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Abstract: The efficient identification of the field flat jujube is the first condition to realize its automated
picking. Consequently, a lightweight algorithm of target identification based on improved YOLOv5
(you only look once) is proposed to meet the requirements of high-accuracy and low-complexity.
At first, the proposed method solves the imbalance of data distribution by improving the methods
of data enhancement. Then, to improve the accuracy of the model, we adjust the structure and the
number of the Concentrated-Comprehensive Convolution Block modules in the backbone network,
and introduce the attention mechanisms of Efficient Channel Attention and Coordinate Attention.
On this basis, this paper makes lightweight operations by using the Deep Separable Convolution to
reduce the complexity of the model. Ultimately, the Complete Intersection over Union loss function
and the non-maximum suppression of Distance Intersection over Union are used to optimize the
loss function and the post-processing process, respectively. The experimental results show that the
mean average precision of improved network reaches 97.4%, which increases by 1.7% compared with
the original YOLOv5s network; and, the parameters, floating point of operations, and model size
are compressed to 35.39%, 51.27%, and 37.5% of the original network, respectively. The comparison
experiments are conducted around the proposed method and the common You Only Look Once
target detection algorithms. The experimental results show that the mean average precision of the
proposed method is 97.4%, which is higher than the 90.7%, 91.7%, and 88.4% of the YOLOv3, YOLOv4,
and YOLOx-s algorithms, and the model size decreased to 2.3%, 2.2%, and 15.7%, respectively. The
improved algorithm realizes a reduction of complexity and an increase in accuracy, it can be suitable
for lightweight deployment to a mobile terminal at a later stage, and it provides a certain reference
for the visual detection of picking robots.

Keywords: target detection; identifying the field flat jujube; YOLOv5; convolutional neural network

1. Introduction

The flat jujube is named for looking like a flat peach. The target detection of its
automatic picking belongs to the problem of identifying a small target in a background of
similar color. The color of the immature jujube is leafy green with a smooth epidermis, the
ripe jujube is divided into white-ripe jujube, first-red jujube, half-red jujube, and whole-red
jujube, referring to the “fresh jujube quality grade” (GB/T 22345-2008) national standard.
However, the flat jujube is picked during the period of white-ripe to extend the period
of storage. The flat jujube of this period is yellow-green, which is easy to confuse with a
background containing immature fruit and leaves, increasing the difficulty of identification,
leading to a low efficiency of artificial identification and picking.

The flat jujube is a new type of jujube with three characteristics: an oblate body, a
cluster with irregular growth, and the color of the flat jujube in the picking period is near
to the color of the background containing leaves and the crown. Related research for
identifying fruits include the following use cases: in terms of identification of oblate fruit,
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Kateb et al. and Zhang Wenli et al. researched one-to-many object detection and fruit
tracking taking citrus as the research object [1,2]. In terms of cluster growth, Sozzi et al.,
Tassis et al., Math et al., Fan Xiangpeng, and Xu (Annie) Wang et al. researched recogni-
tion on the boundary of image using grape and tomato [3–7]. In terms of identifying a
small target, Kimutai et al., Janarthan et al., and Luo Yuqin et al. researched detection
algorithm using Chinese prickly ash and tea buds as the research subjects [8–10]. In terms
of near-color background recognition, Caladcad et al., Turkoglu et al., and Ren Rui et al.
researched optimization of a network using green apples and green peppers as the research
subjects [11–13].

Models of a Convolutional Neural Network of deep learning can be divided into two
categories: one is a two-stage detection algorithm represented by Faster R-CNN (Region-
based Convolutional Neural Networks), FCN (Fully Convolutional Networks), and Mask
R-CNN, and the other is a one-stage detection algorithm represented by YOLO (You Only
Look Once) and SSD (Single Shot MultiBox Detector), as seen in Table 1. Instantiation of
these models include: Hussain [14] who proposed a deep convolutional neural network
to the undertakings of distinguishing natural fruit images of the Gilgit-Baltistan region;
Ukwuoma et al. [15] intensively discussed the datasets (such as ”Fruit 360”) used by many
scholars, and they summarized the results of different deep learning methods applied
in previous studies for the purpose of fruit detection and classification; in terms of a
lightweight network, Shahi et al. [16] proposed a lightweight deep learning model using the
pre-trained MobileNetV2 model and attention module; Khudayberdiev et al. [17] proposed
an enhanced lightweight system (Light-FireNet) based on the Hard Swish, and the accuracy
reached 97.83%; and Chansoo et al. [18] proposed a lightweight network efficient shot
detector (ESDet) based on deep training with small parameters, using depthwise and
pointwise convolution.

Table 1. Contrast between one-stage detection algorithm and two-stage detection algorithm.

Detection
Algorithm Models Backbone Advantages Disadvantages Reference

One-stage

SSD (Single Shot
MultiBox Detector)

VGG-16 (Visual
Geometry Group)

Fast detection speed,
Strong migration

ability, Easy to deploy,
Small model size,

Low deployment cost.

Not good enough for
cluster targets and

small targets,
Relatively high false
and missed detection.

[19,20]

YOLO (you only look
once)

V1: VGG16
V2: Darknet-19,

V3&V4&V5:
Darknet-53.

[21–25]

Two-stage

Faster R-CNN
(Region-based

Convolutional Neural
Networks)

VGG-16

High accuracy of
recognition.

A large amount of
computation

Slow detection speed.

