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Abstract: Dry direct-seeded rice sown by multifunctional seeders (MS-DDSR) has received increased
attention for its high efficiency. Wheat straw returning is widely used as an important agricultural
practice because it is the simplest and quickest approach to dispose of wheat straw and also improve
soil quality. The study determined whether MS-DDSR after wheat straw returning could obtain a high
yield and whether early nitrogen (N) application could compensate for the negative effects caused
by returned wheat straw. Field experiments were performed in a split-plot design. Main plots were
comprised without wheat straw returning (S0) and wheat straw returning (S1). Split plots consisted
of three plots with early N application treatment: 65 (N1), 95 (N2), and 125 (N3) kg N ha−1 at 0 and
20 days after sowing. S1 reduced yield, N uptake, and biomass accumulation in MS-DDSR compared
to S0 because S1 negatively affected the seedling roots growth, seedling establishment, and tillering
capacity of MS-DDSR. The positive interaction between wheat straw returning and early N on yield,
biomass accumulation, and N uptake was likely related to the positive interaction on spikelet number
per panicle, total spikelet number, and biomass accumulation after the stem elongation stage. These
findings demonstrate that wheat straw returning led to poor seedling establishment and yield loss for
MS-DDSR, but these negative effects could be compensated for by an appropriate increase in early N
application, based on the locally recommended N application protocols.

Keywords: seedling establishment; yield performance; wheat straw returning; early nitrogen application;
dry direct-seeded rice

1. Introduction

Dry direct seeding, an ancient method of rice establishment, is based on sowing dry
rice seeds directly in the main field without saturated and puddled soils [1]. Historically,
dry direct-seeded rice (DDSR) was mostly concentrated in rainfed areas of Asia, Africa,
Latin America, and the Caribbean [2,3]. More recently, a looming water crisis [4] and
escalating labor costs [5] have driven the gradual expansion of the cultivation area in well-
irrigated areas such as the middle and lower reaches of the Yangtze River in China and the
upper Ganges River delta in India [6–8]. In addition, the development of multifunctional
seeders that perform synchronous rotary tillage and sowing [9,10] and the improvement
of weed management technology [11,12] provide opportunities to improve the efficiency
and increase the yield of DDSR. Dry direct-seeded rice sown by multifunctional seeders
(MS-DDSR) was eventually developed.
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Rice–wheat rotation is an important agricultural production system in countries in
south Asia, such as China and India [13,14]. Because of the short turnaround time after
combine harvesting of wheat, wheat straw management is a challenging problem in the
rice–wheat rotation system [15]. Open field burning of wheat straw is the common prac-
tice [16,17], but it has led to serious impacts on air quality, health, and climate [18–20]. Thus,
wheat straw returning by rotary tillage is widely used as an important agricultural measure
because it is the simplest and quickest approach to dispose of wheat straw and meet the
time requirement in the rice–wheat rotation system. However, rice seedlings exhibit stress
after wheat straw returning. For example, wheat straw returning leads to the accumulation
of microbial allelochemicals, such as organic acids and toxic soil reductants, during wheat
straw decomposition, restricting root development of rice seedlings [21–24]. Wheat straw
returning may increase the yield of transplanted rice [25–28] because it can ameliorate
soil structure and improve soil organic matter content, and its additional nutrients and
positive effects can alleviate its negative effects on rice growth [23,29,30]. Nonetheless,
relative to transplanted rice seedlings that already possess some level of stress resistance
when transplanting from the seedling raising land to the main field, MS-DDSR is always
under stress from seed germination to seedling growth, leading to poor seedling estab-
lishment. The differences between MS-DDSR and transplanted rice make it unlikely that
MS-DDSR sown after wheat straw returning would also increase yield. To our knowledge,
some studies have been conducted under conditions of wet direct-seeding [31–34], pot
planting [21,35], and manual direct-seeding (i.e., broadcasting) [36–38], but few studies
have been conducted on the effects of MS-DDSR after wheat straw returning. Seedling
establishment and yield performance of MS-DDSR after wheat straw returning require
further evaluation, confirmation, and data support in the rice–wheat rotation system.

