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Abstract: In a warming climate, drought events are projected to increase in many regions across
the world, which would have detrimental impacts on water resources for agriculture activity and
human life. Thus, projecting drought changes, especially the frequency of future drought events,
is very important for the African continent. This study investigates the future changes in drought
events based on the France Centre National de Recherches Météorologiques (CNRM-CM6) model
in the Coupled Model Intercomparison Project phase six (CMIP6) datasets for four shared socio-
economic pathways (SSP): SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5; and three time slices: near
future (2020–2039), mid-century (2050–2069), and end-of-century (2080–2099), relative to a historical
baseline period (1995–2014). The interannual variability and trends of the self-calibrating Palmer
Drought Severity Index (scPDSI) based on the Penman–Monteith methods for measuring potential
evapotranspiration (PET) are used to estimate future droughts. The temporal analysis shows that
the drought frequency, intensity, and affected area will increase throughout the 21st century. Among
the scenarios, SSP3-7.0 and SSP5-8.5 project a larger upward trend in drought characteristics than
SSP1-2.6 and SSP2-4.5. The spatial pattern shows drought frequency decreases in humid regions
and increases in non-humid regions across Africa. For all SSP scenarios, the projected wetting trend
per decade ranges from 0.05 to 0.25, while the drying trend per decade ranges from −0.05 to 0.25.
A regional trend analysis revealed key differences in spatial pattern, with varied trend projections
of wetter and drier conditions in humid and non-humid regions under all SSP scenarios. Drier
conditions are expected to intensify in Southern Africa under all SSP scenarios but are projected
to be more intense under either SSP3-7.0 and SSP5-8.5. In general, the projected wetter trends in
humid areas may favor agricultural production and ecological conservation, and drier trends in
non-humid regions may call for the possible adoption of tailor-made drought adaptation strategies
and development programmes to minimize impacts.

Keywords: CNRM-CM6; PET; climate change; IPCC-AR6; SSP scenarios

1. Introduction

Under a warming climate, the frequency of droughts is expected to increase in many
regions due to the increase in projected temperature (TEMP) [1]. Drought is a complex
natural process with adverse effects that ripple through multiple sectors of society, espe-
cially water resources for agricultural activities and human livelihood [2]. Droughts may
be classified as meteorological, hydrological, agricultural, or socio-economic, based on their
physical characteristics (see [2,3] for more details).
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An increase in TEMP is expected to significantly affect hydrological processes [1,4] and
may considerably change regional climates, leading to more frequent extreme events (e.g.,
droughts, heat stress) [1]. Skoulikaris et al. [4], among others, investigated the heat stress
on agriculture due to climate change. Drought indices are commonly used to quantify
drought events at any spatial–temporal scale. According to the World Meteorological Or-
ganisation (WMO), there are over 50 indices designed to compute droughts [2,3]. However,
the most widely used and recommended drought indices are the Standardized Precipitation
Index (SPI) [5], the Standardized Precipitation Evapotranspiration Index (SPEI) [6], the
Palmer Drought Severity Index (PDSI) [7], and the self-calibrating PDSI (scPDSI) [8]. In a
historical context, a wide range of studies based on independent observation data sets has
examined drought indices and characterized drought parameters, such as the frequency,
intensity, and spatial extent over the last three decades [2]. Among the indices mentioned
above, the SPEI and the PDSI/scPDSI are the most widely used because their design in-
corporates two key components of the water cycle—precipitation (i.e., water supply) and
evapotranspiration (i.e., water demand)—to represent a drought condition [2,3].

When comparing SPEI and scPDSI, the latter is preferred due to its better physi-
cal representation of drought condition in tropical regions, particularly in non-humid
regions [9–12]. The advantage of using scPDSI, for example in a tropical region such as
Africa, is its ability to represent drought conditions in non-humid regions (e.g., the Saharan
or Kalahari deserts) and humid regions (e.g., the equatorial regions of Africa). In scPDSI,
the change in the water balance is based on the difference between precipitation (PRE) and
potential evapotranspiration (PET) together with parameters related to the soil/surface
characteristics at each geographic region [8]. For example, the response to actual ET in
water-limited regions (such as arid or semi-arid climates) is related to PRE changes rather
than PET. On the contrary, in an energy-limited region (such as the equatorial region of
Africa), PET, rather than PRE, is a driver to actual ET changes [13,14]. Thus, the scPDSI
has been suggested by many studies [8,15,16], despite the index not being multi-scalar [15].
However, characterizing drought events at an interannual scale makes scPDSI compa-
rable to SPEI at similar timescales [13], thus improving our understanding of drought
events over the past century [16,17] and those documented in [8,16,18,19]. Recently, the
scPDSI based on the Penman–Monteith methods for calculating PET, provided reasonable
estimates of drought characteristics over the tropical climates of Africa compared to the
Thornwaite method [20], a pattern which is well documented in historical drought study
literature [15,17,21].

