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Abstract: The Tarim River Basin (TRB) is one of the world’s largest cotton-producing areas, and its
agricultural water use accounts for up to 95% of the total water consumption in the basin. Quantifying
the future changes in the irrigation area carrying capacity under global warming is therefore essential
in TRB. In this study, we analyzed the variation in the irrigation area in TRB over the last few decades,
utilized the nonlinear autoregressive with an exogenous input neural network to simulate the future
changes in the available water resources, and predicted the future irrigation area carrying capacity
based on the water balance equation. The results showed that the present (1970–2020) irrigation
area in TRB exhibited an increasing trend from 491 km2 in 1970s to 1382 km2 in 2020, as most of the
natural vegetation was transformed into cropland. In the future (2022–2050), the available water
resource will show an upward tendency while the irrigation area carrying capacity mainly ranges
from 12 × 102–21 × 102 km2 and 17 × 102–30 × 102 km2 under scenarios SSP (shared socioeconomic
pathway) 245 and SSP585, respectively. The simulated results will provide useful information for the
allocation of water resources and the regional sustainable development of TRB.

Keywords: arid region; snowmelt-driven runoff; climate change; irrigation area; machine learning

1. Introduction

Arid regions occupy 41% of the global land surface area and are inhabited by roughly
more than 1/3 of all human beings in the world [1], and agricultural production in these
regions is extremely critical in order to meet the basic needs of people [2]. However,
the agricultural production system in these regions is facing increasing challenges due
to rapidly growing populations, while water resources are usually scarce and are highly
affected by climate change [2,3]. The most notable example of an arid area is the Tarim
River Basin (TRB), which is situated on the margins of the Taklimakan Desert and is the
most arid region in China, with an annual mean precipitation below 50 mm and annual
mean evaporation over 3000 mm [4,5]. TRB is one of the largest cotton-producing areas in
the world, with the annual mean cotton production representing more than 1/3 of China’s
total production, and its agricultural water use (mainly irrigation) accounting for up to 95%
of the total water consumption in the basin [6].

The water supply for irrigation in TRB is mainly from the streamflow [7]. Hydrologi-
cally, TRB is a closed catchment and is mainly recharged by precipitation and glacier-melt
and snowmelt water with headwaters in the surrounding mountainous regions [8]. Al-
though TRB holds about 26% of China’s total number of glaciers with 41% of the total
volume, the region still faces serious water pressure because it falls in the extreme con-
tinental arid desert climate zone [9,10]. This makes the region one of the most complex
and vulnerable areas to global warming, as warming will increase the rate of evaporation,
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change the ratio of precipitation versus snowfall, and accelerate the melt of glaciers and
snow [8]. However, quantitative analyses to predict the future changes in the irrigation
area carrying capacity in TRB under the background of global warming are still limited [11].
Some studies have focused on the historical total irrigation water requirement and water
supply in TRB [12–14]. Several studies have analyzed the irrigation area carrying capacity
in TRB in different runoff frequencies [15–17]. They concluded that the planned irrigation
area (i.e., 6.47 × 102 km2 in the mainstream of TRB) would be overloaded in low flow years
(i.e., 50% and 75% runoff frequency) and affect the ecological water supply [15–17]. Re-
cently, some studies have been conducted on the impact of climate change on the runoff for
the upper Tarim River [11,18,19]. However, the impact of climate change on the irrigation
area carrying capacity in TRB is still unknown.

This study was conducted to quantify the future irrigation area carrying capacity in
TRB under global warming. The objectives of this study are as follows: (1) to analyze the
variation in a long-term irrigation area in the mainstream of TRB, (2) to project the future
total water availability in the mainstream of TRB under various climate scenarios, and
(3) to quantify the future irrigation area carrying capacity under various climate scenarios
based on water resources’ availability and utilization in TRB. The prediction of future
changes in the irrigation area carrying capacity in TRB can provide useful information for
the allocation of water resources and regional sustainable development, and can serve as
a reference for arid regions such as the Heihe River Basin and the Shiyang River Basin in
Northwest China, where the water supply for irrigation is sensitive to climate change.