Nitrogen (N) is an essential nutrient for rice growth [39,40]. However, MS-DDSR
caused higher N loss than transplanted rice because of increased ammonia volatiliza-
tion [41] and surface runoff [42] in the early growth stage. The higher C:N ratio (~80:1)
of wheat straw also results in high N immobilization and mineralization during wheat
straw decomposition, especially within 30 days after wheat straw returning [43], thereby
causing N deficiency in rice seedlings in the early growth stage [44,45]. Moreover, early N
application of basal and tillering fertilizers plays a decisive role in the root development,
seedling establishment, tillering occurrence, biomass accumulation, and yield performance
of rice [46]. Therefore, early N application is particularly important for MS-DDSR after
wheat straw returning. Wang [31] reported that alternate wetting and drying and furrow
irrigation could alleviate the negative effects of wheat straw returning by increasing root
and shoot biomass, root oxidation activity, and harvest index. Yang [36] reported that yield
reduction in direct-seeded rice after wheat straw returning could be mitigated by appropri-
ate water management and improving soil phosphorus (P) availability. Previous studies on
alleviating the negative effects on rice after wheat straw returning mainly focused on water
management and reducing wheat straw returning. However, whether early N application
can compensate for the negative effects on seedling establishment and yield performance
of MS-DDSR after wheat straw returning is unclear.

The objectives of this study were (1) to evaluate the seedling establishment and yield
performance of MS-DDSR after wheat straw returning, and (2) to clarify the mechanisms of
how early N application can alleviate or compensate the negative effects caused by wheat
straw returning. The findings of this study provide theoretical and practical support for
high-yield cultivation and regulatory approaches of MS-DDSR after wheat straw returning.

2. Materials and Methods
2.1. Experimental Site and Weather Conditions

Field experiments were performed in 2019 and 2020 on a typical rice-wheat rotation
system at the research farm of Yangzhou University, Jiangsu, China (32◦61′ N, 120◦12′ E).
The field soil was a sandy loam with a viscous texture and 30.4 g kg−1 organic matter,
1.91 g kg−1 total N, 31.6 mg kg−1 available P, and 154 mg kg−1 available potassium (K).
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The amount of wheat straw returning was approximately 6.51 t ha−1 biomass on average
in both years. The sowing date was 11 June and the harvest date was October 20 in both
years. Meteorological data for daily mean temperature, sunshine hours, and precipitation
during the rice growing season in 2019 and 2020 were collected at a weather station near
the experimental site (Figure 1).
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Figure 1. Daily mean temperature, sunshine hours, and precipitation during the rice growth season
in 2019 and 2020.

2.2. Experimental Design and Treatment Modes

The experiment was performed using a split-plot design. Main plots were the wheat
straw returning treatment methods: control without wheat straw returning (S0) and wheat
straw returning (S1). Split plots were the three early N application modes (urea with 45.6%
N content): 65 kg N ha−1 (N1), 95 kg N ha−1 (N2, locally recommended N application),
and 125 kg N ha−1 (N3) at 0 and 20 days after sowing (DAS; the information of nitrogen
application are shown in Table 1). In all plots, P fertilizer of calcium superphosphate
(12% P2O5 content; 135 kg P ha−1) was applied at pre-sowing (0 DAS), and K fertilizer of
potassium chloride (60% K2O content; 135 kg K ha−1) was applied at pre-sowing and again
at the panicle initiation stage (50 DAS). Treatments were arranged in the same experimental
plots in both years. The experiments were replicated four times with an area of 36 m2 in
each plot. The japonica rice variety Nanjing-9108 was selected in this experiment.

Table 1. Information on nitrogen application in this experiment.

Treatment 0 DAS 1

(kg ha−1)
20 DAS

(kg ha−1)
50 DAS

(kg ha−1)
70 DAS

(kg ha−1)

Without wheat
straw returning

N1 65 65 40 40
N2 95 95 40 40
N3 125 125 40 40

Wheat straw
returning

N1 65 65 40 40
N2 95 95 40 40
N3 125 125 40 40

1 DAS: days after sowing; 0 DAS: sowing stage; 20 DAS: early tillering stage; 50 DAS: panicle initiation stage;
70 DAS: initiation of spikelet differentiation stage.

In both years, wheat was harvested by a combine and wheat straw was returned to the
field. Wheat straw in the main plots (where wheat straw was not returned) was manually
removed, and fertilizer was applied to all plots. Next, rice seeds (dry seeds without
germination) were seeded with a multifunctional seeder that performs synchronous rotary
tillage and sowing. The depth of rotary tillage was 10−15 cm, and the seedling rate was
130 kg ha−1. After sowing, the plots with the different treatment modes were surrounded
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by bunds (width 40 cm; height 30 cm), which were covered with plastic film. Until the
three-leaf stage, the seedlings in each plot were thinned to 260 m−2.

