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Abstract: Physiological maturity of bananas is of vital importance in determination of their qual-
ity and marketability. This study assessed, with the use of a Vis/NIR hyperspectral imaging
(400–1000 nm), the feasibility in differentiating six maturity levels (maturity level 2, 4, and 6 to
9) of green dwarf banana and characterizing their quality changes during maturation. Spectra were
extracted from three zones (pedicel, middle and apex zone) of each banana finger, respectively. Based
on spectra of each zone, maturity identification models with high accuracy (all over 91.53% in valida-
tion set) were established by partial least squares discrimination analysis (PLSDA) method with raw
spectra. A further generic PLSDA model with an accuracy of 94.35% for validation was created by the
three zones’ spectra pooled to omit the effect of spectra acquisition position. Additionally, a spectral
interval was selected to simplify the generic PLSDA model, and an interval PLSDA model was built
with an accuracy of 85.31% in the validation set. For characterizing some main quality parameters
(soluble solid content, SSC; total acid content, TA; chlorophyll content and total chromatism, ∆E*) of
banana, full-spectra partial least squares (PLS) models and interval PLS models were, respectively, de-
veloped to correlate those parameters with spectral data. In full-spectra PLS models, high coefficients
of determination (R2) were 0.74 for SSC, 0.68 for TA, and fair of 0.42 as well as 0.44 for chlorophyll
and ∆E*. The performance of interval PLS models was slightly inferior to that of the full-spectra PLS
models. Results suggested that models for SSC and TA had an acceptable predictive ability (R2 = 0.64
and 0.59); and models for chlorophyll and ∆E* (R2 = 0.34 and 0.30) could just be used for sample
screening. Visualization maps of those quality parameters were also created by applying the interval
PLS models on each pixel of the hyperspectral image, the distribution of quality parameters in which
were basically consistent with the actual measurement. This study proved that the hyperspectral
imaging is a useful tool to assess the maturity level and quality of dwarf bananas.

Keywords: hyperspectral image; green banana; maturity level differentiation; quality detection; PLS

1. Introduction

The banana is a globally consumed fruit with the highest production over 127 million
tons, and the fourth most important food crop in terms of agricultural commodity value
(63.6 billion US$) along with rice, wheat and corn [1,2]. It could provide high quantities of
potassium, serotonin and iron content, as well as vitamins [3,4]. As a typical climacteric
fruit, banana was usually harvested at a light green mature stage (physiological maturity
stage) and ripened artificially. Physiological maturity of banana bunch dictates its quality
and marketability [5], which indicates that the harvesting could be neither under-mature
(immature) nor over-mature [6]. Thus, determining the proper physiological maturity stage
is crucial in scheduling harvesting and marketing operations efficiently [7].
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Generally, maturity of bananas is assessed by the producers’ experience based on
the appearance of the fingers. However, the difference in appearance between different
harvestable maturities might not be apparent, resulting in difficulties in controlling quality
consistency. A simple, objective and cost-effective measuring method is urgently required.
Image processing and visible/near-infrared (NIR) spectroscopy, which are treated as new
objective and non-destructive techniques, are being developed.

Nowadays, studies on assessing the maturity of fruit and vegetables such as mango,
plum, blueberries, apple, and tomato using computer vision systems are reported
widely [8–15]. For banana, the changes in angularity, diameter, length, and color are
usually treated as analysis indices. Zhuang et al. [16] utilized peel color, textural and shape
information to predict the banana ripeness. Mazen et al. [17] employed color, development
of brown spots, and Tamura statistical texture features to classify and grade banana fruit
ripeness stages. A similar study conducted by Saranya et al. [3] indicated that a convolu-
tional neural network (CNN) successfully differentiated four different ripeness stages of
banana. The above studies mainly focused on the assessment of ripening stages of banana
in the climacteric phase. For green banana detection, Piedad et al. [18] classified tiers of
postharvest green banana in different commercial qualities by color in RGB coordinates
and random forest classifiers. Prabha and Kumar [5] constructed a mean color intensity
algorithm for differentiating banana physiological maturity stages (under-mature, mature,
and over-mature) with a high accuracy of 99.1%. Due to the inapparent appearance in
different harvestable stages, discriminating bananas in such similar maturity levels by
computer vision may be limited.

In addition to appearance parameters, chemical parameters including soluble solids
content, titratable acidity and carbohydrate (starch) content will also change during growth
of banana [19,20]. As NIR spectroscopy is mainly generated from double and combination
frequency absorption of molecular vibration as well as Fermi resonance, it is suitable for the
measurement of organic matter with hydrogen groups such as soluble sugar and organic
acids [21]. Numerous studies using NIR spectroscopy have been revealed that those chemi-
cal parameters are highly correlated to banana ripeness stages [22–26]. These cases proved
the feasibility of NIR spectroscopy in discriminating banana maturity levels. However,
due to uneven distribution of external structure and internal tissue of fruit, only using a
single-point of NIR spectra may affect the accuracy and robustness of the detection model.
It also cannot visually demonstrate the distribution and change of chemical parameters
in bananas.

