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Abstract: The drip fertigation technique is a modern, efficient irrigation method to alleviate water
scarcity and fertilizer surpluses in crop production, while the precise quantification of water and
fertilizer inputs is difficult for drip fertigation systems. A field experiment of maize (Zea mays L.)
in a solar greenhouse was conducted to meet different combinations of four irrigation rates (I125,
I100, I75 and I50) and three nitrogen (N) fertilizer rates (N125, N100 and N75) under surface drip
fertigation (SDF) systems. The Root Zone Water Quality Model (RZWQM2) was used to assess the
response of soil volumetric water content (VWC), leaf area index (LAI), plant height and maize yield
to different SDF managements. The model was calibrated by the I100N100 scenario and validated by
the remaining five scenarios (i.e., I125N100, I75N100, I50N100, I100N125 and I100N75). The predictions of
VWC, LAI and plant height were satisfactory, with relative root mean square errors (RRMSE) < 9.8%,
the percent errors (PBIAS) within ±6%, indexes of agreement (IoA) > 0.85 and determination of
coefficients (R2) > 0.71, and the relative errors (RE) of simulated yields were in the range of 1.5–7.2%.
The simulation results showed that both irrigation and fertilization had multiple effects on water
and N stresses. The calibrated model was subsequently used to explore the optimal SDF scenarios
for maximizing yield, water use efficiency (WUE) or nitrogen use efficiency (NUE). Among the SDF
managements of 21 irrigation rates × 31 N fertilizer rates, the optimal SDF scenarios were I120N130

for max yield (10516 kg/ha), I50N70 for max WUE (47.3 kg/(ha·mm)) and I125N75 for max NUE
(30.2 kg/kg), respectively. The results demonstrated that the RZWQM2 was a promising tool for
evaluating the effects of SDF management and achieving optimal water and N inputs.

Keywords: RZWQM2; surface drip fertigation; water use efficiency; nitrogen use efficiency

1. Introduction

Increasing water scarcity is one of the world’s most widespread concerns affecting
agricultural production [1]. It was estimated that about 24% and 27% of the total agri-
cultural area suffer high and very high agricultural drought hazard zones in the world,
respectively [2]. Improving water use efficiency (WUE) is essential for alleviating water
shortages. Besides water use, fertilizer remains another critical input determining crop
root development and plant growth. However, fertilizer use efficiency is low all over the
world, and fertilizers are lost at 40–70% (Nitrogen), 80–90% (Phosphorous) and 50–90%
(Potassium) [3–5]. The excess fertilizer can cause the augmentation of nutrient pollution in
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soil and groundwater through leaching and runoff. Therefore, it is of practical significance
to improve both water and fertilizer use efficiency in agricultural production.

The drip fertigation technique is a modern innovative irrigation method, which is
verified to be an efficient irrigation method for reducing both water and fertilizer use [6,7].
This technique applies water and fertilizer in small quantities precisely at the crop root
zone through a drip fertigation system. In the past decade, there has been growing interest
in applying drip fertigation to lower value field crops, such as maize and cotton [8]. It was
reported that drip fertigation could raise WUE by 30–40% [9] and improve nitrogen use
efficiency (NUE) by ~29%, compared to traditional flood irrigation and fertilization [10].
However, the effect of drip fertigation on crop growth parameters seems to be not stable,
e.g., leaf area index, plant height and yield. Zhou et al. [11] reported that leaf area index
(LAI) affected by drip fertigation increased by 7–65%. Lamm et al. [8] summarized a
number of maize experiments and demonstrated that maize yields with drip fertigation
ranged widely from −51% to 30%, with an average positive increase of 4%, compared to
other alternative irrigation systems. These large variations might be mainly because the
management practices of water and fertilizers in drip fertigation were difficult to design
accurately, e.g., water and fertilizer rates and irrigation scheduling [12,13]. A precise
decision about water and fertilizer inputs is the key issue for increasing WUE and NUE
without yield penalties.