[26]

FCN (Fully
Convolutional

Networks)
VGG-16 [27]

Mask R-CNN ResNet [28]

Target detection algorithms based on deep learning have been widely studied in
the field of outdoor agricultural detection, but there are few detection studies on the
identification of small targets with cluster growth in a close color background containing
leaves and crowns. More importantly, there has been no research on outdoor classification
and identification using the deep learning method. This paper chooses the flat jujube as
the research object and puts forward an improved YOLOv5 target recognition algorithm
to identify field flat jujube of different maturity in a near-color background that contains
leaves and crown. The improved algorithm improves the extraction ability of the shallow
feature for a small target in the similar color background by two attention mechanisms
(Efficient Channel Attention and Coordinate Attention), and it improves detection accuracy.
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The parameters of the model are reduced by improving the convolution operation of the
convolutional layer in the original YOLOv5 network. The proposed method reduces the
rate of error and leakage by optimizing the loss function and non-maximum suppression
to determine the best detection box and to screen the excess candidate box. Experiments
show that the present method has a good effect in identifying small targets and occluded
targets in the near-color background containing leaves and crown. It is proved that the
improved algorithm greatly reduces the number of model parameters and floating points
on the basis of maintaining the improvement of precision.

2. Materials and Methods
2.1. Dataset Construction
2.1.1. Image Acquisition and the Experimental Environment

In this study, the flat jujube images were collected between September 4 and October 9,
2021 inside the two flat jujube plantations in Linyi County, Yuncheng City, Shanxi Province,
China. The images were captured by the Nikon D-3100 camera (Nikon Corporation, Tokyo,
Japan), with a variety of angles selected for image acquisition at the specific time period
(8:00 a.m. to 12:00 a.m., 2:00 p.m. to 6:00 p.m.) and shooting distance (30 cm–80 cm).
And the row spacing, plant spacing, and plant height were 3.5 m, 2.5 m, and 1.2 m,
respectively. The datasets were composed of 9525 RGB (Red Green Blue) images and the
resolution was 3456 × 2304 pixels, including the following conditions: different obstruction
(leaves, branches, and overlap between jujube), different weather (sunny, cloudy, and rainy),
different background (soil, sky, crown, and canopy), different light conditions (sunlight,
sidelight, and backlight), etc. Some sample images are shown in Figure 1.
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Usually, the artificial identification of the new type of jujube is based on the color
and size of the flat jujube, as well as the harvesting decisions and methods described by
farmers. The harvest does not collect all the flat jujube at the same time, but it collects
matured or half matured jujube, while others are left for future harvest. The purpose of
this paper is to identify roughly the immature jujube with a more obvious difference in
color and size on the basis of ensuring the identification of all the flat jujube, and to reduce
the loss of incorrect picking as much as possible. Therefore, the g-jujube in this paper
refers to the jujube of obvious difference in color (leafy green) and shape, and it can be
distinguished intuitively (such as Figure 1B,E). To facilitate model training, the original
images are compressed to 512 × 341 pixel, and the dataset is converted into the common
interchange format for object detection labels “Visual Object Challenge” (VOC). These
images are manually annotated as jujube and g-jujube with the LabelImg 1.8.6 (Tzutalin,
Vancouver, BS, Canada) annotation software.

The specific hardware configuration and experimental environment are shown in
Table 2. Depending on the material conditions and the experimental values of the hyper-
parameters, the learning rate, the batch size, and the workers were set to 0.01, 16, and 2,
respectively. The momentum factor was set to 0.937, and the decay rate of weight was set
to 0.0005. All networks were trained by Stochastic Gradient Descent in an end-to-end way.

Table 2. Hardware configuration and operating environment.

Hardware Configure Environment Version

System Windows10 Python 3.9.1
CPU R7-5800H PyTorch 1.9.0
GPU RTX3070 (8G) PyCharm 2019.1.1
RAM 16G CUDA 11.2

Hard-disk 1.5T CUDNN 8.1.1

2.1.2. The Balance of Data

In this study, the number of immature [29,30] fruits in original 9525 pictures was too
small, and it may have led to unbalanced data samples. Firstly, the images which the
number of immature flat jujube is more than that of ripe fruits were manually screened.
Then, the number of images was expanded to 12,502 by the operation of mirror, rotation,
the adjustment of contrast (0.7, 1.5), and brightness (0.8, 1.5); and, the ratio of mature fruit
to immature fruit in the dataset changed from 9:2 to 3:2. At last, the balanced datasets
were randomized and partitioned into training and test sets in a 9:1 ratio, the total number
of images of training and test sets were 11,252 and 1250, respectively. In order to verify
the effect of the data after the balance, the official pre-trained weights of YOLOv5s were
used for transfer training until the model converged. The structure of datasets is shown
in Table 3.

Table 3. Comparative results after data balance.

Datasets Number
Anchors

Iterations Precision (%) Recall (%) Mean Average
Precision (%) mAP.5:.95 (%)

Jujube G-Jujube

Raw
dataset 9525 46,682 10,198 11,900 82.2 82.8 87.8 74.7

Balanced
dataset 12,502 51,052 34,118 156,200 90.8 88.6 95.7 80.5

2.2. The Principle of YOLOv5 Model

The YOLO (You Only Look Once) target detection algorithm was proposed by Joseph
Redmon in 2015, which was an end-to-end network model that directly predicted target
bounding boxes and categories [31]. The YOLO algorithm frames object detection as a
single regression problem, straight from image pixels to bounding box coordinates and
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class probabilities. YOLO predicts bounding boxes and class probabilities directly from
full images in one evaluation, and it is trained on a loss function that directly corresponds
to detection performance, and the entire model is trained jointly. Since the development
of YOLO, the algorithm has been developed into five versions; its detection accuracy and
speed are gradually improving [32]. YOLOv5 is the latest generation target detection
network of the YOLO series, and its inference speed, accuracy, and generalization are
outstanding [33]. Meanwhile, it has a higher speed and a lower requirement for hard-
ware equipment, and it has better applicability in the field of agricultural product testing
outdoors. There are four models of network structure: YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x. YOLOv5s is the minimum depth of a network and the minimum width
of a feature map, the other three networks deepen and widen the network from this basic.
As the detection accuracy increases, the requirements for the hardware increase as well;
however, the detection speed decreases. As a result, in order to meet the requirements of
deployment and accuracy of the model, YOLOv5s is selected as the basic model.