Hyperspectral imaging (HSI) technology is a combination of spectroscopy and digital
imaging technology. Gray-scale images of hundreds of contiguous wavebands show
the appearance of an object, and each pixel also embodies the spectrum of the object.
It is allowed for analysis on particular areas of an image and visualizing biochemical
constituents of a sample [27]. It has been demonstrated that hyperspectral imaging has
a great potential in assessment of maturity/ripeness of fruit such as persimmon, tomato,
kiwifruit and many other kinds of fruit [28–34]. For banana fruit, many investigations have
been reported on quality evolution during ripening process [25,35–37]. Rajkumar et al.
(2012) [38] determined banana ripeness stages with selected wavelengths and achieved
good performance (R2 > 0.85) for prediction of some quality parameters (moisture content,
total soluble solids, and firmness). Similarly, Xie et al. [39] determined color (L*, a* and
b*) and firmness of bananas based on the wavelengths selected from hyperspectral data,
and accurately predicted ripe and unripe bananas using those properties. Wang et al. [40]
combined image features extracted from an image of PC4 and the average spectra to predict
bananas’ shelf-life in terms of different browning levels. Diezma et al. [41] differentiated
bananas in seven ripeness classes by scores of PC1, and generated virtual images. The
majority of the above studies were also focused on post-harvesting bananas. For harvestable
green bananas before, studies on classification of maturity stage or flavor detection based
on hyperspectral imaging has not yet been found.
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This study proved the feasibility of assessing maturity stages of green banana by
Vis/NIR hyperspectral imaging technique and characterizing its quality by a low num-
ber of spectral variables. Specific objectives included (1) identifying maturity levels of
green banana fingers; (2) characterizing quality parameters that associated with banana
maturity level; and (3) visualizing the spatial distribution of those quality parameters in
banana fingers.

2. Materials and Methods
2.1. Sample Preparation

A local well-known dwarf banana cultivar “Fenjiao No.1” was used in this study,
which was grown in a commercial orchard (Dongguan city, Guangdong Province, China).
A total of 6 banana bunches corresponding to 6 maturity levels (Level 2, 4, 6, 7, 8 and
9) were harvested in August 2019 according to the growth time after flowering and the
experience of local growers. Those banana bunches were immediately transported to the lab
for crown-cutting without treatment of ripening. For each maturity level, 30 non-defective
banana fingers with uniform size on middle tiers were selected as samples. However, due
to three fingers that were discarded in level 2 for the damage caused during transportation,
a total of 177 banana fingers remained.

2.2. Hyperspectral Image Acquisition

Hyperspectral images of those banana samples were acquired by using a laboratory
reflectance hyperspectral imaging system working at 386–1016 nm wavelength region.
The average wavelength gap was 3.5 nm, and the spatial binning was 696 × 700 pixels.
This system contain the image acquisition software. The four lamps were positioned at
approximately 45◦ of an infrared hyperspectral camera (GaiaField-mini, Dualix, Sichuan,
China), a camera obscura coupled with a custom lifting platform, four 50 W Tungsten–
Halogen lamps and a computer 40 cm above and lateral to the platform. The platform was
used to keep a distance of 50 cm between banana samples and the hyperspectral camera.

During hyperspectral image acquisition, the exposure time were adjusted to 9.98
ms and push-broom forward speed was set to 0.8 mm/s. Each banana sample was hor-
izontally placed on the platform with its bending in the same orientation. The acquired
hyperspectral image was firstly calibrated by dark and white reference images to reduce
noises caused by dark current of the CCD detectors and uneven intensity of light source.
The white reference image (W) was acquired by capturing the image of a PETT white
board (HSIA-CT-250 × 280, Dualix, Sichuan, China) with nearly 100% reflectance. The
dark reference image (B) was acquired by taking the image with all lighting sources off
and camera lens completely being covered. The raw sample images (R) were calibrated by
Equation (1):

I =
R − B
W − B

× 100%, (1)

where I is the calibrated image; R is the raw image; B is the dark reference image; and W is
the white reference image.