Agricultural decision support tools are very useful for water and fertilizer decision-
making, such as RZWQM2, DSSAT, WOFOST, APSIM, SWAP, and AquaCrop [14,15]. They
need to simulate crop responses to water, and nutrient stresses precisely by integrating
the physical, biological and chemical processes of an agricultural system [15,16]. Among
them, the RZWQM2 (Root Zone Water Quality Model) was selected in this paper for the
following reasons: (1) process-oriented model based on highly frequent spatial and tempo-
ral measurements of the driving variables, (2) DSSAT was coupled with RZWQM2, which
provided a complete set of biophysical crop models when simulating crop growth and
development and (3) RZWQM2 had advanced capabilities for evaluating limited irriga-
tion strategies, such as time-segment water distribution limitations, evapotranspiration
(ET) and soil water deficit-based irrigation plants [17]. Previous studies have shown the
effectiveness of RZWQM2 on the simulation of the drip-irrigated field [18–20]. Qi et al. [18]
simulated full and deficit irrigation by RZWQM2 and accurately predicted the dates of
water stress occurrence and the responses of grain yield (error ≤5%), LAI, soil water con-
tent and daily ET with coefficients of determination (R2) ≥ 0.64 and model efficiencies
(ME) ≥ 0.57. Gu et al. [19] applied a water stress-based irrigation scheduling in a drip-
irrigated maize field by using RZWQM2 and provided water savings of as much as 16–35%
with a negligible change in grain yield; about 0.03–3.81% decrease. Then, Chen et al. [20]
and Zhang et al. [21] applied RZWQM2 to simulate the effects of drip irrigation rates and
scheduling on maize phenology and investigated the optimum irrigation strategy with a
maximum of 50% water savings. Other similar studies also suggested that the water stress-
based irrigation regimes might save water use without yield penalty [22,23]. Meanwhile,
the combined application of water and fertilizer in a drip fertigation system has multiple
effects on water and nutrient distribution in the soil, which, therefore, influenced plant
uptake and growth [24,25]. Thus, it is important to comprehensively consider both water
and nitrogen (N) stress for exploring optimal irrigation and fertilization regimes in drip
fertigation systems.

The objective of this study was to (1) test the performance of RZWQM2 in simulating
soil volumetric water content (VWC), leaf area index (LAI), plant height, and maize yield
under a series of surface drip fertigation (SDF) practices in a solar greenhouse; (2) evaluate
the effects of irrigation and N fertilizer rates in a drip fertigation system on water and N
stresses; (3) determine the optimal SDF managements for maximizing yield, WUE and
NUE by using the calibrated model.
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2. Materials and Methods
2.1. Experimental Data

The field experiment data were obtained during the 2012 growing season of maize
(Zea mays L.) from 3 August to 5 November in a solar greenhouse at the Yangzhou Uni-
versity (32◦23′ N, 119◦25′ E) in Yangzhou, China. The climate in this area is a subtropical
monsoon climate with an average altitude of 3.5 m and an average annual temperature of
15 ◦C. The soil type at this site is sandy loam, and the soil physicochemical properties are
detailed in Table S1 (Supplementary Materials).

The field experiment was conducted with six surface drip fertigation (SDF) scenarios.
The greenhouse layout and the experimental design of the field experiment are shown
in Figure S1 (Supplementary Materials). Each scenario had four parallel and randomly
arranged in a completely random design. Detailed information on the field experiment
was reported in our previous study [26]. Briefly, a combination of four irrigation rates
and three nitrogen (N) fertilizer rates were tested with SDF systems. The six scenarios in
SDF systems applied were as follows: (1) the irrigation rate was set as 125% crop potential
evapotranspiration (ET) and the N fertilizer rate was set as 100% local official recommended
dose (LOD), named I125N100; (2) 100% ET and 100% LOD, named I100N100; (3) 75% ET and
100% LOD, named I75N100; (4) 50% ET and 100% LOD, named I50N100; (5) 100% ET and
125% LOD, named I100N125; (6) 100% ET and 75% LOD, named I100N75. Each scenario
applied the same scheduling of irrigation and fertilization. The amounts and scheduling of
irrigation and N fertilization in each scenario are shown in Table 1 and Figure 1.