The structure of the YOLOv5 network is divided into input end, backbone, neck, and
output end. After the image is inputted, image features are generated in the backbone,
which is a convolutional neural network that aggregates different fine-grained images. It
extracts feature maps of different sizes from the input image by multiple convolution and
pooling, and it transmits them to the neck part of the modular architecture. The structure
of FPN (Feature Pyramid Networks) and PAN (Path Aggregation Network) is used in the
neck, based on merging the features of the upper layer and the features of the lower layer
in FPN, and then it performs the connection of the features of the lower layer and the
features of the upper layer using the bottom-up PAN. This enriches the feature information
obtained by the network, enhancing the feature fusion capability. The output end uses the
Generalized Intersection over Union loss function, and the post-processing process uses
the weighted non-maximum suppression method to screen the multi-target box.

2.3. Improvement of the C3 Module

In the original backbone network, too many convolution kernels in the C3 module
can lead to parameter redundancy. This article improves the C3 module in layer 4 (see
Figure 2): it removes the ordinary convolution layer on the branch and connects the feature
map that is input by the C3 module with the feature map that is output by another branch
directly. Due to the high proportion of small targets in the dataset, the shallow features
will lose some information after the low-pass filtering effect of the multiple convolution
operation. To reduce the impact of this problem, the number of C3 modules in layers of 2,
6, and 8 of the backbone network are reduced from (×3, ×9, ×3) to (×2, ×6, ×2).
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Figure 2. The structure of improved C3 module and ECA (Efficient Channel Attention) module. C, H,
and W refer to the channels, height, and width of the input image. Conv means that the convolutional
layer (A) The red dotted box indicates that the convolution layer has been removed. The blue dotted
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box indicates that the convolutional layer (Kernel size: 1 × 1), BN (Batch Normalization) layer, and
SiLU (Sigmoid Weighted Liner Unit) activation function together form the CBS (Convolutional layer,
Batch Normalization, Sigmoid Weighted Liner Unit) module. (B) GAP indicates that Global Average
Pooling. “⊗” indicates that element-wise product. The purple dotted box indicates that the fast 1D
convolution to replace FC (Full Connection) layers in channel attention module.

2.4. The Attention Mechanism

The Efficient Channel Attention (ECA) removes the Full Connection (FC, Figure 2B)
layer of the SE, and it learns directly through a one-dimensional convolution performed
on the features after the Global Average Pooling layer [34]. This module avoids the
dimensionality reduction and captures the cross-channel information. The method of
shared weights is used, where the weights of every group are exactly the same, the number
of parameters is reduced.

The ECA performs average pooling of the input feature map and learns the channel
weights through the one-dimensional convolution operation (Figure 2B, purple dotted box).
The convolution kernel size is k, and the output follows a sigmoid activation function. The
feature maps of the final output are obtained by multiplying these weights with the feature
maps of the original input. Among them, the kernel size is determined by the number of
channels, the equation is shown in (1).

k =

∣∣∣∣ log2 C + b
γ

∣∣∣∣
odd

(1)

where k is the convolution kernel size, C is the number of channel (number of filters)
usually is set to power of 2, γ and b are used to change the ratio of C and k, ||odd means
that k only chooses the odd numbers.

Since the ECA module uses only channel attention, this paper introduces the coordi-
nated attention (CA) module, which is an attentional mechanism consisting of integrating
location information into channel attention [35]. It can capture not only the information
across channels but also the information about perception of orientation and location, and
it is more conducive to the identification and the positioning of the target of interest [36].
Channel attention is first decomposed into two one-dimensional features and then aggre-
gate features in two spatial directions. In this way, dependencies of long-distance can be
captured in one spatial direction, while retaining precise positional information in another
spatial direction. The resulting feature maps are encoded as an attention map which is
sensitive to orientation and position. Finally, they are applied in a complementary way to
the input feature maps to improve the representation of objects of interest

The essence of the attention mechanism is the allocation of weights of input data. The
introduction of attention mechanism brings different degrees of improvement to the model
under normal conditions, but there are differences in the effects on network performance
because of the introduced location of the attention module and multiple combinations [37].
In this paper, a mixture of the four mechanisms of attention are introduced into differ-
ent locations for experiments, and the best improved model was selected by comparing
accuracy indexes.

2.5. Optimization of the Loss Function

The YOLOv5 algorithm uses the Generalized Intersection over Union (GIOU) loss
function as the positional loss function of the bounding box at the output end, which it
defines as the quality of overlap of the detected object. However, the GIOU (Figure 3a)
degenerates into Intersection over Union (IOU) when the whole box of prediction is inside
the real box (Figure 3a the red dotted box). It results in the inability to distinguish the
boxes of true and predicted, and the convergence speed of the bounding box becomes slow.
Regarding this issue, this paper replace the GIOU with another loss function. The Distance
Intersection over Union (DIOU) loss can minimize the distance between two target boxes,
speed up the convergence, and consider the Euclidean distance between the center points
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of the boundary box (Figure 3b). On this basis, the Complete Intersection over Union
(CIOU) adds an extra penalty αv which takes into account the aspect ratio of the true and
the predicted boxes and the overlap-rate of the bounding box and width ratio. Therefore,
this paper choose CIOU as the loss function of the bounding box.
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Figure 3. Structure of loss function. (a) GIOU (Generalized Intersection over Union): A and B indicate
that the boxes of true and predicted, the red dotted box indicates the special position of A and B,
the green area means the required intersection area. (b) C indicates the diagonal distance from the
minimum circumscribed rectangle bounding A and B. d indicates that the Euclidean distance between
the center points of the boundary box A and B.