2.3. Reference Measurement of Quality Parameters

After imaging, two appearance parameters (diameter and total chromatism, ∆E*) and
three internal quality parameters (soluble solid content, SSC; total acid content, TA; and
chlorophyll content) of each sample were determined in the study. Diameter was measured
using a vernier caliper (Range: 0.15 m, GERMANY AIRAJ TOOLS CO., LIMITED, Hong
Kong, China) for the middle zone of banana fingers. In the determination of total chroma-
tism, the L*, a* and b* values of banana peel were measured using a colorimeter (NR60CP,
3nh, Shenzhen, China). Then, total chromatism (∆E*) were calculated by Equation (2):

∆E∗ =
√

L∗2 + a∗2 + b∗2, (2)
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SSC and TA analysis was carried out by a handheld refractometer (Atago, ATAGO
PAL-BX|ACID3 Model PR-101, Japan) following a method described by Zhu et al. [42]
Firstly, 1 g of banana flesh was diluted with 24 mL of distilled water and blended. Then, a
drop of supernatant was extracted into the refractometer, and readings were recorded. For
each measurement, the refractometer was totally cleaned using distilled water and paper
towels. Chlorophyll measurement was conducted by a spectrophotometric method used by
Zhang et al. [43]. Some key steps were as follows: (1) crushing 0.3 g of banana peel tissue
homogeneously in a mortar with a small amount of quartz sand, calcium carbonate and
2 mL of 95% absolute ethanol; (2) adding 10 mL of ethanol for further grounding until the
tissue slurry becomes white; (3) filtering the tissue slurry into a 25 mL brown volumetric
flask; (4) once filtering solution produced by rinsing the mortar and tissue residue using
ethanol into the brown volumetric flask until there was no green in the residue; (5) adjusting
the volume of sample solution to 25 mL by adding ethanol into the brown volumetric
flask; and (6) measuring their absorbance by an UV-Vis spectrophotometer (UV-1800,
SHIMADZU, Shimadzu (Suzhou) Co., Ltd., Suzhou, China) calibrated by using a blank
solution (95% of absolute ethanol) at 649 nm and 665 nm. Based on those absorbances, total
chlorophyll content in the peel was calculated.

2.4. Primary Chemometrics Methods

Both qualitative and quantitative analysis were carried out to assess the maturity of
banana fingers and evaluate their quality parameters during maturation. The spectral
variables were employed directly as inputs of PLSDA algorithms in order to discriminate
bananas in different maturity levels. Then, regression models between quality parameters
(SSC, TA, chlorophyll and ∆E*) and spectral data were generated by partial least squares
regression (PLSR) and interval PLS methods. Finally, visualized distribution maps of those
quality parameters were constructed based on the regression models.

Among those chemometric methods, PLSR is one of the most commonly adopted
strategies in establishment of linear regression models. It seeks the fundamental relation-
ships between spectra (X variables) and targeted reference values (Y variable) based on
extraction of orthogonal predictors (also named latent variables, LVs) that were obtained
from the original spectral projection [44]. The optimum number of latent variables was
determined by the first minimum value resulted from the predicted residual sum of the
squares [45].

PLSDA converts the regression problem into the classification one based on PLSR
algorithm [46]. In PLSDA, class-belonging is encoded by a binary “Dummy matrix” Y. PLSR
is used to develop a model predicting the class number for each sample. The predicted
value obtained by PLSR will not be binarized, but it will contain real continuous values. In
order to use the predicted value to classify the samples, a threshold was established. During
modelling, the best number of LVs was chosen on a basis of the lowest root mean square
error in cross-validation set (RMSECV) resulted from random subsets cross validation [47].

3. Results and Discussion

A pseudo-color image (Figure 1) was represented with three single-band synthesized
images at 566.2, 614.3 and 818.2 nm selected from the hyperspectral images. The image
indicates apparent differences in the appearance of banana fingers between growth stage
and harvestable stage. However, the difference among fingers in harvestable stage is not
obvious. In maturity levels of 2 and 4, the fingers do not reach a harvestable stage and
hence have clearly angular and much shorter lengths than others. In maturity levels of
6 and 7 or a stage known as “full three-quarters”, they could be harvested and shipped
for distant markets though the fingers are still angular. As the maturity level increases,
the fingers lose angularity and become more and more full in shape. The fruit in maturity
levels of 8 and 9 are in a cylindrical shape and usually harvested for local markets.
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Figure 1. Pseudo-color image of banana fingers in the six maturity levels.

3.1. Statistical Analysis of Quality Parameters

During growth of banana, the color of fruit finger changes from dark green to green and
finally to yellow green, and their shape changes from the angular to the full. Meanwhile,
the pulp and nutraceutical components content also accumulated. The specific results
of descriptive statistics of the appearance and internal quality parameters are shown in
Table 1. The correlation coefficient between maturity level and those quality parameters
were also obtained. At a significance level of 0.01, the diameter, TA, SSC, chlorophyll and
∆E* were significantly and positively related to the maturity level, and the chlorophyll was
significantly and negatively related to maturity level. The correlation coefficient between
maturity level and diameter, TA and SSC were higher than those between maturity level
and chlorophyll as well as ∆E*.