Table 1. Irrigation and N fertilizer rates in six surface drip fertigation (SDF) scenarios.

Scenarios Irrigation
Rates

Total Irrigation
Amounts (mm)

N Fertilizer
Rates

Total N Fertilizer
Amounts (kg/ha)

I125N100 125% ET 243.1 100% LOD 151
I100N100 100% ET 205.8 100% LOD 151
I75N100 75% ET 166.6 100% LOD 151
I50N100 50% ET 128.0 100% LOD 151
I100N125 100% ET 205.8 125% LOD 189
I100N75 100% ET 205.8 75% LOD 113

Note: ET: crop potential evapotranspiration, which was calculated by the Penman–Monteith equation [27]. LOD:
local official recommended dose. Irrigation water and N fertilizer rates were set to different ET and LOD levels,
respectively. The N fertilizer in the form of NKP fertilizers (10-5-5 and 15-15-15) was applied in each scenario.

Soil volumetric water contents (VWC) were measured at seven soil depths (viz., 0–5,
5–15, 15–25, 25–35, 35–45, 45–55, 55–65 cm) according to the weighing method. The leaf
area index (LAI) was obtained by measuring the length and width of the leaf sample with
a tape. The plant height was determined by weekly measurements of the distance from
the ground to the tallest leaf. To estimate the yield in each scenario, randomly selected
samples were weighed to obtain mean values and calculated per hectare. The crop samples
for LAI, plant height and yield measurement were all measured in sextuplicate. Further,
air temperature and relative humidity were determined by ventilated psychrometers (wet
and dry bulb) (model VP1, Delta-T Devices, Cambridge, England), solar radiation was
determined by pyranometers (model Middleton EP08-E, Brunswick Victoria, Australia).
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Figure 1. Mean relative humidity, max/min temperature, irrigation and fertilization scheduling in
the field experiment during the experimental period.

2.2. Modeling
2.2.1. RZWQM2 Description

The RZWQM2 model (current version 4.2) coupled with the DSSAT (version 4.0)
modules was applied in this study. The unsaturated soil water flow and redistribution in
this model were simulated using the Richards equation [17]. The soil moisture retention
curve is corrected by the Brooks–Corey equations [28]. The Shuttleworth–Wallace (S–W)
ET model is used to calculate the atmosphere ET demand. The S–W ET model is an
extension of the Penman–Monteith equation, but the former takes into account incomplete
canopy cover and plant height in ET estimations. Plant water uptake was calculated using
the Nimah–Hanks equation [29]. The water stress factor (WSF) is the indicator of water
deficiency by calculating photosynthesis and factors of dry matter accumulation processes.
Based on the ratio of root water uptake to ET, the formula for WSF is calculated as [30]:

WSF = ∑(RU(L) · RLD(L) · L)/Tp (1)

where RU (L) and RLD (L) are the potential root uptake per unit root length and the root
length density in soil layer L, respectively; L is the depth of the soil layer (cm); Tp is the
potential transpiration (cm). WFS = 1 indicates no water stress, and WFS < 1 indicates some
water stress.

The nitrogen stress factor (NSF) is used to simulate the effect of N shortages on plant
growth processes, which is calculated as [17]:

NSF = (ANC−MNC)/(CNC−MNC) (2)

where CNC and MNC are the critical and minimum N concentrations (N-g/g); ANC is the
actual N concentration (N-g/g). NFS ranges from 1 for no stress to 0 for complete stress.

2.2.2. Model Calibration and Validation

The RZWQM2 was employed to calibrate and validate against measured VWC, LAI,
plant height and grain yield under the six SDF scenarios in the field experiment. The model
was calibrated with data collected from the I100N100 scenario. The remaining five scenarios
(i.e., I125N100, I75N100, I50N100, I100N125 and I100N75) were used to validate the model.
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The daily weather data needed to run the model were obtained from the sensors in the
solar greenhouse, which included min/max air temperature, relative humidity and solar
radiation. The wind speed and precipitation in the solar greenhouse were set to zero in
the model. The 180-cm-deep soil profile used in this model was divided into 10 horizons:
0–5, 5–15, 15–25, 25–35, 35–45, 45–55, 55–65, 65–100, 100–150 and 150–180 cm. The initial
bulk density, particle size distribution and organic matter in the soil profile were set to the
observations. The soil hydraulic parameters were calibrated based on the observed VWC
data, as shown in Table 2. Moreover, the plant parameters were manually adjusted to fit
the observed LAI, plant height and grain yield, as shown in Table 3.