In the post-processing process of target detection, the operation of Non-Maximum
Suppression (NMS) is used to filter the target box. The YOLOv5 algorithm realizes the
screening for the target box by the operation of weighting NMS during post-processing.
When the two objects are very close or overlapping, the value of IOU is large, which can
easily miss the detection after the operation with weighted NMS, so this paper replaces
it with DIOU-NMS. As a result of the CIOU added impact factor αv, which contains the
information of the true box, there is no the information in the process of testing so the αv
is unnecessary. Therefore, this paper selects the DIOU NMS rather than the CIOU NMS.
Although the accuracy of model does not much change, the identification of targets that
are close or overlapping has been greatly improved.

2.6. Lightweight Operation

In the feature maps extracted by deep neural networks, there are partially similar
and redundant feature maps, which are called ghost feature maps by Kai Han who is the
GhostNet author [38]. The Ghost module is a model compression method that generates
a set of feature maps by ordinary convolution and then generates other feature maps by
simple linear transformation.

The Ghost bottleneck is stacked by multiple Ghost modules [39], which considerably
reduces the computational load while maintaining the accuracy of the model. On this basis,
GhostNet mainly consists of a stack of Ghost bottlenecks with the Ghost modules as the
building block. In this paper, the enhanced network is handled by the Ghost bottleneck
and deep separable convolution, whose specific structure is shown in Figure 4.



Agriculture 2022, 12, 717 8 of 19
Agriculture 2022, 12, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. The structure diagram of Ghost Bottleneck. BN means that Batch Normalization layer. 

Add operation means that the superposition of information. ReLU means that the Rectified Linear 

Unit. (A) Stride = 1 (B) Stride = 2. DWconv means that the depthwise separable convolution. 

2.7. Evaluation Metrics 

In terms of the accuracy of the network model, the index of evaluation is precision 

ratio (P), recall ratio (R), mean Average Precision (mAP), and F1-score. 

Precision is used to measure the accuracy of model checking, and Recall is used to 

assess the comprehensiveness of model detection [40]. Average Precision (AP) is an inte-

gration of the Precision over the Recall, and it is indicated as the area of the region sur-

rounded by the curve and the coordinate axis in the P-R plots. The mAP means to take the 

average of the AP to measure the performance of the whole model [41]. The formulas are 

shown in (2)–(6). 

Recall =
TP

TP + FN
 (2) 

Precision =
TP

TP + FP
 (3) 

where TP means that jujube in the tested picture were correctly recognized, FP means that 

other things were misrecognized as jujube, and FN means that jujube was misidentified 

as other things. 

AP = ∫ P(r)dr
1

0

 (4) 

 mAP =
∑ APi

c
i=1  

C
  (5) 

where C means the number of categories, i means the serial number. 

F1 =
2 × Precision × Recall

Precision + Recall
 (6) 

In terms of the model complexity, it is defined by the number of parameters (weights 

of the model), the floating point operations (FLOPs), and the overall size of the model: 

Parameters = [i × (f × f) × o] + o (7) 

FLOPs = H × W × Parameters (8) 

where i means the input size, f means the size of the convolutional kernel, o means the 

output size, and H × W means the size of outputted feature map. 

Figure 4. The structure diagram of Ghost Bottleneck. BN means that Batch Normalization layer. Add
operation means that the superposition of information. ReLU means that the Rectified Linear Unit.
(A) Stride = 1 (B) Stride = 2. DWconv means that the depthwise separable convolution.

2.7. Evaluation Metrics

In terms of the accuracy of the network model, the index of evaluation is precision
ratio (P), recall ratio (R), mean Average Precision (mAP), and F1-score.

Precision is used to measure the accuracy of model checking, and Recall is used
to assess the comprehensiveness of model detection [40]. Average Precision (AP) is an
integration of the Precision over the Recall, and it is indicated as the area of the region
surrounded by the curve and the coordinate axis in the P-R plots. The mAP means to take
the average of the AP to measure the performance of the whole model [41]. The formulas
are shown in (2)–(6).

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

where TP means that jujube in the tested picture were correctly recognized, FP means that
other things were misrecognized as jujube, and FN means that jujube was misidentified as
other things.

AP =
∫ 1

0
P(r)dr (4)

mAP =
∑c

i=1 APi

C
(5)

where C means the number of categories, i means the serial number.

F1 =
2× Precision× Recall

Precision + Recall
(6)

In terms of the model complexity, it is defined by the number of parameters (weights
of the model), the floating point operations (FLOPs), and the overall size of the model:

Parameters = [i× (f× f)× o] + o (7)

FLOPs = H×W× Parameters (8)
where i means the input size, f means the size of the convolutional kernel, o means the
output size, and H ×W means the size of outputted feature map.