2. Materials and Methods
2.1. Study Site and Data Sources

TRB, with an area of 1.02 × 106 km2, which is located on the edge of the Taklimakan
Desert, is one of the world’s largest closed hydrological drainage systems (Figure 1).
The climate of the basin is characterized by an extremely arid climate with an annual
precipitation below 50 mm, temperatures ranging from −35 ◦C to 40 ◦C, and annual
potential evaporation above 3000 mm [4]. In hydrological terms, TRB was recharged
by the Aksu, Yarkant, and Hotan Rivers through glacier-melt water, snowmelt water,
and precipitation from high mountainous regions [20]. Stretching from Xiaojiake, the
mainstream of TRB is 1321 km long and can be divided into three sections (Figure 1):
Alar to Yingbaza as the upstream section with a length of 495 km, Yingbaza to Qiala
as the midstream section with a length of 398 km, and Qiala to Taitema Lake as the
downstream section with a length of 428 km. The natural vegetation types in this region
mainly include herbs such as Poacynum hendersonii, Glyzyrrhiza inflate, and Karelinia capsica;
shrubs such as Tamarix spp., Lycium ruthenicum, and Nitraria sibirica; and arbors such as
Populus euphratica [21]. Crops in this region mainly include cotton, bean, and melon; in
particular, cotton is the dominant crop in the basin [14]. As the rainfall in this area cannot
meet the requirement of crops and vegetation communities, the survival of this vegetation
mainly depends on the stream [4].

Land use data with a resolution of 1 km (Available online: http://www.tpedatabase.
cn/, accessed on 12 December 2021) [22] over the period of the 1970s and 1980s, as well
as 1995, 2000, 2010, and 2020, were obtained. The irrigation quota data of TRB were
collected from the TRB Management Bureau [15]. Because of the water inflow to the Alar
station, the gauge station of the upper Tarim River is a key factor for determining the total
water availability in the mainstream of TRB [11], and most of the total water inflow to the
basin was recharged by the upper three tributaries (i.e., Aksu, Yarkant, and Hotan Rivers)
through glacier-melt water, snowmelt water, and precipitation from high mountainous
regions [23]. The monthly flow discharge data from the Alar hydrological station and the
monthly temperature and precipitation data (Available online: http://poles.tpdc.ac.cn/,
accessed on 12 December 2021) in the upper three tributaries over the period of 1957 to
2017 were collected to model the water availability in the mainstream of the basin. To
predict the changes in the irrigation area carrying capacity of TRB during 2022–2050, the
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monthly temperature and precipitation data over the upper three tributaries were derived
from five climate models (i.e., BCC-CSM2-MR, CanESM5, TaiESM1, INM-CM4-8, and
MIROC6) of the coupled model intercomparison project phase 6 (CMIP6) under scenarios
SSP (shared socioeconomic pathway) 245 and SSP585 [24]. The climate model outputs were
bias-corrected and downscaled to a spatial resolution of 0.25◦ × 0.25◦ (Available online:
https://www.nccs.nasa.gov/, accessed on 12 December 2021) [25].

Figure 1. The study area of the Tarim River Basin, including digital elevation model (DEM), hydro-
logical stations, and locations of the upper three tributaries (i.e., Aksu, Yarkant, and Hotan Rivers)
and the mainstream.

2.2. Method
2.2.1. Analysis of Irrigation Area Carrying Capacity

The irrigation area carrying capacity (A) is given by the following:

A = Wirrigation/I, (1)

where A denotes the irrigation area (km2), and Wirrigation and I denote the volume of
irrigation water (108 m3) and irrigation quota per unit area (m3 km−2), respectively.

Based on the water balance equation, the volume of irrigation water Wirrigation is given
by the following:

Wirrigation = Wtotal − Wlife − Windustry − Wecology − Wloss, (2)

where Wtotal denotes the volume of total water inflow to the mainstream (108 m3), and
Wlife, Windustry, Wecology, and Wloss denote the volume of domestic use (108 m3), industry
use (108 m3), ecology (108 m3), and evaporation loss (108 m3) in the mainstream of TRB,
respectively. These data were collected from the TRB Management Bureau.