Table 2. Calibrated RZWQM2 soil hydraulic parameters for the experimental sites.

Depth
(cm)

Soil Water Retention Vertical Ksat
(cm/h)

Soil Root
Growth Factorsθ (cm) λ θs θr θ1/3 θ15

0–5 −8.96 0.17 0.35 0.10 0.24 0.17 3.15 1.00
5–15 −17.00 0.33 0.37 0.13 0.22 0.16 3.22 0.90

15–30 −7.38 0.35 0.47 0.15 0.23 0.17 3.46 0.80
30–45 −23.89 0.16 0.28 0.11 0.22 0.17 1.81 0.70
45–60 −10.47 0.18 0.30 0.13 0.22 0.18 2.83 0.50
60–90 −5.53 0.15 0.31 0.10 0.21 0.16 2.83 0.30
90–120 −6.79 0.22 0.32 0.11 0.20 0.14 2.33 0.15

120–150 −16.68 0.30 0.40 0.07 0.20 0.12 3.02 0.05
150–179 −14.65 0.32 0.40 0.04 0.17 0.08 2.59 0.01

Note: θ: bubbling pressure, λ: pore size distribution index, θs: saturated water content, θr: residual water content,
θ1/3: 33 kPa water content, θ15: 1500 kPa water content, Ksat: saturated hydraulic conductivity. The other required
parameters were computed using the RZWQM2 default constraint for all layers.

Table 3. Calibrated crop development parameters for maize (Zea mays L.).

Parameter Description Value

P1 Thermal time from seedling emergence to the end of the juvenile
phase (◦C·days). 120

P2 Delay in development for each hour that day length is above
12.5 h (days/hr). 0.875

P5 Thermal time from silking to physiological maturity (◦C·days). 800
G2 Maximum possible number of kernels per plant. 800

G3 Kernel filling rate during linear grain filling stage under optimum
conditions (mg/day). 10

PHINT Phylochron interval between successive leaf tip appearance (◦C·days). 60
Max Maximum plant height at maturity (cm). 320

PB Plant biomass at half of maximum height
(g/plant [<=100] OR kg/ha [>100]). 60

2.2.3. Model Accuracy Statistics

Four statistics were used to evaluate the performance of RZWQM2 in simulating VWC,
LAI and plant height relative to observations: relative root mean square error (RRMSE),
the percent error (PBIAS), index of agreement (IoA) and determination of coefficient (R2).
The calculation formulae are as follows:

RRMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2/O (3)

PBIAS = 100 ·
n

∑
i=1

(Oi − Pi)/
n

∑
i=1

Oi (4)

IoA = 1−
n

∑
i=1

(Oi − Pi)
2/

n

∑
i=1

(
∣∣Pi − P

∣∣+ ∣∣Oi −O
∣∣)2 (5)



Agriculture 2022, 12, 672 6 of 14

R
2
=

[
n

∑
i=1

(Oi −O)(Pi − P)

]2

/
n

∑
i=1

(Oi −O)
2

n

∑
i=1

(Pi − P)2 (6)

where n is the number of observations, Oi and Pi are the measured and simulated values,
respectively. O and P are the average measured and simulated values, respectively. Model
performance is considered acceptable if RRMSE <30%, −15% < PBIAS < 15%, IoA > 0.7
and R2 > 0.7 [31,32]. Due to the relatively low number of grain yield values per scenario
combination, the relative error (RE) was used to evaluate the model accuracy, which was
calculated as RE = (Pi − Oi)/Oi [33]. A Wilcoxon test was used to evaluate the statistical
difference between the observed or simulated results of six scenarios. A p-value < 0.05 was
considered statistically significant.