3. Results
3.1. Experiment of Attention Mechanism

This paper used the strategy of multiple combination of four attention mechanism
modules to experiment. The same set of parameters was used for each experiment, and
the official pre-trained weights of YOLOv5s was used to transfer learning until the model
converged. After 50 epochs in the training process, all curves of LOSS reached a relatively
stable state. The curve of LOSS was shown in Figure 5, and the conclusion could be seen
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from the picture: the curve in the early training dropped rapidly, it had leveled off after
the 50 epochs and reached convergence, and it had no phenomenon of under-fitting or
over-fitting.
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In this study, 72 combination schemes were tested by introducing the mixture of
different modules to different positions. Finally, a total of 15 schemes of which the mAP
reached to 97.6% were selected, and these results are shown in Table 4.

Table 4. The combination of modules is exponential. This research would present a few of them and
draw a figure illustrating the corresponding architecture to explain. “(+)” represents the addition
of an attention mechanism to its lower layer, and the unsigned model represents substitution in the
current layer.

Model Precision (%) Recall (%) mAP (%) Max Value of mAP (%) mAP.5:.95 (%)

YOLOv5s 90.8 88.6 95.7 95.669 80.5
CA 91.7 90.1 96.6 96.59 81.8

ECA 94.2 91 97.3 97.438 87
4SE 93.6 91.2 97.4 97.481 85.8

4ECA 94 91.2 97.6 97.594 86.1
4ECA&CBAM 93.6 91.7 97.6 97.606 86.1
4ECA&CA(+) 91.9 93.2 97.5 97.664 86

4ECA&2SE 93.9 90.9 97.6 97.561 85.9
4ECA&2SE&4CA 93.3 91.8 97.6 97.644 85.9

4CA&CBAM 92.6 92.4 97.6 97.573 85.9
8CA&CBAM 93.9 91.1 97.6 97.601 86

8CA&CBAM(+) 93.2 92.1 97.6 97.608 86.1
8CA&2SE 94 91.3 97.6 97.59 85.9

8CA&2SE(+) 93.8 91.2 97.6 97.561 85.9
7CA&2SE 92.4 92.3 97.6 97.589 86.1
4CA&2SE 92.6 92.9 97.6 97.613 86

4CA&2SE&2TR 94.2 90.9 97.6 97.575 85.5
4CA&CBAM&ECA 93.3 91.9 97.6 97.559 86

4CA&2ECA 92.9 92 97.6 97.569 86.1
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According to the table, the improvement of network performance by multiple mech-
anisms of attention was generally better than that of neural network performance by a
single attention. The improved network converged after 43,350 iterations, and each index
increased in different degrees. To screen a model of the highest accuracy by comparing
the F1 and the mAP.5,.95: in three schemes where the F1-score reached 0.93 based on a
confidence above 0.610, including ECA + 2SE + 4CA, 4CA + 2SE + 2TR and 4CA + 2ECA,
and the mAP.5:.95 of 4CA + 2ECA was the highest one at different thresholds. Therefore,
this scheme of 4CA + 2ECA which had the best result was named as YOLOv5-CE, and the
mAP of this model was compared with different versions under the YOLOv5 network. The
results are shown in Figure 6.
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IOU = 0.5~0.95 (stride = 0.05).

3.2. Optimization Experiment of the C3 Module

The experiment was divided into three improved schemes of (2,3,6,2), (2,4,6,2), and
(2,6,6,2). It can be obtained from the above experiments that the parameters, FLOPs, speed
of inference, and the 4ECA model size were the most similar to the original network on the
basis of the mAP reaching 97.6%. Accordingly, the improved network of YOLOv5_4ECA
was trained as the baseline network to test the optimization effect of the C3 module. The
results are shown in Figure 7.

As available from the above figure, when the number of C3 modules in layers 2, 4, 6,
and 8 of the backbone network is reduced from (×3, ×6, ×9, ×3) to (×2, ×6, ×6, ×2), the
accuracy indexes (mAP and mAP.5:.95) remain basically unchanged. Meanwhile, there is a
slight decrease in the complexity index, where the parameters decreased by 2.3%, so this
scheme had the best effect among three schemes.
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3.3. Performance Analysis of Different Lightweight Schemes

To choose the best lightweight scheme, this paper introduced the Ghost modules and
the Deep Separable Convolution to different locations in the baseline network. The specific
results are shown in Table 5.

Table 5. Results of the lightweight experiment. “_neck” means that the location of the introduction
is the neck network, “_all” means that the location of the introduction is the full network, and the
unmarked means that the location of the introduction is the backbone network.

Location Precision
(%)

Recall
(%)

mAP
(%)

mAP.5:.95
(%) Parameters

Floating-Point
Operations per

Second (G)

Inference
Time (ms)

Model Size
(MB)

4ECA 94 91.2 97.6 86.1 7,015,540 15.8 3.0 14.4
Ghost 93.4 91.2 97.4 84.5 5,853,052 12.4 3.0 12.1

Ghost_neck 94 90.8 97.4 85.7 6,053,252 13.9 3.1 12.5
Ghost_all 92.8 91.5 97.3 84.2 4,899,580 10.5 2.7 10.2
DWconv 94.3 90.5 97.4 85 5,457,460 12.1 2.5 11.2

DWconv_neck 94.2 90.8 97.4 85.7 6,118,644 14.7 3.0 12.5
DWconv_all 93.4 91.3 97.4 84.7 4,560,564 11 2.3 9.5

Ghost&DWconv_all 91.8 91.4 97 82.9 3,398,076 7.6 2.1 7.5
Ghost_neck&DWconv_all 93.2 91.4 97.4 84.5 3,598,276 9 2.3 7.6
Ghost_all&DWconv_all 92.8 90.1 97 82.1 2,435,778 5.6 2.1 5.5

Ghost&DWconv 93.3 90.6 97.1 82.8 4,294,972 8.7 2.4 9.1
(Ghost&DWconv)_neck 93 91.9 97.4 85.4 5,156,356 12.7 2.9 10.7
Ghost_neck&DWconv 93.6 90.6 97.3 84.7 4,495,172 10.1 2.5 9.4
Ghost&DWconv_neck 92.6 91.7 97.3 84.3 4,956,156 11.3 2.7 10.3

From the above table, we see that the best scheme consists of introducing the Ghost
module in the neck and replacing the ordinary convolutional layers with depthwise separa-
ble convolution. To ensure the validity of the lightweight, 15 schemes with a 97.6% mAP in
Table 4 were selected for lightweight manipulation in this paper (Section 3.1). The results
are shown in Table 6.
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Table 6. The comparison of a lightweight improved network and an original network.