2.2.2. Nonlinear Autoregressive with Exogenous Input (NARX) Neural Network

The hydrological processes in TRB respond in a complex way to the variations in
climate and glaciers [8]. Moreover, as the complexity of real-world conditions cannot be
fully expressed, these deficiencies inevitably increase the uncertainty of physics-based
model inputs, as well as the corresponding outputs [26]. These all increase the difficulty of
runoff simulation in the basin. Recently, machine learning methods have been widely used
as good alternative approaches compared with conventional models as they can directly
solve problems when the relationships between associated explanatory and explained
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variables are difficult to express [27]. In this work, the NARX neural network model [28]
was used to simulate the water inflow at the Alar station (Figure 1). The NARX network is
a special type of recurrent neural network that models the process based on lagged input
and output variables and prediction errors [29]. The NARX network has gained popularity
in the last few years thanks to its accuracy and long-term memory in the prediction of
hydrological time series [5,30]. Especially for a small sample size, the NARX network can
obviously outperform long short-term memory, which is widely known to perform well on
the prediction of time series [31]. The NARX network can be mathematically formulated
as follows:

y(t) = f
[
y(t − 1), · · · , y

(
t − dy

)
; x(t − 1), · · · , x(t − dx)

]
, (3)

where f [·] is the nonlinear function obtained by a learning algorithm. The model output
y(t) denotes the monthly water inflow to the Alar station of the upper Tarim River at time
step t. Model inputs x(t) denote the monthly temperature and precipitation data in the
upper three tributaries (i.e., the Aksu, Yarkant, and Hotan Rivers) at time step t. dy and dx
are the output and input memory orders, respectively [28]. Figure 2 shows the architecture
of the NARX model used in this work.

Figure 2. Scheme of the training and application processes of the neural network model. dy and dx

are the output and input memory orders, respectively. W and b are the weight and bias, respectively.

The time-series data were divided into three parts: 70% for training, 20% for validation,
and 10% for testing. The NARX network was trained with the Levenberg−Marquardt
optimization algorithm. To converge faster and avoid local extremes, the time-series data
were normalized to the range of −1 to 1 and then rescaled to the original values after
training. The performance of the NARX model is evaluated by the root mean squared error
(RMSE) and Nash−Sutcliffe efficiency coefficient (NSE):

RMSE =

√
1
n ∑n

i=1(pi − oi)
2 (RMSE > 0), (4)

NSE = 1 − ∑n
i=1(oi − pi)

2

∑n
i=1(oi − o)2 (−∞ < NSE < 1), (5)

where oi, pi, and o denote the observations, predictions, and mean observation, respectively.
i refers to the i-th value of the data. n is the number of observations. NSE is widely used
to measure the model performance with reference to the observed time series [32]. RMSE
is the standard deviation of the prediction errors. The ideal scores for the goodness-of-fit
criteria are 1 for NSE and 0 for RMSE.
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3. Results
3.1. Changes in Land Use and Irrigation Areas

Figure 3 illustrates the spatial distribution of irrigated land in the upstream, midstream,
and downstream of the Tarim River Basin between 1970 and 2020. Figure 3 shows how
the irrigation agriculture of the mainstream is concentrated along the river channel, and
the area of cropland exhibited an increasing trend from 1970 to 2020, especially in 2020
(Figure 3). The waterfall plots are used to detect the inter-annual variations in the irrigation
area in TRB between 1970 and 2020 (Figure 4). The top of the waterfall plot starts with the
initial value for 1970, and then each row explains how the positive (red) or negative (blue)
variation in each year moves the value from the initial value to the current value (Figure 4).
The irrigation area of the Tarim River, in general, exhibited an increasing trend from 1970
to 2020, except for the 1980s and the year 1995. Compared with the lower reaches of TRB,
the irrigation area in the upper and middle reaches increased significantly (Figure 4). For
example, the irrigation area in the upper and middle reaches increased from 139 km2 in
the 1970s to 617 km2 in 2020, and increased from 98 km2 in the 1970s to 426 km2 in 2020,
respectively, while the irrigation area in the lower reaches only increased from 254 km2 in
the 1970s to 339 km2 in 2020 (Figure 4d).

Figure 3. Cont.
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Figure 3. Spatial distribution of the irrigated land, natural vegetation, and other areas in the upstream,
midstream, and downstream of the Tarim River Basin between (a–f) 1970 and 2020.

Figure 4. Area of irrigated land in the (a) mainstream, (b) upstream, (c) midstream, and (d) down-
stream of the Tarim River Basin between 1970 and 2020. Red indicates the positive variation and blue
indicates the negative variation in the irrigation area. The y-axis represents the decades and the x-axis
is the irrigation area.