2.2.4. Quantification of Surface Drip Fertigation Management Effects using RZWQM

It is important for policymakers and decision-makers to predict the effects of SDF
practices on yield, WUE and NUE. After calibrating and validating RZWQM2 with ex-
perimental data, the 21 × 31 SDF scenarios with different combinations of irrigation and
fertilization practices were investigated by using RZWQM2: (i) 21 irrigation rates from
50% to 150% ET at 5% ET interval in SDF management; (ii) 31 N fertilization rates from 0%
to 150% LOD at 5% LOD interval in SDF management. The WUE and NUE in these SDF
scenarios were quantified as follows:

WUE = yield/(IM + ∆SW) (7)

NUE = (yieldNR − yieldNR=0)/(NA + ∆SN) (8)

where WUE (kg/(ha·mm)) and NUE (kg/kg) are the water use efficiency and the N use
efficiency, respectively. IM (mm) and NA (kg/ha) are the total irrigation amount and
total N fertilizer amount, respectively. 4SW (mm) and 4SN (kg/ha) are the difference
between water and N stored in the soil between planting and harvest, respectively. The
total consumed nitrogen (TCN) is the sum of NA and4SN.

3. Results and Discussion
3.1. Soil Volumetric Water Content and Crop Growth

The daily observed and simulated VWC at seven soil depths are shown in Figure 2 and
the simulated statistics are presented in Table 4. For all soil layers, the model satisfactorily
predicted VWC with RRMSE < 9.8%, PBIAS within ±6%, IoA > 0.85 and R2 > 0.71.

Table 4. Statistical criteria (i.e., RRMSE, PBIAS, IoA and R2) results obtained by comparing the
observed and simulated VWC (cm3/cm3), LAI and plant height for each SDF scenario.

Scenarios
VWC LAI Plant Height

ObVWC SimVWC RRMSE PBIAS IoA R2 RRMSE PBIAS IoA R2 RRMSE PBIAS IoA R2

I125N100 0.214 0.221 8.6% −3.1% 0.87 0.74 7.1% 4.7% 0.97 0.96 5.7% −1.6% 1.00 1.00
I100N100 0.208 0.211 5.3% −1.4% 0.94 0.81 3.6% 3.4% 0.99 0.97 1.9% 1.9% 1.00 1.00
I75N100 0.185 0.186 6.1% −0.8% 0.97 0.91 5.5% 3.2% 0.98 0.95 2.3% 1.5% 1.00 1.00
I50N100 0.167 0.171 9.4% −2.3% 0.94 0.83 8.8% 4.1% 0.95 0.87 3.2% −0.8% 1.00 1.00
I100N125 0.200 0.211 9.8% −6.0% 0.85 0.72 5.1% 4.4% 0.99 0.99 3.4% 1.9% 1.00 1.00
I100N75 0.204 0.211 8.7% −3.5% 0.88 0.71 6.2% 5.4% 0.98 0.98 2.5% 1.8% 1.00 1.00

Note: VWC: soil volumetric water content (cm3/cm3), ObVWC and SimVWC: the observed and simulated average
value of VWC, respectively, LAI: leaf area index (m2/m2). Other notations used in this table are the same as those
in Table 1.
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scenario at the depths of 0–5 (a), 5–15 (b), 15–25 (c), 25–35 (d), 35–45 (e), 45–55 (f), 55–65 cm
(g) and the mean values of the seven layers (h). The I100N100 scenario was the calibration phase. The
remaining five scenarios (i.e., I125N100, I75N100, I50N100, I100N125 and I100N75) were the validation
phase. Other notations used in this table are the same as those in Table 1.