Table 1. Descriptive statistics of some quality parameters.

Quality
Parameter

Observation
Count Maximum Minimum Mean Standard

Deviation
Correlation Coefficient

with Maturity Level

Diameter (mm) 177 54.00 22.00 40.80 7.50 0.97 ***
TA (%) 177 68.59 28.21 28.21 16.14 0.90 ***
SSC (%) 177 15.87 0.43 5.45 4.02 0.87 ***

Chlorophyll (mg/g) 177 14.30 1.20 6.78 2.84 −0.64 ***
∆E* 177 81.47 51.97 67.29 5.74 0.61 ***

*** indicates significant relation at 0.01 level.

Furthermore, one-way analysis of variance (ANOVA) with Duncan’s multiple range
test was carried out to compare the difference in values/content of quality parameters
between different maturity levels. The results were shown in Figure 2. It could be seen that
maturity level has remarkable effect on some quality parameters. Generally, the content
of both SSC and TA significantly increased with increasing maturity level. The increase
of SSC could be primarily attribute to the photosynthesis and/or hydrolysis of starch by
amylase [30]. Contrary to SSC and TA, chlorophyll content had a tendency to decrease
with increasing maturity level. The chlorophyll content in maturity levels 6 and 7 were
significantly lower than those in maturity levels 2 and 4. In terms of external parameters,
the diameter and total chromatism also significantly rise, while differences in diameter
between maturity levels were more apparent than those in total chromaticity. Bananas in
maturity levels of 2 and 4 were still in growth stage, and maturity level 7, 8 and 9 had
already reached the harvestable standard. The color appearance of bananas in the growth
stage was very difficult to identify, which may result in the insignificant difference in total
chromatism between maturity levels 2 and 4. The similar explanation may also be applied
to the differences in total chromatism between maturity levels 7, 8 and 9.
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Figure 2. Means with standard deviation of (a) SSC; (b) TA; (c) chlorophyll; (d) diameter; and (e) total
chromatism in banana. Different lowercase letters (a–f) marked on the bars indicate significant
differences between different maturity levels at a 0.05 level.

3.2. Differentiating Green Bananas in Different Maturity Levels
3.2.1. Spectral Profiles of Banana at Different Maturity Levels

The spectra of banana samples were extracted from the hyperspectral image cubes.
In order to remove backgrounds and noise, the calibrated hyperspectral images were
firstly trimmed into new smaller hypercubes with a wavelength range of 450.9–1000.7 nm.
Subsequently, the first 6 pcs were used in the inverse principal component analysis (PCA) to
reduce pixel random noise. Then, the regions of interest (ROIs) with a 11 × 11 pixels’ area
were selected manually from three zones, i.e., pedicel zone, middle zone and apex zone on
a banana finger (Figure 3) in ENVI software (exelis visual information solutions, boulder,
co., Boulder, CO, USA). Finally, a total of 521 averaged spectra (177 samples × 3 zones)
were obtained from the ROIs.

The average spectra of each zone of a finger sample were also represented in Figure 3.
The pattern of each zone’s spectral curve was similar, but the reflectance was different at
the same wavelength. The differences in profile, i.e., plumpness or angularity between
the three zones may be accounted for by the variance. Moreover, the uneven distribution
of chemical composition on a finger may also contribute to the reflectance difference of
spectra. An obvious peak at around 550 nm could reflect the content of chlorophyll. The
sharp increase of reflectance from 680 to 780 nm was caused by the red edge. The spectral
band from 800–960 nm mainly showed the water content of fruit [38].
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Figure 3. An illustration of spectra extraction from banana samples.

The average spectra of each zone in the six maturity levels are shown in Figure 4. It
is observed that the spectra of middle zone in each maturity level are overlapped. For
the pedicel zone, the reflectance in the wavelength region of 780–1000 nm presents a
general decrease with increasing maturity level. Spectral curve in maturity levels 2 and
4 are obviously different from those in other four levels, while the spectra in maturity
levels 6–9 show a great similarity since those levels reach harvestable stage. For the apex
zone, the reflectance spectra in the whole NIR region (from 700 to 1000 nm) present a
gradient decrease from maturity level 2 to 9, which is in accordance with the finding of
Diezma et al. [41]. As revealed by prior study, the similar patterns but different reflectance
intensity in the spectra curves indicated the same internal substance but different content
in different levels of maturity [48]. Saputro et al. [49] also pointed out that the overall
difference in reflection characteristics of bananas is attributable to changes of physical
and chemical parameters, such as color, soluble solid content, chlorophyll and moisture
content. On the spectral curves, the peaks or valleys around 500, 680, 840, and 960 nm
were exactly associated with anthocyanins, chlorophylls, sugars, and moisture contents
in fruit [50]. On the basis of those features, chemometric techniques were further utilized
to differentiate bananas in different maturity levels, and highlight their discrepancies in
chemical composition.