Lightweight Network mAP
(%)

mAP.5:.95
(%) Parameters FLOPs (B)

Detection Time (ms)
Model

Size (MB)Pre-
Process Inference Post-

Process Total

YOLOv5s 95.7 80.5 7,015,519 15.8 0.2 3.0 1.0 4.2 14.4
4ECA 97.4 84.5 3,598,276 9 0.2 2.3 0.8 3.3 7.7

ECA & SE 97.4 84.4 3,631,044 9 0.2 2.2 0.8 3.2 7.8
4ECA & SE 97.3 84.1 3,466,945 8.5 0.2 2.3 0.9 3.4 7.0
4ECA & CA 97.3 84.4 3,623,924 8.6 0.2 2.6 0.9 3.7 7.8

4ECA&CBAM 97.3 84.1 4,812,326 9.1 0.2 2.4 0.9 3.5 10.1
4ECA & 2SE & 4CA 97.2 84.1 3,706,172 8.1 0.2 2.6 1.0 3.8 8.1

8CA & CBAM 97.3 84.1 3,751,521 8.1 0.2 3.0 1.0 4.2 8.1
8CA & 2SE(+) 97.3 84.2 3,784,191 8.2 0.2 3.0 1.2 4.4 8.1
4CA&2SE(+) 97.4 84.2 3,741,831 8.1 0.2 2.8 1.0 4.0 8.1

4CA & 2SE & 2TR 97.3 83.9 3,333,031 7.2 0.2 3.1 1.0 4.3 7.2
4CA & CBAM & 3ECA 97.3 84.1 3,709,170 7.6 0.2 2.7 1.0 3.9 7.9

4CA & 2ECA 97.3 84.2 2,495,117 6.1 0.2 2.4 0.9 3.5 5.4

As shown in the table above, after lightening the YOLOv5-CE network compared
to the original YOLOv5s network, mAP increased by 1.6%, and parameters and FLOPs
decreased by 64.43% and 61.49%, respectively. Meanwhile, the model size and the detection
time decreased to 37.5% and 83.3%, respectively. The specific changes in the detection time
are shown in Figure 8.
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presented in Table 6.

The detection time is the average detection time per image in the validation set
(contains 1250 images), including the pre-processing, inference, and post-processing steps.
It can be seen from Figure 8 that the pre-processing time curve is constant, and the post-
processing time curve generates small amplitude fluctuations due to the optimization
of the loss function. Therefore, the detection time changes mainly by the inference time.
There are two main reasons for the reduction of the detection time and the parameters.
On the one hand, the simple linear transformation of the Ghost module is faster than
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the ordinary convolution operation. The amount of computation of the Ghost module
is approximately reduced by s (the number of ghost feature maps) times compared with
the ordinary convolution module. On the other hand, the Deep Separable Convolution
replaces the big convolution kernel with the relatively small convolution kernel. In terms of
inference, the decrease in computation of convolution operations leads to a shorter model
detection time.

It is demonstrated that this scheme not only maintained the accuracy of network,
but also reduced the parameters, FLOPs, and detection time. Accordingly, this scheme
which had the best lightweight effect is named YOLOv5-GCE, and its structure is shown
in Table 7.

Table 7. The YOLOv5 lightweight network structure. The input “−1” in the table represents the
input from the previous layer. The tensor information includes the number of input channels of the
module, output channels, convolution kernel size, step length, and grouping.

Number Input Parameters Module Tensor
Information Number Input Parameters Module Tensor

Information

0 −1 3520 Conv (3, 32, 6, 2, 2) 15 −1 1024 DWconv (512, 256, 1, 1)
1 −1 704 DWconv (32, 64, 3, 2) 16 −1 0 Upsample (None, 2, ’nearest’)
2 −1 18,816 C3 (64, 64, 1) 17 (−1, 7) 0 Concat (1)
3 −1 1408 DWconv (64, 128, 3, 2) 18 −1 208,608 Ghost (512, 256, 1, Fasle)
4 −1 115,712 C3 (128, 128, 2) 19 −1 512 DWconv (256, 128, 1, 1)
5 −1 6704 CA (128, 128, 32) 20 −1 0 Upsample (None, 2, ’nearest ’)
6 −1 2816 DWconv (128, 256, 3, 2) 21 (−1, 4) 0 Concat (1)
7 −1 625,152 C3 (256, 256, 3) 22 −1 53,104 Ghost (256, 128, 1, Fasle)
8 −1 20,040 CA (256, 256, 32) 23 −1 1408 DWConv (128, 128, 3, 2)
9 −1 5632 DWconv (256, 512, 3, 2) 24 (−1, 19) 0 Concat (1)

10 −1 3 ECA (512) 25 −1 143,072 Ghost (256, 256, 1, Fasle)
11 −1 25,648 CA (512, 512, 32) 26 −1 2816 DWconv (256, 256, 3, 2)
12 −1 656,896 SPPF (512, 512, 5) 27 (−1, 15) 0 Concat (1)
13 −1 3 ECA (512) 28 −1 564,672 Ghost (512, 512, 1, Fasle)
14 −1 25,648 CA (512, 512, 32) 29 (22, 25, 28) 18,879 Detect /