2.3. Crop Cultivation

After sowing, wet irrigation management was used during the seedling period to
ensure the growth and development of rice seedlings. Thereafter, moistening conditions
were maintained until the five-leaf stage. The field was flooded after the five-leaf stage,
and the water level was maintained at 2–3 cm until the middle tillering stage. Water was
then drained for 7–10 days to control unproductive tillers. After the stem elongation stage,
an alternate wetting and drying irrigation management regime was used until one week
before the final harvest. In the alternate wetting and drying irrigation management regime,
fields were not irrigated until the soil water potential reached −15 kPa (soil moisture
content 0.170 g g−1) at 15–20 cm soil depth. The soil water potential was monitored
at 15–20 cm soil depth using a tensiometer with a 5 cm sensor (Institute of Soil Science,
Chinese Academy of Sciences, Nanjing, Jiangsu, China). Four tensiometers were installed
in each plot, and readings were recorded at 11:00 each day. When the soil water potential
reached the threshold, all plots were flooded with 3 cm of water. The irrigation water level
was monitored with a LXSG-50 flow meter (Shanghai Water Meter Manufacturing Factory,
Shanghai, China) installed on the irrigation pipelines.

2.4. Sampling and Measurements
2.4.1. Seedling Characteristics

At 35 DAS, 20 consecutive seedlings were randomly selected from each plot to measure
their morphological characteristics, such as height, leaf area, and base diameter. Leaf
area was measured with a LI-3100 leaf area meter (LI-COR, Lincoln, NE, USA). The base
diameter was measured with Vernier calipers. Seedlings were oven-dried at 105 ◦C for
30 min and then at 80 ◦C in bags to a constant weight, and the seedling weight was
measured. N uptake per seedling was calculated by multiplying the N concentration
per seedling (%) by the biomass per plant, and N concentration was determined by the
semi-micro-Kjeldahl procedure.

2.4.2. Root Morphological Characteristics

At 35 DAS, a sampling core was used for root sampling, in which a 25 cm × 16 cm × 20 cm
cube of soil was removed from each plot. The cube was placed in a nylon net, and the soil
was removed with running water. To determine the root morphological characteristics, such
as length, average diameter, surface area, and volume, roots were scanned with a flatbed
image scanner (Epson Expression 1600 scanner, Torrance, CA, USA), and the images were
analyzed using WinRhizo software (v5.0, Regent Instruments, Quebec City, QC, Canada).
Roots were oven-dried at 105 ◦C for 30 min and then at 80 ◦C in bags to a constant weight,
and the root weight was measured.

2.4.3. Dynamic Tillering Model

In the two years, three adjacent rows (1 m length) in each plot were measured at
five-day intervals from the three-leaf stage until the tiller number diminished.

Tiller number (Y) was fit with a logistic equation:

Y =
Ym

1 + exp(A− Bx)
,

where Ym is the maximum tiller number, x is DAS, and A and B are rate-controlling
parameters [47]. The fitting was performed using Origin 9 (Origin Lab Corporation,
Northampton, MA, USA).
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2.4.4. Oxidation–Reduction Potential

In situ soil oxidation–reduction potential (Eh) was determined by potentiometry
(FJA-6; Institute of Soil Science, Nanjing, China) at 0, 10, 20, 30, and 40 DAS, respectively.
Each measurement was taken at 08:00. The depth of measurement was 10 cm below the
soil surface, and five replicates were performed for each plot.

2.4.5. Biomass

Biomass was determined at the stem elongation, heading, and maturity stages. Sam-
ples were collected from three adjacent rows (50 cm × 75 cm) in each plot, oven-dried
at 105 ◦C for 30 min and then at 80 ◦C in bags to a constant weight, and the weight
was measured.

2.4.6. Yield and Yield Components

At the maturity stage, three adjacent rows (1 m length) were sampled randomly from
each plot for measurement of panicle traits and yield components, including spikelet
number per panicle, filled grain percentage, and 1000-grain weight. Three adjacent rows
(5 m length) were sampled randomly from each plot to determine the panicle number per
m2. Total spikelet number per m2 was calculated as panicle number per m2 multiplied by
spikelet number per panicle. Yield was determined from the harvest area of 8 m2 in each
plot and adjusted to the standard moisture content of 0.14 g H2O g−1.