Figure 5 illustrates the transition of land use and land cover changes from 1970 to
2020 in TRB. In summary, the irrigation area of the Tarim River exhibited an increasing
trend, while the natural vegetation area showed a decreasing trend from 1970 to 2020
(Figure 5). Irrespective of the upper, middle, or lower reaches of the basin, most of the
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natural vegetation area was transformed into crop areas and other areas, while most of the
other land was transformed into natural vegetation land. For example, in the upstream,
most of the natural vegetation areas in 2010 were transformed into farmland and other
areas (the transformed areas were 404 km2 and 653 km2, respectively), while most of the
other areas in 2010 were transformed into natural vegetation areas (these transformed areas
were 544 km2; Figure 5).

Figure 5. Transition matrix of land use and land cover changes from 1970 to 2020 in the (a) upstream,
(b) midstream, and (c) downstream of the Tarim River Basin. This diagram shows how the area is
transformed before becoming farmland, natural vegetation, or other areas; supplies are on the left,
and demands are on the right, where the width of each flow pictured is based on its quantity.
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3.2. Model Training and Validation

The NARX neural network was used to model the available water resources in the
mainstream by approximating the nonlinear function of the temperature and precipitation
data in the upper three tributaries and the water inflow to the Alar station in the upstream
of TRB. The NARX neural network model was trained, validated, and tested from 1957
to 2017 (Figure 6). The NARX model performed satisfactorily with RMSE = 0.74 and
NSE = 0.72 for the testing dataset, and was able to capture the complex trending changes
in the water inflow to the mainstream of the basin (Figure 6).

Figure 6. The comparison of the observed and simulated runoff at Alar station in the upper Tarim
River Basin for the training, validation, and testing periods of the NARX network. The black indicates
the observation, the orange indicates the training result, the green indicates the validation result, and
the blue indicates the test result.

3.3. Prediction of Irrigation Area under Climate Change

The average temperature and precipitation data in the three upper tributaries of TRB
were used to study the changes in temperature and precipitation in the headstreams under
future climate scenarios. Compared with the mean annual precipitation and temperature
in the headstream in the reference period from 1957 to 2017, the annual precipitation
and temperatures from 2022 to 2050 under SSP245 and SSP585 showed increasing trends
(Figure 7). Compared with scenario SSP245, irrespective of precipitation or temperature,
the increases under SSP585 were greater than those under SSP245. The overall increase in
the precipitation under SSP245 ranged from 60 to 140 mm, while the value under SSP585
ranged from 59 to 150 mm (Figure 7a). The temperature under SSP585 over 2022 to 2050
increased greatly with an overall increasing range of 1–3.2 ◦C, while the temperature under
SSP245 increased with the range of 1–2.5 ◦C (Figure 7b).

The monthly temperature and precipitation data in the three upper tributaries of TRB
from 2022 to 2050 under SSP245 and SSP585 were used to predict the water inflow to the
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mainstream using the trained NARX neural network model (Figures 2 and 8). The annual
total water inflow to the mainstream of the basin from 2022 to 2050 under SSP245 and
SSP585 was mainly distributed between 50 × 108–75 × 108 m3 and 55 × 108–90 × 108 m3,
respectively (Figure 8a). Compared with the mean annual total water inflow to the main-
stream of the basin in the reference period from 1957 to 2017, the annual total water
inflow from 2022 to 2050 under SSP245 and SSP585 showed increasing trends (Figure 8b).
Compared with the annual total water inflow under SSP245, the increases under SSP585
were greater than those under SSP245. The overall increase in the annual available water
resources under SSP245 ranged from 10 × 108–23 × 108 m3, while the values of SSP585
ranged from 16 × 108–36 × 108 m3 (Figure 8b).

Figure 7. Changes in annual (a) precipitation and (b) temperature under future climate scenarios
SSP245 and SSP585 in the headstream of the Tarim River Basin compared with the values in the
reference period from 1957 to 2017.

Figure 8. (a) Annual available water resources and their probability density functions (PDFs) in the
Alar station of the upper Tarim River from 2022 to 2050 simulated by the NARX model under future
climate scenarios SSP245 and SSP585. (b) Changes in annual available water resources in the Alar
station of the upper Tarim River Basin compared with the values in the reference period from 1957 to
2017 under future climate scenarios SSP245 and SSP585.