Both the observed and simulated VWC values were significantly higher as the irrigation rates
increased (p < 0.01) (Figure 2a–h), which followed the order
I50N100 < I75N100 < I100N100 < I125N100. The mean observed VWC increased from 0.167 cm3/cm3

for I50N100 to 0.214 cm3/cm3 for I125N100 and the mean simulated VWC increased from
0.171 cm3/cm3 for I50N100 to 0.221 cm3/cm3 for I125N100 (Table 4). Similar trends were
reported in most previous studies [13,20]. This phenomenon was because there was no
recharge from groundwater and precipitation, and irrigation was the unique source of
water recharge in the solar greenhouse [34]. For the upper soil layers (Figure 2a–c), the
VWC values tended to have sharper peaks than deeper soil layers (Figure 2d–g) after
irrigation events. It indicated that the deeper soil profile might have lower water retention
capacity due to the larger bulk density and the smaller soil porosity structure of the deeper
soils [35]. Comparing different N fertilizer rates, there were no significant differences in



Agriculture 2022, 12, 672 8 of 14

VWC among the I100N125, I100N100 and I100N75 scenarios (p > 0.05). It might be explained
by the fact that the soil ET was not related to fertilizer rates [36].

Compared with the VWC, the simulated crop growth parameters (i.e., LAI and plant
height) were in better agreement with the observations (Figure 3a,b and Table 4). The
RRMSE, PBIAS, IoA and R2 of the observed and simulated values of LAI and plant height
were <8.8%, within ±5.4%, >0.95 and >0.87, respectively. The statistical criteria were
also better than those in previous studies [18,21]. Both the observed and simulated LAI
of the I125N100 scenario were significantly larger than I100N100, I75N100 and I50N100 sce-
narios (p < 0.05), shown in Figure S2 (Supplementary Materials). The LAI was also sig-
nificantly higher as the N fertilizer rates increased (p < 0.01), which followed the order
I100N125 > I100N100 > I100N75. The phenomena were because adequate water and N in-
creased the chlorophyll content and delayed the fading of crop leaves [37]. A similar
phenomenon was found in Bu et al. [38] and Peng et al. [39]. In addition, the observed and
simulated plant heights had no significant difference among the SDF scenarios (p > 0.05)
(Figure 3b).
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The RE values between the observed and simulated yields were in the range of
1.5–7.2% (Figure 3c), indicating the grain yield was also well-simulated. Meanwhile, the
simulated yields were underestimated by a mean of 5.2% for the scenarios in the model.
This might be attributed to higher soil temperatures prolonging the filling stage when
the meristem was underground [40]; however, the soil temperature was not calibrated
in the paper, and it was likely to be underestimated due to the greenhouse. As a result,
the simulated yields might also be underestimated in this model. As demonstrated in
Figure 3c, both observed and simulated yields significantly decreased as the irrigation rates
decreased (p < 0.01). The simulated yields under the same fertilizer rates were 10,454 kg/ha
for I125N100, 10,284 kg/ha for I100N100, 9578 kg/ha for I75N100 and 8972 kg/ha for I50N100.
This might be attributable to the occurrence of water stress, which is caused by lower
irrigation amounts [41]. The observed and simulated yields also significantly decreased as
the N rates decreased (p < 0.01), viz., I100N125 > I100N100 > I100N75. The simulated yields
under the same irrigation rates were 10446 kg/ha for I100N125, 10284 kg/ha for I100N100
and 9767 kg/ha for I100N75. This might be attributable to the occurrence of N stress, which
resulted from lower N fertilizer amounts [42]. Additionally, the simulated yields in all
six SDF scenarios were underestimated compared to the corresponding observed value.
It might be that the low wind speed in the greenhouse reduced ET and led to higher
temperatures, which might be negative for crop growth [43].