2.5. Statistical Analysis and Formula Calculation

Data were analyzed using IBM SPSS Statistics 22 (SPSS, Chicago, IL, USA), and
treatment means were compared by the least significant difference test. Graphical represen-
tations of the data were produced using Origin 9 (Origin Lab Corporation, Northampton,
MA, USA), Microsoft Excel 2019 (Microsoft Corporation, Washington, DC, USA), and
SigmaPlot 12.0 (Systat Software, Inc., San Jose, CA, USA).

3. Results
3.1. Yield and Yield Components

Wheat straw returning and early N application significantly affected yield and N
uptake at maturity of MS-DDSR (Table 2). Compared with S0, S1 had 7.2% lower yield
and 9.4% lower N uptake in the N1 treatment mode, and 4.6% lower yield and 7.1% lower
N uptake in the N2 treatment mode. Compared with the N1 treatment mode, the N3
treatment mode had 7.2% higher yield and 18.4% higher N uptake, and the N2 treatment
mode had 4.7% higher yield and 9.7% higher N uptake. In terms of yield components, S1
had a significantly increased spikelet number per panicle, but a significantly decreased
panicle number compared with S0. The panicle number was 3.9% and 5.4% higher for
the N2 and N3 treatment modes compared with the N1 treatment mode. Wheat straw
× N application positively affected yield, N uptake, spikelet number per panicle, and total
spikelet number per m2 (Table 2 and Figure 2).

The correlation analysis over the two years (Figure 3) showed a significant positive
correlation between yield and panicle number, total spikelet number per m2, biomass, and
N uptake at maturity. No significant correlation was observed between yield and filled
grain percentage and 1000-grain weight.
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Table 2. Average yield, N uptake, and yield components at maturity as affected by wheat straw
returning (S0 or S1; n = 18), nitrogen (N1, N2, or N3; n = 12), and year (2019 or 2020; n = 18).

Yield
(t ha−1)

N Uptake
(kg ha−1)

Panicles
(m−2)

Spikelets
(Panicle−1)

Total Spikelets
(m−2)

Filled Grain
(%)

Grain
Weight

(mg)

Year (Y) 1

2019 10.0 181 403 103 41392 94.7 26.6
2020 9.86 ** 180 391 ** 104 40655 * 95.9 * 26.5

Wheat straw
(S) 2

S0 10.2 186 407 102 41383 95.2 26.5
S1 9.79 *** 175 *** 388 *** 105 *** 40664 * 95.4 26.7

Nitrogen (N) 3

N1 9.60 165 385 102 39232 95.7 26.5
N2 10.1 181 400 104 41553 95.3 26.6
N3 10.3 *** 196 *** 406 *** 104 ** 42286 *** 95.0 26.7

F-values 4

S × N 11.1 *** 3.96 * 5.42 * 7.95 ** 15.5 *** NS NS
S × Y NS NS NS NS NS NS NS
N × Y NS NS NS NS NS NS NS

Significant treatment effects within a main category are indicated by * (0.01 < p ≤ 0.05), ** (0.001 < p ≤ 0.01), and
*** (p ≤ 0.001). 1 Values were averaged across wheat straw and nitrogen. 2 Values were averaged across nitrogen
and year. 3 Values were averaged across wheat straw and year. 4 F-values are provided for interactions. There
were no significant three-way interactions.
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Figure 2. Yield (A); N uptake (B); spikelets per panicle (C); and total spikelets number (D) for
all treatment combinations in 2019 and 2020. S0 and S1 represent treatment without wheat straw
returning and treatment with wheat straw returning, respectively. N1, N2, and N3 represent early N
management of 65 kg N ha−1, 95 kg N ha−1, and 125 kg N ha−1, respectively. The information on
these treatments was shown in Table 1. Error bars show standard error of replicates (n = 3).
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per panicle; TSN: total spikelet number per m2; FG: filled grain percentage; GW: grain weight.

3.2. Biomass Accumulation

Wheat straw returning significantly affected biomass accumulation, mainly affecting
biomass accumulation from the sowing to the stem elongation stage of MS-DDSR (Table 3).
Compared with S0, S1 had 7.8% lower biomass accumulation at maturity in the N1 treat-
ment mode and 5.7% lower biomass accumulation at maturity in the N2 treatment mode.
Biomass accumulation from the sowing to the stem elongation stage was 8.1% lower for S1
than for S0.

Table 3. Biomass accumulation as affected by wheat straw returning (S0 or S1; n = 18), nitrogen (N1,
N2, or N3; n = 12), and year (2019 or 2020; n = 18).