Good knowledge of the evolution of drought characteristics in the near and distant
future can assist in early and efficient preparation for a drought event. Outputs from
global climate models (GCMs) used in the Coupled Model Intercomparison Project (CMIP)
framework allow us to understand the evolution of the climate under different emission
scenarios [1]. Many studies have delved into drought characteristics using older CMIP
versions. The effect of climate warming on drought intensifications (aridity) is also well
studied and reported in [1,18,19,22]. The release of the new CMIP datasets [21,23] with
improved quality and resolution makes further drought studies [24] of great interest, as
updates in CMIP6 large-scale physics and dynamics are expected to introduce differences in
how they perform in different climate regions. A typical example is presented by Voldoire
et al. [25], where updates of several schemes, such as those in the France Centre National
de Recherches Météorologiques (CNRM-CM) model, improved the simulation outputs of
tropical climates, which is of great interest to Africa’s climate studies.

Also, an understanding of interannual variability and long-term changes in future
droughts is further motivated by recent studies [26,27], which demonstrate potential shifts
in climate zones under a future global warming scenario. According to these studies,
different climate regions are likely to be influenced by a warming climate at the end of
the century. This could suggest that in a future climate, an altered energy/water-limited
regional response to actual ET will be related to PRE (PET) changes rather than PET
(PRE) [14,28]. The new demarcation of the African sub-regions based on climate zones
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largely puts this study into proper context [29], thus providing meaningful information
needed to achieve effective regional drought mitigation strategies under climate warming.
However, knowledge of future droughts interannual variability and long-term changes
based on the CMIP6 data is limited. A review of previous studies showed that relatively
significant studies have used the CMIP3 or the CMIP5 to study drought in different African
regions [30–34].

In a multiplicity of global datasets coupled with improved data representation, many
studies have adopted the multi-mean ensemble (MME) technique to study drought events.
On the other hand, single model studies have gained significant attention and have ad-
vanced in recent times [25,35–40]. Most single model studies compared the two different
versions of the same models [25,36–40]. Unlike those studies, the focus of the present
study is to examine the climatology of drought events and their parameters based on the
CNRM-CM6 GCM. This study follows a related study [35] that examined the future ET
climatology for different SSP scenarios using the CNRM-CM6 model across climate regions
and indicated that the ET variability may likely influence the distribution of extreme events,
such as droughts, in both space and time, especially across Africa. This study investigates
the temporal variability of future drought characteristics under four emissions scenarios.
Moreover, the spatial pattern of drought event frequency and the wetting and drying trends
from the CNRM-CM6 model using the scPDSI is examined based on the Penman-Monteith
(PM) methods for measuring PET to identify droughts. The choice of scPDSI to represent
future drought is documented in CMIP (phase 5 and 6 based drought analysis) [1,24,26].

The remainder of the paper is structured as follows: Section 2 describes the study area,
and introduces the data and methods used in the study. Section 3 presents the results of
the projected change in drought characteristics and projected trends in wetting and drying
conditions. The discussions are presented in Section 4 and the conclusion in Section 5.

2. Data and Methods
2.1. Study Area

Africa is located between 32◦ N and 35◦ S and 14◦ W and 52◦ E (Figure 1). The entire
African land area is nearly 30.37 million km2, and the equator divides the continent into
two, with more states in the Northern than in the Southern Hemispheres. Africa is the
second-largest continent after Asia, in land size and population growth. Its vulnerability to
climate variabilities is highly noticeable when extreme events occur, as three-quarters of
the continent’s Gross Domestic Product is heavily dependent on rain-fed agriculture [41],
which is tied to climate variability [41]. As climate change is expected to reshape the
spatiotemporal pattern of climate zones in the future climate [26,27], we present a Köppen–
Geiger map overlaid on the latest Intergovernmental Panel on Climate Change (IPCC)
regional demarcations for Africa region [29] (Figure 1). The IPCC regional demarcations
for Africa [29] is divided into seven regions: the Sahara (SAH), West Africa (WAF), Central
Africa (CAF), Northern East Africa (NEAF), Southern East Africa (SEAF), Western South
Africa (WSAF), and Eastern South Africa (ESAF) (Figure 1) and are used in [42,43].
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Figure 1. Map of Köppen–Geiger climate classification for 2071–2100 [27] overlaid with the updated
IPCC sub-regions for Africa climate studies [29]. Abbreviations: (I) SAH: Sahara, (II) WAF: West
Africa, (III) CAF: Central Africa; (IV) NEAF: Northern East Africa, (V) SEAF: Southern East Africa;
(VI) WSAF: Western South Africa, (VII) ESAF: Eastern South Africa.