Based on the water balance equation, the annual volumes of irrigation water from 2022
to 2050 under SSP245 and SSP585 were calculated by the volume of total water inflow minus
the volume of domestic, industry, ecology, and evaporation loss in the mainstream of TRB,
respectively. These data were then used to calculate the irrigation area carrying capacity
in TRB under different future climate scenarios (Figure 9). The irrigation area carrying
capacity in the mainstream of the basin from 2022 to 2050 under SSP245 and SSP585 mainly
ranged from 12 × 102–21 × 102 km2 and 17 × 102–30 × 102 km2, respectively.
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Figure 9. Annual available irrigation areas in the mainstream of the Tarim River from 2022 to 2050
under future climate scenarios SSP245 and SSP585.

4. Discussion

Located on the edge of the Taklimakan Desert, TRB in Northwest China is one of the
world’s most arid areas [33]. Even though water scarcity is serious in TRB, this basin is still
an important cotton and grain production region [6]. In the last few decades, cultivated
land in TRB has greatly expanded as a result of rapid population growth and climate
change [4]. The irrigation area of the mainstream of TRB, in general, exhibited an increasing
trend from 491 km2 in the 1970s to 1382 km2 in 2020 (Figure 4). Based on the transition of
land use and land cover changes from 1970 to 2020 in TRB (Figure 5), most of the natural
vegetation area was transformed into cropland. Notably, the expansion rate of cropland
increased slowly in the 1990s and even reversed in the 1980s, while it increased obviously
after 2000 (Figure 4). This is because, since the 1960s, with the population increase and
large-scale human activities such as reclamation and irrigation in the mainstream of TRB,
the consumption of water resources has increased dramatically [4]. The streamflow in the
lower reaches completely dried up in 1972 because the Daxihaizi Reservoir intercepted
almost all the water for anthropogenic activities [34]. This drying fatally dropped the
downstream groundwater table and severely destroyed the ecosystems [4]. Because of
the continuously decreased streamflow in the upstream and midstream, large areas of
reclaimed cropland turned into deserts in the 1980s [35]. Previous studies also found that
changes in the irrigation area in TRB became slow during the 1980s and 1990s [36]. In
2000, the Central Chinese Government started implementing the ecological water diversion
project and efficient irrigation system in order to save the degraded ecosystem [37]. The
implementation of an efficient irrigation system greatly increased the water utilization
coefficient in the cropland, and some studies have shown that the water consumption of
a water-saving irrigation system is 30% to 40% less than the consumption of the original
flooding irrigation system [38]. Therefore, with the adjustment to the crop cultivation
structure and the popularization of water-saving irrigation, the total area of cropland
increased obviously after 2000 [36].

Water resources are necessary for agricultural development and play a critical role in
socio-economic development and ecosystem health [39]. Understanding the changes in the
available water resources is important for efficient water resources’ management and is also
helpful for agricultural development. In this work, the NARX neural network was used
to model the available water resources in the mainstream of TRB by approximating the
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nonlinear function of the temperature and precipitation data in the upper three tributaries,
as well as the water inflow to the Alar station upstream of the basin. The performance
metric NSE of the NARX model was higher than 0.7, illustrating that the model is capable of
modeling the water inflow to the mainstream of TRB (Figure 6). Other related studies that
have focused on modeling the snowmelt-driven runoff using the NARX neural network
and other machine learning models have also proven the applicability of the data-driven
approach [40–42]. To obtain higher precision for water inflow prediction in TRB, further
research could also be extended to include the influence of anthropogenic activities in the
upper three tributaries, and this model could be extended to include the streamflow and
snow cover of the upper three tributaries among its input variables.

TRB is fed by precipitation and glacier-melt and snowmelt water from high moun-
tainous areas [8,20]. Many studies have focused on the impact of global warming on
water resources in TRB over the past several decades [43–45]. They concluded that water
resources from the headwaters of the basin showed a significant increase over the last
few decades, and could be explained by the upward tendency of temperature and pre-
cipitation [8,46]. However, they did not quantify the future changes in water resources
under climate change. Based on the mean annual water resource between 1957 and 2017,
our predictions of the available water resources in the mainstream of the basin from 2022
to 2050 under SSP245 and SSP585 may increase in total by 10 × 108–23 × 108 m3 and
16 × 108–36 × 108 m3, respectively (Figure 8). This is very likely, as climate projections
show a rise in temperature of 1–2.5 ◦C and 1–3.2 ◦C, and an increase in precipitation of
60–140 mm and 59–150 mm under the SSP245 and SSP585 scenarios, respectively, during
2022 to 2050 (Figure 7). Moreover, this result is similar to that of Shi et al. [47], who pre-
dicted the runoff of the upper three tributaries (i.e., the runoff of Aksu River, Yarkant River,
and Hotan River) under climate change, and concluded that the annual runoff will increase
during 2020 to 2050. Xiang et al. [48] estimated that the streamflow on the Yarkant River
Basin, which is one of the upper tributaries of TRB, will increase by 10.62–19.2% in the near
future, and 36.69–70.4% in the far future under global warming.