3.2.2. Identification Models of Maturity Levels of Banana Fingers

In order to identify maturity levels of bananas, identification models were first built
based on the spectral data of each zone, respectively. Before modelling, pre-treatments
(Baseline Offset, Normalize, standard normal variate (SNV), detrending (DET) and first-
order derivatives) were performed to reduce unwanted information, i.e., light scattering,
shifts in baseline, non-linearities and random noise. Each of the 177 spectra of each zone
was pretreated by above methods, and PLSDA discrimination models based on both raw
spectra and preprocessed data were, respectively, built for identifying maturity level. Two-
thirds of the spectra were treated as calibration set and the rest were used for validation.
Cross-validation was also applied to evaluate the model performance, and the model
obtained by cross-validation using the calibration set was applied to the validation set [51].
In this study, PLSDA with the option of five-fold cross-validation were performed. All the
identification results were listed in Table 2.
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Figure 4. The average spectra of (a) pedicel zone; (b) middle zone and (c) apex zone in the six
maturity levels.

As shown in Table 2, all the PLSDA models with different pre-processing methods
achieve favorable results with calibration accuracies of over 94.92% and validation accura-
cies of over 86.44%. These results indicate the feasibility of classifying maturity levels of
banana using NIR spectroscopy combined with PLSDA method. For each of the three zones,
the models based on raw spectra and pre-treated spectra showed similar performance,
which indicated that the raw spectra were sufficiently effective and the preprocessing could
be elided. It can also be seen that all the classifiers for middle and apex zones have higher
accuracies than those for pedicel zone. A possible explanation was that the compounds var-
ied spatially across different portions of a banana finger. A similar result was also reported
in the research of Wei et al. [28], who analyzed the ripeness of astringent persimmon and
indicated that the models for stem-calyx end side had better performance.
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Table 2. Classification results of PLSDA models built with raw and pretreated spectra.

ROI Position Pre-Treatment Method LVs
Classification Accuracy (%)

Calibration Set Cross-Validation Set Validation Set

Pedicel zone

Non 15 94.92 92.37 91.53
Baseline offset 16 96.61 93.22 89.83

Normalize 17 96.61 90.68 89.83
SNV 18 98.31 91.53 88.14

SNV+DET 15 94.92 91.53 88.14
1st derivative 16 95.76 92.37 86.44

SNV+1st derivative 14 96.61 91.53 86.44

Middle zone

Non 16 99.15 94.92 93.22
Baseline offset 15 97.46 94.07 93.22

Normalize 16 97.46 94.92 93.22
SNV 14 97.46 93.22 91.53

SNV+DET 16 98.31 95.76 93.22
1st derivative 17 99.15 93.22 91.53

SNV+1st derivative 17 99.15 94.92 93.22

Apex zone

Non 15 99.15 98.31 96.61
Baseline offset 17 99.15 93.22 94.92

Normalize 17 100 98.31 98.31
SNV 15 98.31 95.76 94.92

SNV+DET 17 99.15 97.46 96.61
1st derivative 16 97.46 94.07 93.22

SNV+1st derivative 16 98.31 95.76 91.53

In actual detection, it would be more efficient to distinguish maturity level regardless
of spectra acquisition position. Thus, a new generic PLSDA model was built with a total
of 531 spectra of three zones pooled. Similar to the modelling for each zone, the ratio
of the number of calibration and validation sets was 2:1. In the new generic PLSDA
model, seventeen LVs was selected through cross-validation. The classification accuracy for
calibration, cross-validation and validation set was 97.18%, 96.33% and 94.35%, respectively.
For each group, the classification accuracy was over 81.81% in validation set. Extreme
classes showed better results with classification accuracy of 100 %, 94.12%, 100% and 94.74%
for maturity level 2, 4, 8 and 9, respectively. Results suggested that banana fingers with
different maturity levels could be classified with high accuracy using the full region of raw
NIR spectra.

In order to simplify the models and hasten the processing, selecting a wavelength
range instead of the full range of spectra was an effective method. It can not only reduce
spectral variables, but also avoid the curse of dimensionality. In this study, the spectra were
equally divided into four regions, and each region had at least one peak or one shoulder.
Identification models were established based on the four intervals, respectively, by PLSDA
method, and results were summarized in Table 3.

Table 3. Results of PLSDA model based on each interval.