Biomass (MA)
(t ha−1)

Biomass (SO-SE)
(t ha−1)

Biomass (SE-HD)
(t ha−1)

Biomass
(HD-MA)
(t ha−1)

Year (Y) 1

2019 17.3 4.12 6.77 6.45
2020 16.7 *** 3.97 ** 6.86 5.92 ***

Wheat straw (S) 2

S0 17.4 4.21 6.87 6.35
S1 16.7 *** 3.87 *** 6.75 6.03 **

Nitrogen (N) 3

N1 16.3 3.57 6.73 5.99
N2 17.2 4.01 6.94 6.16
N3 17.7 *** 4.47 *** 6.77 6.41 **

F-values 4

S × N 11.0 *** NS 7.06 ** 3.91 *
S × Y NS NS NS NS
N × Y NS NS NS NS

Significant treatment effects within a main category are indicated by * (0.01 < p ≤ 0.05), ** (0.001 < p ≤ 0.01), and
*** (p ≤ 0.001). Biomass (MA), Biomass (SO-SE), Biomass (SE-HD), and Biomass (HD-MA) represent biomass
accumulation at maturity, biomass accumulation from sowing to stem elongation stage, biomass accumulation
from stem elongation to heading stage, and biomass accumulation from heading to maturity stage, respectively.
1 Values were averaged across wheat straw and nitrogen. 2 Values were averaged across nitrogen and year.
3 Values were averaged across wheat straw and year. 4 F-values are provided for interactions. There were no
significant three-way interactions.
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Early N application significantly affected biomass accumulation at all growth stages.
Compared with the N1 treatment mode, the N3 treatment mode had 8.4% higher biomass
accumulation and the N2 treatment mode had 5.5% higher biomass accumulation at matu-
rity. Wheat straw × N application positively affected biomass accumulation at maturity,
from the stem elongation to the heading stage, and from the heading stage to the maturity
stage (Table 3 and Figure 4).
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3.3. Tillering Dynamics

From the dynamic tillering model across the two years (Figure 5), the estimated
maximum tiller number was 4.8–5.2% lower for S1 than for S0. Compared with S0, S1 had
5.4–7.3% lower maximum tiller number in the N1 treatment mode and 3.8–7.7% lower
maximum tiller number in the N2 treatment mode. Increasing early N application could
compensate for the negative effects of wheat straw returning and increase the maximum
tiller number.
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3.4. Seedling Characteristics

Wheat straw returning negatively affected seedling establishment (Table 4). This was
reflected in the seedlings by the reduction in height by 4.6%, weight by 5.8%, leaf area
by 6.1%, base diameter by 7.1%, and N uptake by 7.3%. In the N1 treatment mode, S1
decreased seedling height by 5.9%, weight by 7.5%, leaf area by 8.3%, base diameter by
10.5%, and N uptake by 9.0%, compared with S0. Similarly, in the N2 treatment mode, S1
decreased seedling height by 5.4%, weight by 5.7%, leaf area by 6.9%, base diameter by
6.1%, and N uptake by 6.7%, compared with S0. Early N application positively affected
seedling establishment. The interactions between wheat straw returning, nitrogen, and
year were not significant for seedling morphological characteristics and N uptake at 35 days
after sowing.

Table 4. Seedling morphological characteristics and N uptake at 35 days after sowing as affected by
wheat straw returning (S0 or S1; n = 18), nitrogen (N1, N2, or N3; n = 12), and year (2019 or 2020;
n = 18).

Height
(cm)

Weight
(mg)

Leaf Area
(cm2)

Base Diameter
(mm)

N Uptake
(mg)

Year (Y) 1

2019 22.8 87.8 7.77 5.01 2.75
2020 21.4 ***4 81.8 *** 6.49 *** 4.23 *** 2.53 ***

Wheat straw (S) 2

S0 22.6 87.4 7.35 4.79 2.74
S1 21.6 *** 82.3 ** 6.90 *** 4.45 ** 2.54 ***

Nitrogen (N) 3

N1 20.5 80.6 6.51 4.13 2.43
N2 22.0 84.8 7.07 4.61 2.65
N3 23.8 *** 89.0 *** 7.80 *** 5.12 *** 2.84 ***

1 Values were averaged across wheat straw and nitrogen. 2 Values were averaged across nitrogen and year.
3 Values were averaged across wheat straw and year. 4 Significant treatment effects within a main category are
indicated by ** (0.001 < p ≤ 0.01), and *** (p ≤ 0.001).
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3.5. Root Morphological Characteristics