3.2. Water and N Stress Factors Simulation

The water stress factor (WSF) was simulated based on the ratio of potential root
water uptake to potential plant transpiration in RZWQM2 (WSF < 1 indicates some water
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stress) [30]. As shown in Figure 4a, the computed WSF values decreased as the irrigation
rates decreased, i.e., I125N100 > I100N100 > I75N100 > I50N100. The mean WSF from the
planting to harvest was 1.00 for I125N100 (no stress), 0.99 for I100N100, 0.92 for I75N100 and
0.88 for I50N100. It indicated that the maize field would suffer more severe water stress
if deficit irrigation strategies were adopted. It reconfirmed that the crop growing under
a relatively high water stress would show a significant yield loss (p < 0.01) (Figure 3c).
Meanwhile, the water stresses were removed or alleviated in a short period (1 day) after
each irrigation event. However, water stress reoccurred soon if the irrigation amount
was insufficient (i.e., I75N100 and I50N100), especially during the crop grain filling stage
(23 September to 3 November). This might be because the crop grain filling stage of maize,
which was the most vigorous and consumed the most water, would demand more than 30%
water compared to other crop stages [44]. In this way, the simulated yield of I75N100 and
I50N100 decreased by 15.8% and 18.3% compared to I125N100 (Figure 3c). Liu et al. [45] also
reported that the optimization of irrigation in the crop’s late stages could alleviate water
stress and results in a 16.3% yield increase and 4.9% water saving. Thus, policymakers and
decision-makers could reschedule irrigation rates based on a water stress-based method to
improve yield and WUE. Additionally, the number of days, forwhich WSF was less than
0.9, was 2 days for I100N125, 1 day for I100N100 and 0 days for I100N75. This slight difference
was attributed to N stimulated crop growth, then the plant consumed more water [46].
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as those in Table 1.

The nitrogen stress factor (NSF) of maize was simulated based on critical and minimum N
concentrations in RZWQM2; NSF < 1 also indicates some N stress [17]. As shown in Figure 4b,
the NSF values decreased as the fertilizer rates decreased, i.e., I100N125 > I100N100 > I100N75, where
I100N75 suffered from more serious N stress. This was the main reason for the decrease in
the simulated yield of I100N100 and I100N75, which decreased by 1.6% and 7.3% compared
to I100N125 (Figure 3c). These crop N stresses mainly occurred at the end of the juvenile
stage (15 August to 21 August), flowering stage (21 August to 11 September) and crop
grain filling stage (23 September to 5 November). These stages consumed more N than the
germination and emergence stage (5 August to 15 August) and silking stage (11 September
to 23 September) [47]. These results showed that the scheduling of N fertilizer should be
optimized according to crop growth stages. Similar findings have been reported by Zhou
et al. [11]. and Peng et al. [39]. Appropriately increasing the amount of N fertilizer could im-
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prove the photosynthetic capacity of maize at late growth stages and prolong the functional
period of leaves, which led to an increase in yield [48]. Additionally, there was some degree
of N stresses under the I100N100 scenario, indicating that the LOD was underestimated in
this area. Thus, a nitrogen stress-based fertilization method was promising to optimize
grain yield. Compared to the scenarios of different irrigation rates (i.e., I125N100, I100N100,
I75N100 and I50N100), the NSF slightly increased with the decreased irrigation rates, the
and I125N100 scenario was subjected to higher N stress than I100N100, I75N100 and I50N100.
This was attributed to adequate irrigation, which stimulated crop growth while consuming
more N and causing N stress [49]. In conclusion, the water and N inputs in the SDF system
had the combined effects on crop water and N stress, and they should be synthetically
considered for optimizing SDF management.

3.3. Quantification of Grain Yield, Water and Nitrogen Use Efficiency under the Influence of
Surface Drip Fertigation Managements

After model calibration and validation, a combination of 21 × 31 SDF scenarios
(21 irrigation rates × 31 N fertilizer rates) were simulated by using calibrated RZWQM2.
As shown in Figure 5a, the simulated yields of each adequate irrigation rate (i.e., from I80 to
I150) increased rapidly when N fertilizer rates increased from N0 to N100. Then, the yields
remained basically stable and fluctuated within ±3.6% for adequate irrigation rates if the
N fertilizer rates increased from N100 to N150. This plateau phenomenon might be because
crop growth and grain filling had also entered a plateau period due to adequate water
and N [50]. In this way, more N input was fertilizer-wasting without an increase in yield.
The I120N130 scenario allowed the crop to achieve the highest yield potential (10,516 kg/ha,
Table 5). A similar phenomenon was found in Chen et al. [50] and Xing et al. [51]. When the
irrigation rates were lower than I80, the maximum yield generally appeared at a moderate
N fertilizer rate (i.e., N70). It was found that the yield would decrease if N fertilizer rates
raised from N70 to N150. It might be attributed to lower crop root nutrient uptake, which
would emerge if N was higher than a certain level [52]. Therefore, excessive N fertilizer
was also wasted.