Interval Number Wavelength Range (nm) LVs
Classification Accuracy (%)

Calibration Set Cross-Validation Set Validation Set

[1] 490.5–580.5 13 87.01 83.62 81.36
[2] 582.9–717.4 15 88.70 85.59 85.31
[3] 719.9–856.7 16 84.46 77.40 76.27
[4] 859.2–1000.7 16 90.11 83.62 83.05
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As interval 2 had the maximum classification accuracy, it was chosen as the optimal
interval for the subsequent model construction. The confusion matrix (Figure 5a) and ROC
curves (Figure 5b) of the PLSDA model based on interval 2 represent good performance
in identifying maturity levels. Similar to models based on the full spectra, it also showed
better results in the extreme classes (maturity levels 2 and 9). The misclassified mainly
occurred at intermediate classes (maturity levels 6 and 7). It was especially noteworthy
that the lowest classification accuracy occurs in the identification of maturity level 6. About
21% of samples in maturity level 6 were assigned to maturity level 7 by the model; 18% of
samples in maturity level 7 were assigned to maturity level 8. The similar appearance and
internal composition may contribute to the misclassification, since the three levels were at
harvestable stage.

Figure 5. Performance of the interval PLSDA model represented by (a) confusion matrix; and
(b) ROC curves.

3.3. Characterization of Quality Parameters of Banana in Different Maturity Levels
3.3.1. Full-Spectrum PLS Models

As mentioned before, chemical and physical properties of banana would change
during maturation. Analyzing quality parameters, i.e., SSC, TA, chlorophyll and ∆E*,
would be beneficial for identifying maturity level. Thus, the dependent variables (SSC,
TA, chlorophyll and ∆E*) and the independent variables (full region of spectral data) from
all the banana fingers were assigned to develop calibration models for the prediction of
these parameters. In order to obtain the optimal performance of model, PLS methods
were performed on the raw spectral data and preprocessed spectra, respectively. During
modelling, a total of 531 spectra were randomly divided into calibration and validation
sets with a ratio of 2:1, and the optimal number of LVs in each model was also selected
by five-fold cross-validation. The performance of the acquired models was evaluated by
considering coefficient of determination (R2) and root mean square error (RMSE) in calibra-
tion, validation and cross-validation set (R2c, R2v, R2cv, RMSEC, RMSEV and RMSECV).
Generally, higher values of R2c, R2v, R2cv but lower values of RMSEC, RMSECV, and
RMSEP indicate good performance of model [52]. Results of the established models for
quality parameters were represented in Table 4.
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Table 4. Predictive results of the quality parameters.

Quality
Parameter

Pre-Treatment
Method Number of LVs

Calibration Set Cross-Validation Set Validation Set

R2c RMSEC R2cv RMSECV R2v RMSEV

SSC

Non 19 0.85 1.60 (%) 0.81 1.85 (%) 0.74 1.98 (%)
Baseline offset 19 0.84 1.63 (%) 0.77 1.91 (%) 0.77 1.94 (%)

Normalize 19 0.86 1.51 (%) 0.81 1.76 (%) 0.80 1.79 (%)
SNV 19 0.87 1.52 (%) 0.81 1.80 (%) 0.79 1.82 (%)

SNV+DET 19 0.79 1.81 (%) 0.81 1.79 (%) 0.79 1.82 (%)
1st dervative 18 0.79 1.87 (%) 0.73 2.13 (%) 0.72 2.10 (%)

SNV+1st dervative 19 0.81 1.75 (%) 0.77 1.94 (%) 0.77 1.92 (%)

TA

Non 18 0.81 7.02 (%) 0.76 8.09 (%) 0.68 8.59 (%)
Baseline offset 18 0.80 7.38 (%) 0.72 8.71 (%) 0.71 8.60 (%)

Normalize 17 0.81 6.92 (%) 0.75 8.00 (%) 0.74 8.37 (%)
SNV 18 0.81 7.02 (%) 0.76 8.14 (%) 0.75 7.36 (%)

SNV+DET 17 0.81 6.82 (%) 0.76 8.03 (%) 0.74 8.12 (%)
1st dervative 19 0.79 7.46 (%) 0.73 8.60 (%) 0.68 9.17 (%)

SNV+1st dervative 18 0.78 7.57 (%) 0.72 8.60 (%) 0.70 8.74 (%)

Chlorophyll

Non 18 0.56 1.88 (mg/g) 0.44 2.15 (mg/g) 0.42 2.20 (mg/g)
Baseline offset 19 0.58 1.85 (mg/g) 0.42 2.19 (mg/g) 0.41 2.23 (mg/g)

Normalize 18 0.58 1.94 (mg/g) 0.44 2.25 (mg/g) 0.42 2.00 (mg/g)
SNV 18 0.57 1.80 (mg/g) 0.43 2.11 (mg/g) 0.37 2.39 (mg/g)