Wheat straw returning and early N application significantly affected the root morpho-
logical characteristics of MS-DDSR (Table 5). Compared with S0, S1 led to restricted root
growth, which was reflected in the seedling roots by the reduction in weight by 6.0%, length
by 6.5%, average diameter by 4.2%, surface area by 5.3%, and volume by 5.1%. Increasing
early N application could increase seedling root weight by 7.1%, length by 8.1%, average
diameter by 5.7%, surface area by 7.6%, and volume by 6.7% in the N1 treatment mode.
Similarly, in the N2 treatment mode, increasing early N application could increase seedling
root weight by 6.1%, length by 7.3%, average diameter by 4.8%, surface area by 5.1%, and
volume by 5.2%. The interactions between wheat straw returning, nitrogen, and year were
not significant for root morphological characteristics at 35 days after sowing.

Table 5. Root morphological characteristics at 35 days after sowing as affected by wheat straw
returning (S0 or S1; n = 18), nitrogen (N1, N2, or N3; n = 12), and year (2019 or 2020; n = 18).

Root Weight
(mg)

Root Length
(cm)

Average Diameter
(mm)

Root Surface Area
(mm2)

Root Volume
(mm3)

Year (Y) 1

2019 10.4 90.6 0.40 1109 100
2020 9.90 *** 87.4 ** 0.40 1080 * 96.0 **

Wheat straw (S) 2

S0 10.5 91.9 0.41 1124 100
S1 9.82 * 86.0 *** 0.39 * 1065 *** 95.0 **

Nitrogen (N) 3

N1 9.46 80.1 0.37 1042 92.0
N2 10.2 88.8 0.40 1095 98.0
N3 10.8 *** 98.1 *** 0.43 *** 1146 *** 104 ***

Significant treatment effects within a main category are indicated by * (0.01 < p ≤ 0.05), ** (0.001 < p ≤ 0.01), and
*** (p ≤ 0.001). 1 Values were averaged across wheat straw and nitrogen. 2 Values were averaged across nitrogen
and year. 3 Values were averaged across wheat straw and year.

3.6. Oxidation–Reduction Potential

S1 could increase soil Eh within 15 DAS (Figure 6), but Eh gradually decreased after
about 15 DAS compared with S0. The Eh value was 128–179% lower for S1 than for S0 at
40 DAS. Increasing early N application reduced the Eh value within 40 DAS.
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Figure 6. The oxidation–reduction potential (Eh) during 40 day after sowing under wheat straw
returning coupled with early N management in 2019 and 2020. S0 and S1 represent treatment without
wheat straw returning and treatment with wheat straw returning, respectively. N1, N2, and N3
represent early N management of 65 kg N ha−1, 95 kg N ha−1, and 125 kg N ha−1, respectively. The
information on these treatments was shown in Table 1. Error bars show standard error of replicates
(n = 3).
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4. Discussion

Dry direct-seeded rice sown by multifunctional seeders that perform synchronous
rotary tillage and sowing has received increased attention. Wheat straw returning is widely
used as an important agricultural practice because it is the simplest and quickest approach
to dispose of wheat straw and also improve soil quality in the rice–wheat rotation sys-
tem [28,48]. This study showed that wheat straw returning negatively affected seedling
establishment, which was reflected by decreased height, weight, leaf area, and base diame-
ter at 35 DAS, and lower biomass accumulation from the sowing to the stem elongation
stage for MS-DDSR seedlings. These results were similar to the results of Du [49], in
which wheat straw returning reduced the tiller number, plant height, dry weight, and
NPK concentrations of rice seedlings. Enhanced N fixation by soil microbes during wheat
straw decomposition decreases N absorbed by plants [50,51]. Azam [52] reported that the
uptake of soil N by plants decreased with wheat straw returning. The present study also
showed that wheat straw returning decreased N uptake by seedlings (Table 4). Therefore,
N deficiency in seedlings contributed to poor seedling establishment of MS-DDSR after
wheat straw returning.

