of AI/ML
techniques. While data is undoubtedly important to have, information is what really
matters when managing a crop—in this instance, vineyards—efficiently and in a more
sustainable way. Therefore, this paper presents not only a VineInspector operating record
throughout a monitoring period within a harsh field context, but also two applications that
directly address (i) environmental & plant favourable conditions to the onset of diseases;
and (ii) early detection of plagues. Grapevine’ shoots detection and classification was able
to successfully isolate shoots bigger than 10 cm, which is particularly useful in determin-
ing the beginning of grapevines’ vegetative cycle—in turn very useful to trim grapevine
phenology prediction models—, but also to the 3–10 rule, widely used for the detection of
primary infections of grapevine downy mildew. In fact, the 10 cm measurement is related
to an average leaf area of 6 to 8 cm2 [13]. So, this approach becomes particularly useful to
evaluate the area exposed to the first primary infection. The second application successfully
tallies grapevine moth males captured in field traps. It enables not only to determine
when they first show up, but also to assess the intensity of the attack and the timeline. As
such, it is also possible to understand in which days—and even the part of the day—more
grapevine moths appeared, and thus apply the proper treatment more effectively.

One of the major VineInspector advantages is the fact that it is a very flexible system
with regard to remote applications supported by AI/ML-based algorithms. Indeed, they are
independent of the n existing image channels. In addition to both case study applications
presented in this work and as VineInspector collects both meteorological data and images,
it has potential to be used in numerous other applications and cultures. Examples are apple
orchards, olive groves, tomato plantations, blueberry plantations. In fact, the monitoring of
olive fruit fly through traps placed in the olive groves is being presently worked on.

As future work, we intend to press on some important issues. One of them will be
tracking grapevines’ phenological states using images that are continuously acquired and
sent by the VineInspector. It will be necessary to expand the training dataset and increase
the number of classes. The automatic detection of these phenological states is of utmost
relevance since many cultural operations in the vineyard rely on phenological changes.
More accurate predictions will contribute to have more efficient and sustainable decision
support systems and vineyard management practices. The idea will be to later extend
this functionality to other crops, such as apple orchards. Another issue to tackle in the
future is related to traps monitoring. It is intended to develop models that correlate the
environmental data collected with the insect tallies to be able to predict when the insects
will appear with more intensity and thus perform the necessary treatments to prevent or
minimise damages.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CPU Central Processing Unit
CSA Channel-spatial Attention
CUDA Compute Unified Device Architecture
DL Deep Learning
DNN Deep Neural Network
eMMC embedded Multi-Media Card
GDDR Graphics Double Data Rate
GPR Ground Penetrating Radar
GPRS General Packet Radio Service
GPU Graphics Processing Unit
GSM Global System for Mobiles
HTTP HyperText Transfer Protocol
JSON JavaScript Object Notation
mAP mean Average Precision
ML Machine Learning
NIR Near-infrarred
OPi Orange Pi
PA Precision Agriculture
PSSM Position-sensitive Score Map
PTZ Pan, Tilt, Zoom
PV Precision Viticulture
R-CNN Region-based Convolutional Neural Network
RoI Region of Interest
RPN Region Proposal Network
RTC Real Time Clock
SBC Single-board Computer
SPWAS Solar Powered Wireless Acquisition System
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
WDT Watch-dog Timer
YOLO You Only Look Once
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