SNV+DET 18 0.58 1.77 (mg/g) 0.39 2.20 (mg/g) 0.36 2.42 (mg/g)
1st dervative 17 0.49 2.04 (mg/g) 0.40 2.22 (mg/g) 0.38 2.21 (mg/g)

SNV+1st dervative 14 0.47 2.09 (mg/g) 0.33 2.35 (mg/g) 0.29 2.38 (mg/g)

∆E*

Non 19 0.59 3.72 0.45 4.34 0.44 4.28
Baseline offset 18 0.56 3.75 0.41 4.41 0.40 4.54

Normalize 18 0.59 3.74 0.49 4.21 0.40 4.28
SNV 18 0.59 3.68 0.46 4.25 0.46 4.22

SNV+DET 18 0.59 3.57 0.46 4.12 0.42 4.58
1st dervative 18 0.49 4.14 0.38 4.61 0.37 4.49

SNV+1st dervative 10 0.44 4.28 0.33 4.68 0.29 4.96

For those four parameters, the models developed using raw and pretreated spectra
provided acceptable results. In models for SSC and TA, applying methods of baseline offset,
normalize, SNV and SNV+DET achieved a higher performance. The best result with R2v
of 0.79, 0.75 and 0.46, respectively, for SSC, TA and ∆E* were obtained by applying SNV.
For chlorophyll, the best model with R2v of 0.42 were obtained by applying normalize
per-processing method. However, applying those pre-processing methods to raw spectra
did not significantly improve the performance of PLS models. Thus, the following PLS
models were developed based on raw spectra without pretreatment. The models achieved
better results for SSC and TA. In validation set, R2v and RMSEV were 0.74 and 1.98% for
SSC, and 0.68 and 8.59% for TA, respectively. The values of R2v in SSC and TA indicated a
good performance of model [53]. Comparing with previous studies, the predictive results
for the SSC were slightly inferior. For example, the R2v and RMSEV were 0.85 and 1.98,
respectively, in a study performed by Masithoh et al. [54], who utilized baseline offset
method and PLS method to predict SSC of banana by Vis/NIR spectroscopy (350–1000 nm)
in reflectance mode. In another study conducted by Ali et al. [24], the values of R2v
and RMSEV were 0.81 and 3.90 in a PLS model that was constructed based on original
absorbance spectra in a range of 1000–2500 nm for prediction of SSC in banana. The
situation could be explained by the following reasons. The predictive ability of spectral
data is associated with their acquisition mode and wavelength range. The variations in
composition between ripened and green bananas would also affect the performance of
models. Moreover, the predictive results of chlorophyll and ∆E* are similar with R2v
of 0.42 and 0.44, and RMSEV of 2.20 mg/g and 4.28, respectively. The close correlation
between color change and chlorophyll degradation during maturation of banana may cause
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the similarity [55]. Compared to those for SSC and TA, the predictive results for chlorophyll
and ∆E* were inferior. This may be attributed to the larger variance in SSC and TA, as the
difference between the six maturity levels was greater than that in chlorophyll and ∆E*
(Figure 2).

3.3.2. Interval PLS Models

In order to simplify the models and hasten the processing, a wavelength range was
selected instead of the full range. Following the process presented in Section 3.2.2, for
each quality parameter, prediction models were established by PLS method based on the
four intervals, respectively, and the interval corresponding to the minimum RMSECV was
selected as the optimal. Figure 6 represents the optimal intervals selected for modelling
for predicting different quality parameters. The dotted line represents the RMSECV of
the model with the full spectral range. It can be found that interval 2 with a range of
582.0–717.4 nm performed better in prediction of SSC and TA. Additionally, for chlorophyll
and ∆E*, interval 4 with a range of 859.2–1000.7 nm was selected. The optimal interval for
each quality parameter was marked with red rectangle (Figure 6).

Figure 6. Selection of the optimal intervals for: (a) SSC; (b) TA; (c) chlorophyll and (d) ∆E*.
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For each quality parameter, Table 5 presents the values of R2 and RMSE in calibration
and validation sets, as well as the number of LVs employed in the interval PLS models.
Similar to PLS models by the full spectra, the performance of the interval PLS models in
prediction of SSC and TA was better than that for predicting chlorophyll and ∆E*. The R2

for SSC and TA in validation set were around 0.60, which indicated a good prediction of
the model [53]. In the prediction of ∆E* and chlorophyll, the values of R2 were around 0.35.
This means that the model can be used just as screening methodology to distinguish low
and high values [56]. Compared with the results of the full spectral PLS models shown in
Table 4, the R2 was slightly reduced and the RMSE was slightly increased in the interval PLS
model. The reduction of the spectral variables may cause the change. In conclusion, these
results suggested that the selected variables were still suitable in developing simplified
models in estimation of some parameters of banana.

Table 5. Results of the models with the optimal intervals for different quality parameters.