Although climate change has obviously increased water inflow into the mainstream
through increasing glacier and snow melting over the last several decades, the runoff in
the midstream and downstream is continuously decreasing as a result of intensive human
activities such as irrigation [43]. Hence, a rational scheme of the agricultural systems in
the basin is essential for the sustainable development of the Tarim River. According to the
available water resources results in this study, the irrigation area carrying capacity in the
mainstream of the basin from 2022 to 2050 under the SSP245 and SSP585 scenarios mainly
range from 12 × 102–21 × 102 km2 and 17 × 102– 30 × 102 km2, respectively (Figure 9).
The future irrigation areas under the two scenarios are greater than those in 1970 to 2020.
Many studies have analyzed the irrigation area carrying capacity in TRB in different runoff
frequencies [15–17], but did not consider climate change and did not quantify the future
changes in the irrigation area carrying capacity in TRB. In contrast, our study quantified the
impact of climate change on the available water resources and the irrigation area carrying
capacity in TRB. These results could be useful for water resource management and for the
sustainable development of agriculture and ecosystems in this basin, as well as in similar
arid regions such as the Heihe River Basin and Shiyang River Basin in Northwest China, in
which glacier-melt and snowmelt water dominate the discharge [49,50]. However, because
of the lack of local information, this study calculated the irrigation area by multiplying the
volume of irrigation water and irrigation quota per unit area; however, detailed information
such as crop structures and irrigation quota for each type of crop were not considered. As
the irrigation efficiency and changes in crop structure have significant impacts on irrigation
water consumption [51], these could be explored in future work. Furthermore, simulating
the spatial expansion of irrigation land is essential for appropriate land use management
and sustainable development [52]. Future work should also attempt to develop a spa-
tiotemporal framework that injects the spatial changes in land use into the predictions of
the future irrigation area carrying capacity, thereby making it more reasonable.
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5. Conclusions

TRB is one of the world’s largest cotton-producing areas, and its agricultural water
use accounts for up to 95% of the total water consumption in the basin. For the sustainable
development of the region, it is necessary to quantify the future irrigation area carrying
capacity in TRB under climate change. In this study, the changes in the present and
future (2022–2050) irrigation areas in TRB were analyzed and projected. Over the last
few decades, the farmland of TRB, in general, exhibited an increasing trend from 491 km2

in 1970 to 1382 km2 in 2020, which can be explained by most of the natural vegetation
being transformed into cropland. Based on the NARX neural network model, in the
future (2022–2050), the available water resources in the mainstream of the basin may have
an overall increase of 10 × 108–23 × 108 m3 and 16 × 108–36 × 108 m3 under SSP245 and
SSP585, respectively. This can be explained by the climate projections showing a rise in
temperature and precipitation under global warming. The future irrigation areas under the
two scenarios are greater than that from 1970 to 2020. The irrigation area carrying capacity
in the mainstream of the basin from 2022 to 2050 under the SSP245 and SSP585 scenarios
mainly range from 12 × 102–21 × 102 km2 and 17 × 102–30 × 102 km2, respectively. This
study analyzed the long-term variations of the farmland and demonstrated the future
changes in the irrigation area carrying capacity in TRB under climate change from a
quantitative perspective, which have important scientific implications for informed decision
making regarding the sustainable development of agriculture and ecosystems in the basin
and other arid regions such as the Heihe River Basin and Shiyang River Basin in Northwest
China, where glacier-melt and snowmelt water dominate the discharge. The NARX neural
network was reliable for modeling the available water resources in the mainstream of TRB,
and is useful for simulating the melt-water-driven streamflow in water science research.
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41. Uysal, G.; Şensoy, A.; Şorman, A.A. Improving daily streamflowforecasts in mountainous upper euphrates basin by multi-layer
per-ceptron model with satellite snow products. J. Hydrol. 2016, 543, 630–650. [CrossRef]