The root system, as a bridge for information and material exchange between plant and
soil, performs the functions of absorbing and transporting nutrients, as well as synthesizing
and storing nutrients; it also plays a crucial role in seedling establishment. Tanaka [53]
reported that the decline in crop N uptake caused by straw returning originated from N
uptake inhibition. Du [49] reported that rice roots after wheat straw returning showed low
growth, poor vigor, and insufficient nutrient uptake capacity. In the present study, wheat
straw returning negatively affected the seedling root system, which was reflected by lower
weight, length, average diameter, surface area, and volume of roots of MS-DDSR seedlings
(Table 5). There are two possible reasons for the restricted seedling root system after wheat
straw returning. First, the formation of strongly reducing conditions after wheat straw
returning restricted the growth of the seedling roots. Soil reductants, such as ferroporphyrin
sulfite and reducible organic acids, accumulate in strongly reducing conditions after wheat
straw returning in paddy soils [21]. In addition, excessive ferrous iron concentrations
lead to rice malnutrition by antagonistic effects on the uptake of essential nutrients [54].
Sulfite can be reduced to H2S under strongly reducing conditions, resulting in damage
to seedling roots [21]. Soil Eh is an important indicator of the degree of oxidation or
reduction in soil [55]. The soil Eh value after wheat straw returning decreased with the
advancement of straw returning and soil flooding (Figure 6). This result was consistent with
the findings of Yang [36] that straw returning under continuous flooding might intensify
the soil reducing strength, as determined by a causal relationship analysis using structural
equation modeling. Second, microbial allelochemicals, such as phenolic acids, accumulate
during the decomposition of returned wheat straw [22,56]. These allelochemicals may
negatively affect the physiological and biochemical processes of rice seedlings, such as
inhibiting cell division and elongation, destroying cell membrane integrity, and changing
enzyme activity [57,58]. Therefore, poor seedling establishment was caused by wheat straw
returning that originated from the restricted root system of the MS-DDSR seedlings.

Wheat straw returning negatively affected the yield performance of MS-DDSR (Table 2).
This result was consistent with the findings of [21] and Yang [36] that showed lower yields
of DDSR after wheat straw returning. In terms of yield components, wheat straw returning
tended to increase the spikelets per panicle, filled grain percentage, and 1000-grain weight,
but it led to a decrease in the panicle number without wheat straw returning. These
results were consistent with previous studies [28,32]. The increase in spikelets per panicle,
filled grain percentage, and 1000-grain weight could be related to the fact that nutrient
release after wheat straw decomposition was beneficial to rice grain filling. The correlation
analysis indicated that the panicle number was the key factor to determine the yield and
total spikelet number per m2 (Figure 3). Therefore, the insufficient panicle number was the
main reason for the reduced yield of MS-DDSR after wheat straw returning. The maximum
tiller number is one of the primary factors determining the panicle number. In this study,



Agriculture 2022, 12, 565 12 of 17

the estimated maximum tiller number based on the dynamic tillering model was greater
in the field without wheat straw returning than in the field with wheat straw returning
(Figure 5). Gao [21] reported that rice responded strongly to straw returning in the early
growth stage, and that the tiller number (at about six weeks after sowing) was significantly
reduced by straw returning. Wheat straw returning reduces the incidence of low tiller
position or early emerging tillers [59]. Therefore, limited seedling tillering capacity after
wheat straw returning may be the main reason for the decreased panicle number of MS-
DDSR. In addition, limited seedling tillering may be because of poor seedling establishment
after wheat straw returning, as seedling quality can reflect seedling tillering capacity to a
certain extent [60].

Given the current harvest index of rice, improving biomass accumulation, especially
after the heading stage [61], may be key to further improvement of rice yield [62,63]. The
biomass accumulates of rice increased after wheat straw returning because additional
organic matter and nutrients brought about by wheat straw returning may promote growth
in the middle and late growth stages of rice [64–66]. However, this study showed that
biomass accumulation and yield after wheat straw returning were reduced for MS-DDSR.
Wheat straw returning is beneficial for increasing biomass and yield, mainly realized
by transplanting rice, in previous research [25,28]. Thus, additional organic matter and
nutrients brought about by wheat straw returning could not alleviate poor seedling estab-
lishment for MS-DDSR. The negative effects on MS-DDSR could also not be compensated
for by the positive effects after wheat straw returning. There are two possible reasons for
the difference between our results (i.e., MS-DDSR) and those of previous research (i.e.,
transplanting rice). First, seedling establishment of MS-DDSR was poorer compared with
transplanting rice. When transplanting from the seedling raising area to the main field with
wheat straw returned soil, the transplanted rice seedlings had at least four leaves, indicat-
ing that they had reached the stress resistance stage and acquired some stress resistance.
However, MS-DDSR was always under stress caused by wheat straw returning. Second,
after wet tillage, wheat straw was fully mixed in the 0–25 cm soil layer in the main field for
transplanting rice, which reduced the negative effects of wheat straw. However, the rotary
tillage depth of MS-DDSR was only 0–15 cm, which caused most wheat straw to assemble
on the soil surface, increasing its toxic effects.