Quality
Parameter Selected Interval LVs

Calibration Set Cross-Validation Set Validation Set

R2c RMSEC R2cv RMSECV R2v RMSEV

SSC [2] 16 0.74 8.26 (%) 0.72 8.46 (%) 0.64 9.62 (%)
TA [2] 18 0.74 2.15 (%) 0.67 2.39 (%) 0.59 2.44 (%)

Chlorophyll [4] 11 0.49 2.03 (mg/g) 0.37 2.26 0.34 2.38
∆E* [4] 10 0.48 4.16 0.36 4.58 0.3 4.81

Figure 7 shows the relationships between the actual and the predicted values obtained
by the interval PLS models based on the selected spectral interval for SSC, TA, ∆E* and
chlorophyll content. It could be seen that the points for reference and predicted were
around the regression lines, and the regression lines for calibration and validation sets were
almost overlapped. These indicated that the gap between calibration and validation is tiny.

Distribution maps of SSC, TA, chlorophyll and ∆E* in a banana finger were created
by applying the interval PLS models to each pixel of the hyperspectral image (Figure 8).
On the color bar, the number represents the values of SSC, TA, ∆E* and chlorophyll. These
values increased with varying color from blue or cyan to red. Since the content of SSC and
TA increased with maturation of banana, blue and cyan decreased while red increased from
maturity level 2 to 9. In addition, the changes in color of whole banana clearly indicated the
difference of SSC and TA between different maturity levels. Figure 8c,d also indicated the
increase of ∆E* and decrease of chlorophyll content, respectively. However, the evolution
of the two parameters was not clear among maturity levels 7 to 9. Figure 8 also shows
the nonuniformity of distribution of the four quality parameters in each banana finger.
The result is consistent with that reported by Magwaza et al. [57]. Therefore, the visual
distribution map could be a useful tool representing the changes of SSC, TA, ∆E* and
chlorophyll content during maturation of banana.
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Figure 7. Scatter plots of the actual and predicted values for (a) SSC; (b) TA; (c) chlorophyll and
(d) ∆E*. The triangular data points and solid regression lines were measured for calibration sets; the
triangular data points and long dashed regression lines were measured for validation sets.

Figure 8. Cont.
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Figure 8. Distribution maps visualizing different quality parameters: (a) SSC; (b) TA; (c) chlorophyll
and (d) ∆E*. The number on the color bar represents the concentration values of SSC, TA, *E* and
chlorophyll. The color from blue or cyan to red indicates an increase of value/content.

4. Conclusions

This study examined the feasibility of hyperspectral imaging in identifying maturity
level of green banana and characterizing quality parameters (SSC, TA, ∆E* and chlorophyll
content) of banana during maturation. The major findings and conclusions are as follows:

(1) VIS-NIR hyperspectral imaging was feasible to assess the maturity level of green
banana. PLSDA models based on different spectral subsets (spectra of pedicel zone,
spectra of middle zone, spectra of apex zone, and spectra of the three zones) for
identifying green banana in different maturity levels achieved an average classification
accuracy of over 91.53%. For the generic PLSDA model based on spectra of the three
zones pooled, better results were obtained with classification accuracies of 97.18%,
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96.33% and 94.35% in calibration, cross-validation and validation set boulder image
could be used to characterize quality parameters (SSC, TA, chlorophyll and ∆E*) in
individual banana fingers. The full-spectra PLS models were built for prediction
of those quality parameters, respectively. For SSC and TA, models were usable for
quality assurance applications, and the R2v and RMSEV values were [0.74, 1.98] and
[0.68, 8.59], respectively. The models for chlorophyll and ∆E* could just be used for
sample screening with lower values of R2v and RMSEV of [0.42, 2.20] and [0.44, 4.28],
respectively.

(2) The interval PLS models based on the characteristic spectral regions (582.0–717.4 nm
for SSC and TA, and 859.2–1000.7 nm for chlorophyll and ∆E*) could be used for
creating distribution maps of quality parameters. The results of interval PLS models
were R2v = 0.64 and RMSEV = 9.62 % for SSC, R2v = 0.59 and RMSEV = 2.44 % for TA,
R2v = 0.34 and RMSEV = 2.38 mg/g for chlorophyll, and R2v = 0.30 and RMSEV = 4.81
for ∆E*. The possible distribution maps based on the interval PLS models indicated
that the distribution of quality parameters was basically consistent with the actual
situation, which also indicated that the hyperspectral image is a useful tool to assess
the quality of banana.

It should be noted that this study has only involved a cultivar of “Fenjiao No.1”. In
order to improve the performance and applicability of the models, more samples and
different cultivars of banana will be included gradually. Besides, this study primarily
focused on the spectral analysis while the combinative analysis of image and spectra will
be considered in the future.
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