Table 5. Optimal SDF scenarios obtained by maximizing yield, WUE and NUE.

Scenario Yield (kg/ha) WUE (kg/(ha·mm)) TCN (kg/ha) NUE (kg/kg)

I120N130 10516 * 41.5 216 25.3
I50N70 9559 47.3 * 183 23.1
I125N75 9754 37.4 161 30.2 *

Note: water use efficiency, TCN: total consumed nitrogen, NUE: nitrogen use efficiency, *: the highest potential
value of yield, WUE or NUE. Other notations used in this table are the same as those in Table 1.

Compared to different N fertilizer rates, the WUE in each irrigation rate increased
rapidly from N0 to N70 (Figure 5b). This indicated that N fertilizer rates were the key
controlling factor affecting WUE at the stage of low fertilization [53]. However, if the N
fertilizer rates were higher than N70, the variation of WUE was limited and fluctuated
within ±13.0%. This was because the yield remained basically stable at high fertilizer rates
from N70 to N150 (Figure 5a). Meanwhile, compared to different irrigation rates under the
same fertilization, WUE increased with the decreased irrigation rates. The optimal WUE
appeared in the I50N70 scenario, with a value of 47.3 kg/(ha·mm) (Table 5). While the yield
of I50N70 was 9559 kg/ha, which was lower than 10.0% of the highest yield potential in
I120N130 (10516 kg/ha), this was an acceptable rate of yield reduction.

In the analysis of TCN and NUE (Figure 5c,d), the difference in TCN in each irrigation
rate was caused by the N consumed in the soil (Equation (8)). It was found that TCN had
positive correlations with irrigation rates under the same fertilization, except for I50 and
I60. This phenomenon might be because more soil N would be overdrawn by the maize
if the irrigation was adequate [54]. Moreover, among all scenarios, a peak value of NUE
appeared at the rate of N70 or N75. This might be because the yield would stop increasing
or even slightly decrease as the nitrate reductase activity of the maize reached its maximum
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at high N rates [55]. The maximum NUE was 30.2 kg/kg in the I125N75 scenario (Table 5).
In this scenario, the yield and WUE were 9754 kg/ha and 37.4 kg/(ha·mm), respectively,
which was lower than 7.8% of the highest yield and 26.5% of the highest WUE. The results
above could be applied to obtain the optimum irrigation and fertilizer rates in this area.
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4. Conclusions

The drip fertigation technique is widely used around the world to improve WUE and
NUE. The performance of the RZWQM2 was satisfactory in simulating VWC, LAI, plant
height and maize yield (Zea mays L.) under different drip fertigation practices in a solar
greenhouse. Both water and N stresses were associated with the combination of water
and N fertilizer inputs. Based on the calibrated model, the optimal SDF practices could
be achieved for maximizing maize yield, WUE and NUE. In general, higher irrigation and
fertilization rates increased the yield, and the yield was maximized under SDF management
with both adequate irrigation and fertilization rates. Maximum WUE could be obtained
in the SDF management with moderate irrigation and fertilization with some sacrifice in
grain yield. Maximum NUE was found in the SDF management with adequate irrigation
but low fertilization rates, and there was also an acceptable sacrifice in grain yield. The
results provided optimum irrigation and fertilizer rates for a SDF system in this area and
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also demonstrated that the RZWQM2 was a promising tool for evaluating the effects of
SDF management and achieving optimal water and N inputs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12050672/s1, Table S1: The soil physicochemical
properties at the field experiment site; Figure S1: Drip fertigation system layout and experimental
design in the solar greenhouse; Figure S2: The simulated leaf area index of the surface drip fertigation
(SDF) scenarios.
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