The P-R curves of the improved network and its lightweight network are shown in
Figure 9. The mAP of mature fruit is 98.1%, while the mAP of immature fruit decreases
from 97.2% to 96.8%. As a result, the mAP of the overall network decreased from 97.7%
to 97.4%. This is because the color of the immature fruit is similar to the background
containing the leaves and the crown, and thus the ability of the lightweight networks that
extract features from small targets in this background was subsequently weakened.
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3.4. Ablation Experiment

The ablation study is to see the effects on performance by removing some features
of the detection algorithm. In order to verify the effect of every improved point for the
network performance, this paper selected six improved methods and the original YOLOv5s
network to perform the ablation experiment.

YOLOv5 had a mechanism of Early Stopping which automatically stopped training
when mAP was not increased within 100 consecutive experiments. When the epoch was set
to 300, it automatically stopped training at approximately the 260th epoch. This means that
the experiment reached complete convergence and mAP was no longer increased, when
the model training reached about the 160th epoch. In order to ensure the effectiveness of
the model, the training results after the 200th epoch were selected. The whole training
process of the improved network is shown in Figure 10.
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The results of the ablation experiment are shown in Table 8. The first improvement
is the balance of data, the second improvement is optimization of the C3 module, the
third improvement is the mixed introduction of multiple mechanisms of attention, the
fourth improvement is optimization of the loss function, and the fifth improvement is the
lightweight operation.

Table 8. Improved network ablation experiments. “
√

” represents that the improved method is
applied in the model. “×” means that the improved method is not used in the model.

Model Data
Balance C3 Attention Loss

Function
Multi-
Scale Lightweight mAP

(%)
mAP.5:.95

(%) Parameters FLOPs
(G)

Model
Size
(MB)

YOLOv5s × × × × × × 87.8 74.7 7,015,540 15.8 14.4
Improvement 1

√
× × × × × 95.7 80.5 7,015,519 15.8 14.4

Improvement 2
√ √

× × × × 95.7 81.9 6,851,441 15.3 13.8
Improvement 3

√ √ √
× × × 97.6 85.9 5,942,252 12.5 12.2

Improvement 4
√ √ √ √

× × 97.7 89.5 5,942,252 12.5 12.2
Multi-scale

√ √ √ √ √
× 97.7 89.5 5,942,252 15.2 12.2

Improvement 5
√ √ √ √

×
√

97.4 84.2 2,495,117 6.1 5.4

From the above table, the mAP increased by 7.9% after using the balanced datasets,
which contained 12,502 images, taken as the raw data. After the optimization of the C3
module, the decline of the parameters and FLOPs were small, and the accuracy index
(mAP and mAP.5:.95) remained basically unchanged. Based on this improvement, the mAP
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increased by 1.9% and the rest of the indicators of the accuracy increased by introducing the
hybrid attention mechanisms. Meanwhile, the parameters, FLOPs, and model size reduced
to 84.7%, 79.11%, and 84.72% of the original YOLOv5s network. Then, it was demonstrated
that the optimization of loss function and the multi-scale training had less of an effect on the
accuracy of the model, while it was found to reduce the occurrence of false detection and
missed detection by the comparison of the detection effect of the pictures. Finally, in the
lightweight experiment, the mAP and mAP (.5,.95) increased by 1.7% and 3.7% compared
with the original YOLOv5s network, and the parameters, FLOPs, and model size reduced
to 35.57%, 38.61%, and 37.50% of the original YOLOv5s network, respectively.

In order to show the recognition effect of the improved algorithm to the field flat jujube,
the pictures with different obstacles, different light conditions, and different backgrounds
were selected for detection and comparison. The results are shown in Figure 11.
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Figure 11. Identification effect of different algorithms under the different environments.
(A,C,E) represent the identification effect of YOLOv5s algorithm. (B,D,F) represent the identifi-
cation effect of YOLOv5-GCE algorithm. The different environments contain obstacle (branches,
leaves, and jujube), background (soil, sky, and crown), and light (sunlight, sidelight, and backlight).
The green and the blue dotted boxes indicate the missed and false detections, respectively.

3.5. Comparison Experiments with Different Networks

Currently, the most commonly used YOLO target detection algorithms contain YOLOv3,
YOLOv4, YOLOv5, and YOLOx. The VGG-16 and Darknet-19 network as the backbone
network of YOLOv1 and YOLOv2 [42], respectively, and the YOLOv3 [43] takes advantage
of the Darknet-53 backbone network which relies on 53 convolutional layers to improve the
ability of feature extraction. YOLOv4 [44] uses the CSPDarknet53 as the backbone network,
and it adds the mosaic and cut-mix data augmentation methods in the input; and, the SPP
module and the PAN structure are added in the neck network. On the basis of the four
structures (s, m, l, and x) of the YOLOv5, YOLOx [45] uses the mosaic and the mix-up data
augmentation methods in the input, and it replaces the YOLO head with the decoupled
head. These algorithms have a different dimension, average accuracy, speed of detection,
and training.

In order to validate the effectiveness of improvement, the mainstream YOLO target
detection algorithms (v3, v4, v5n, v5s_5.0, v5s_6.0, and x-s) and the improved algorithms
(YOLOv5s-CE and YOLOv5-GCE) were selected for the experiments of comparison, and
the results are shown in Table 9.
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Table 9. Comparison results of the mainstream YOLO target detection algorithms and
improved algorithms.