Early N application positively affected seedling establishment and yield performance.
Wheat straw × N application had no effect on biomass accumulation before the stem elon-
gation stage, N uptake, and seedling growth at 35 DAS, indicating that the negative effects
caused by wheat straw returning could be mitigated by the positive effects of increased
early N application. There are three possible reasons. First, increasing early N application
could enhance seedling root development and compensate for the restricted seedling root
system brought about by wheat straw returning. The N supply level affects root structure
and physiological characteristics [67]. N deficiency severely affects the growth and develop-
ment of the root system [68]. Increasing N application can promote cytokinin biosynthesis
and acropetal transport [69], thereby enhancing seedling root development. Furthermore,
low to medium N availability enhances root growth and branching to optimally utilize
the macronutrient, whereas high levels of N availability may limit root growth [70]. In the
present study, the seedling root system showed a promoting effect at the highest N level.
It also showed that N was still deficient for MS-DDSR seedlings after wheat straw return-
ing in the early growth stage (i.e., increased N was still in the range of root promotion).
The possible reasons were that (1) returned wheat straw with a higher C:N ratio led to a
decrease in soil available N in the early stage of decomposition [43,71], and (2) MS-DDSR
easily increased ammonia volatilization [41,72] and N runoff losses [42] during the early
growth stage because of the very shallow ponding water and large soil porosity. Second,
increasing early N application could improve seedling N uptake and growth and increase
stress tolerance of MS-DDSR seedlings after wheat straw returning. Third, increasing N
application can decrease the accumulation of organic acids [73] and reduce the negative
effects of wheat straw returning, thereby increasing its beneficial effects [64,74].
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Increasing early N application led to a decrease in Eh (Figure 6). The possible reasons
were that (1) N application motivates soil N-cycle microbial communities [75], and the
promotion of their metabolic activities increases the consumption of soil-dissolved oxy-
gen [76], which further induces a decrease in soil Eh [77], and (2) N application promotes
the decomposition of wheat straw, thereby producing more reductants leading to a lower
soil Eh. Although increasing early N application could not alleviate the reducing condition
in the soil, it could compensate for the negative effects caused by wheat straw returning by
promoting root development and increasing N uptake to improve seedling establishment.

The positive interaction between wheat straw returning and early N application on
yield, biomass accumulation, and N uptake at maturity was likely related to the positive
interaction between wheat straw returning and early N application on spikelet number per
panicle, total spikelet number per m2, and biomass accumulation after the stem elongation
stage. The positive interaction may be because of several reasons. First, the initially
immobilized N in the early growth stage was released in the middle to late growth stage.
Second, increasing early N application can promote wheat straw decomposition, optimize
the release of organic matter and nutrients of wheat straw, and provide a sufficient supply
for biomass accumulation after the stem elongation stage [27]. Third, increasing early N
application could compensate for the N loss caused by wheat straw returning, promote
N absorption, seedling establishment (Tables 4 and 5), and tillering capacity (Figure 5),
thereby providing a strong foundation for biomass accumulation after the stem elongation
stage (Table 3). Fourth, increasing early N application increased the base diameter of
seedlings after wheat straw returning, which was beneficial for resistance to rice lodging
and enhanced light transmission in the rice population, thus favoring a positive interaction
effect on yield.

Seedling establishment and yield performance were better in 2019 than in 2020. This
difference could be explained by the weather differences between the two years (Figure 1).
The duration of sunshine hours was 45.6% higher in 2019 than in 2020 during the rice
growing season. In addition, the precipitation was 183.5% higher in 2020 than in 2019
during the rice growing season, especially during the early growth stage, which resulted in
N loss.

5. Conclusions

Wheat straw returning negatively affected the seedling root system, seedling estab-
lishment, tillering capacity, biomass accumulation, and yield performance of MS-DDSR.
Although increasing early N application could compensate for these negative effects, it is
not advisable because additional N input would increase production costs, and excessive
N input would lead to yield losses, reduced N utilization, and serious environmental con-
sequences. Approaches such as improving the quality of tillage and increasing the seedling
density of MS-DDSR after wheat straw returning will be the focus of future research.
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