42. Rasouli, K.; Hsieh, W.; Cannon, A. Daily streamflow forecasting by machine learning methods with weather and climate inputs.
J. Hydrol. 2012, 414–415, 284–293. [CrossRef]

43. Tao, H.; Gemmer, M.; Bai, Y.; Su, B.; Mao, W. Trends of streamflow in the Tarim river basin during the past 50 years: Human
impact or climate change? J. Hydrol. 2011, 400, 1–9. [CrossRef]

44. Chen, Y.N.; Takeuchi, K.; Xu, C.; Chen, Y.P.; Xu, Z.X. Regional climate change and its effects on river runoff in the Tarim Basin,
China. Hydrol. Processes 2006, 20, 2207–2216. [CrossRef]

45. Xu, Z.; Chen, Y.; Li, J. Impact of climate change on water resources in the Tarim River Basin. Water Resour. Manag. 2004,
18, 439–458. [CrossRef]

46. Xu, C.C.; Chen, Y.; Li, W.H.; Chen, Y. Climate change and hydrologic process response in the Tarim River Basin over the past
50 years. Chin. Sci. Bull. 2006, 51, 25–36. [CrossRef]

47. Shi, Y. Study on future runoff changes in Tarim River basin based on GCM model. Glob. Seabuckthorn Res. Dev. 2020, 5, 338.
48. Xiang, Y.; Wang, Y.; Chen, Y.; Zhang, Q. Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China:

An Assessment Using Three SSP Scenarios of CMIP6 GCMs. Remote Sens. 2022, 14, 115. [CrossRef]
49. Cheng, G.D.; Li, X.; Zhao, W.Z.; Xu, Z.M.; Feng, Q.; Xiao, S.C.; Xiao, H.L. Integrated study of the water–ecosystem–economy in

the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [CrossRef]
50. Chunyu, X.Z.; Huang, F.; Xia, Z.Q.; Zhang, D.R.; Chen, X.; Xie, Y.Y. Assessing the Ecological Effects of Water Transport to a Lake

in Arid Regions: A Case Study of Qingtu Lake in Shiyang River Basin, Northwest China. Int. J. Environ. Res. Public Health 2019,
16, 145. [CrossRef]

51. Huang, S.; Krysanova, V.; Zhai, J. Impact of Intensive Irrigation Activities on River Discharge Under Agricultural Scenarios in the
Semi-Arid Aksu River Basin, Northwest China. Water Resour Manag. 2015, 29, 945–959. [CrossRef]

52. Motlagh, Z.K.; Lotfi, A.; Pourmanafi, S.; Ahmadizadeh, S.; Soffianian, A. Spatial modeling of land-use change in a rapidly
urbanizing landscape in central Iran: Integration of remote sensing, CA-Markov, and landscape metrics. Environ. Monit. Assess.
2020, 192, 695. [CrossRef]

http://doi.org/10.1016/j.gloplacha.2016.08.012
http://doi.org/10.1371/journal.pone.0231671
http://doi.org/10.3390/w12061734
http://doi.org/10.1016/j.jhydrol.2016.10.037
http://doi.org/10.1016/j.jhydrol.2011.10.039
http://doi.org/10.1016/j.jhydrol.2011.01.016
http://doi.org/10.1002/hyp.6200
http://doi.org/10.1023/B:WARM.0000049142.95583.98
http://doi.org/10.1007/s11434-006-8204-1
http://doi.org/10.3390/rs14010115
http://doi.org/10.1093/nsr/nwu017
http://doi.org/10.3390/ijerph16010145
http://doi.org/10.1007/s11269-014-0853-2
http://doi.org/10.1007/s10661-020-08647-x

	Introduction 
	Materials and Methods 
	Study Site and Data Sources 
	Method 
	Analysis of Irrigation Area Carrying Capacity 
	Nonlinear Autoregressive with Exogenous Input (NARX) Neural Network 


	Results 
	Changes in Land Use and Irrigation Areas 
	Model Training and Validation 
	Prediction of Irrigation Area under Climate Change 

	Discussion 
	Conclusions 
	References