Model Precision (%) Recall (%) mAP (%) Parameters FLOPs (G) Model Size (MB)

YOLOv3 87.6 87.5 90.7 61,631,434 116.3 234.6
YOLOv4 86 89.1 91.7 63,953,841 127.2 244.3
YOLOx-s 90 90.9 96.3 13,714,753 26.8 34.3

YOLOv5s-5.0 90.6 87.4 95.1 7,056,607 16.3 14.5
YOLOv5s-6.0 90.8 88.6 95.7 7,015,519 15.8 14.4
YOLOv5-CE 92.9 92 97.7 5,942,252 12.5 12.2

YOLOv5-GCE 94 90 97.4 2,495,117 6.1 5.4
YOLOv5n 62.4 74.1 73.9 1,761,871 4.2 3.8

From the above table, all the indicators of YOLOv5s_6.0 were better than that of
YOLOv5s_5.0, and although the model size of YOLOv5n was 26.39% of the original
YOLOv5s_6.0 network, the accuracy also decreased significantly. In order to show the
detection effect of these algorithms visually, we plotted them in Figure 12.
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As can be seen from Figure 12, the detection accuracy of the improved algorithm
(YOLOv5-CE) is higher than the other seven algorithms. The YOLOv5-GCE network
has a more obvious advantage in accuracy and complexity than YOLOv3, YOLOv4, and
YOLOx-s. Meanwhile, its parameters and model size decreased to 35.57% and 44.26% of
the YOLOv5-CE, respectively, and the model size was compressed to 5.4 MB.

4. Discussion

Deep learning combined with transfer learning are used to detect the field flat jujube
in this paper. The major improvements include structural improvements, the introduction
of attention mechanisms, the optimization of loss function, and lightweight operations.
Although the mAP of the improved network reaches 97.7% and it has a good effect on



Agriculture 2022, 12, 717 17 of 19

recognition of the flat jujube in a natural environment, increasing rate recognition and
accuracy. There is still the phenomena of false and missed detection. Additionally, there
are still some areas for improvement in this document.

In terms of computer vision on fruit detection and classification, Ibrahim et al. [46]
used the fruit images for 52 species belonging to four different families to build a deep
learning analysis dataset, and they put forward a novel Convolution Neural Network
(CNN) model architecture to extract the fruit features. Compared with the above paper,
our proposed architecture is relatively simple, and subsequent studies should attempt to
apply the proposed algorithm to other objects to enhance the generalization of the model.

In order to obtain a better effect of training, a larger dataset is needed to take full
advantage of deep learning. In the stage of data acquisition, we should consider the effects
of other conditions (such as uneven illumination, recognition at night, greasy weather,
overexposure). To get high-resolution pictures, the Single Lens Reflex (SLR) camera with
the function of auto focus high pixels is used in the process of collecting data. As a result,
there is a blurry background and the replacement of front and rear scene in some pictures.
These problematic pictures will affect the identification effect and even contribute to the
rate of missed and false detections. Therefore, the loss by the function of auto focus
should be taken into account, and we should use cameras that turn off the function of auto
focus to shoot to ensure the quality of pictures. Future studies should rely on a variety of
lightweight networks (such as MobileNet, EfficientNet, ShuffleNet, and GhostNet, etc.)
while maintaining model stability and accuracy to achieve real-time recognition of the
flat jujube.

5. Conclusions

In view of the problem of low efficiency of accurate identification for flat jujube
in the natural environment, this paper proposes a target detection algorithm based on
improved YOLOv5. In terms of the improvement of accuracy, two attention mechanisms
(CA, ECA) are introduced to improve network performance. In terms of the reduction
of complexity, this research makes lightweight operation on the model by improving
structure and the number of the C3 modules, and introducing the Ghost module and the
Depthwise Separable Convolution. With regard to the optimization of the learning process,
we proposed multi-scale training. Meanwhile, the loss function and the post-processing
are optimized accordingly. The following conclusions can be drawn from our experiments:

1. Through the mixed introduction of multiple attention, the AP of mature and immature
jujube reaches 98.1% and 97.2%, respectively. The mAP of the YOLOv5-CE network
reaches 97.7%; it increases by 2% compared with the original YOLOv5s network.

2. After the lightweight operation on the improved network, the mAP reaches 97.4%;
it increases by 1.7% compared with the original YOLOv5s network. In terms of
the complexity of the model, the parameters and the FLOPs decrease by 64.43%
and 61.39%, the detection time and the model size are compressed to 3.5 ms and
5.4 MB, respectively.

3. Compared with the original YOLOv5s, YOLOv5n, YOLOx-s, YOLOv4, and YOLOv3
model, the mAP of YOLOv5-GCE increases by 1.7%, 23.5%, 9%, 5.7%, and 6.7%,
respectively. Additionally, the model size of YOLOv5-GCE reaches 5.4 MB, which is
slightly larger than YOLOv5n (3.8 MB), but it is compressed by 62.5%, 84.3%, 97.8%,
and 97.7% compared with the rest of the models, respectively.

This research uses the method of deep learning to identify the flat jujube in the natural
environment for the first time. Through the improvement and the lightweight operation
on the YOLOv5 network, it realizes real-time detection of high precision on the field flat
jujube, and it reduces the rate of false identifications for field flat jujube in a near-color
background containing leaves and crown. The proposed algorithm has a greater advantage
in performance, meeting the requirement of accuracy and immediacy for picking robots.
Moreover, it is conducive to the lightweight deployment of the model in subsequent
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hardware devices, particularly those asking for real-time detection of the flat jujube field
mounted on mobile terminals.
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