2.2. Data

Following the recommendation from a previous study of the region [35], the present
study uses the France Centre National de Recherches Météorologiques (CNRM-CM6)
dataset produced by [25,44]. The dataset is jointly developed by the Centre National de
Recherches Météorologiques—Groupe d’Étude de l’Atmosphère Météorologique (CNRM-
GAME) and the Centre Européen de Recherche et de Formation Avancée en Calcul Scien-
tifique (CERFACS). In CNRM, the atmosphere model is represented by ARPEGE-Climat
(v6.3) [45], which incorporates the land surface scheme ISBA-CTRIP [46,47]. The lake
areas uses the revised FLAKE model, which is incorporated in the SURFES v8.0 [48] exter-
nalized surface system as well as being fully-coupled with the NEMO version 3.6 ocean
model [49]. The sea ice model GELATO scheme [50] through the OASIS-MCT coupling
system [51,52] and the Total Runoff Integrating Pathways (TRIP) river routing scheme [53]
were used. An output system called the XIOS server is added to the system to allow online
output processing [54]. Readers are directed to Voldoire et al. [25] for more details of the
CNRM-CM6 GCM. The CNRM-CM selection was influenced partly as a result of past
studies on PRE [55,56], ET [35] and TEMP [55]. Further, an evaluation of CNRM-CM5
and CNRM-CM6 by Voldoire et al. [25] highlighted significant improved simulation of
tropical climates.

The spatiotemporal resolution of CNRM-CM6 is 1.4◦ × 1.4◦ and extends from 1995–2014
for historical data and 2015–2100 for projections. The study considered projections for
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three time slices: near future (2020–2039), mid-century (2050–2069), and end-of-century
(2080–2099). We use the first ensemble member (r1i1p1f1 (r1: realization index; i1: initializa-
tion index; p1: physics index; and f1: forcing index). The CNRM-CM6 datasets are publicly
available at [57]. The projections are studied for four Shared Socio-economic Pathway (SSP):
SSP1-2.6, SSP 2-4.5, SSP3-7.0, and SSP5-8.5, representing the low forcing (i.e., sustainability
pathway), medium forcing (i.e., middle-of-the-road pathway) medium-to-high forcing
pathway (i.e., a medium challenge to mitigation and adaptation pathway) and high-end
forcing pathway (i.e., the worst possible scenario), respectively [58].

2.3. Methods
2.3.1. Potential Evapotranspiration (PET) Computation Using the Penman–Monteith Model

PET is a key component of the scPDSI. We used the Penman–Monteith (PM) model
to compute PET based on the Food and Agriculture (FAO) recommendation [41]. The
choice of PM is based on a previous study in the region [20] and it has been documented in
many studies across the globe [15,16,18,19]. The PET computation with the PM model uses
relative humidity, wind, temperature, and short and long-wave radiation. See for more
details about the PM approach [59].

2.3.2. Self-Calibrated Palmer Drought Severity Index (scPDSI) Model

The scPDSI is widely used to quantify future droughts [60]. We computed the scPDSI
with PRE, PET, and available water capacity (AWC) following Wells et al. [8] and Dai [59].
The drought is computed for the baseline (1995–2014) and future (2015–2100) periods. To
compute the projected drought for each time window, the difference between the future
time window and the baseline period is estimated and projected from 2015 to 2100 under
the four SSP scenarios following [60]. Details of scPDSI formulations and calculation is
found in [59] and others related studies [15,16,18,19,61].

2.3.3. Drought Characteristics

The run theory is used [62] to extract drought events and describe their basic charac-
teristics (i.e., drought frequency (DF), drought intensity (DI) and mean drought-affected
area (DA)). For each month, grids with scPDSI values lower than −2 are considered as a
drought event.

The mathematical expression below (Equation (1)) is used to calculate drought fre-
quency (DF). DF is the ratio of the number of drought months to the total number of months.

DF =
n
N

(1)

where DF denotes the frequency of droughts, n denotes the number of drought months,
and the N represents the total number of months.

Drought area is the total area of grids affected by droughts. The drought area coverage
(DA) is expressed as (Equation (2)):

DA =
∑n

i=1 da

na
(2)

where DA represents the drought area coverage, i is a month, n is the nth month, na is the
total number of pixels under drought condition, and da denotes the number of pixels with
scPDSI < −2 for a specific intensity in month i.

Drought intensity is the average drought index of grids experiencing droughts. Drought
intensity is computed by the averaging the intensity of all drought events on each grid
during the reference period and the three future periods (Equation (3)):

DI =

⌈
1
n

n

∑
i=1

scPSDIi

⌉
(3)
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where DI represents the drought intensity and n denotes the total number of grids with
drought conditions in months with scPSDI < −2.

2.3.4. Mann–Kendall Test and Theil–Sen’s Slope Test

The trends in drought are examined using the Mann–Kendall tau-b nonparametric
technique [63,64]. The study also used the Theil–Sen formula, to estimate and character-
ize linear trends [65]. The mathematical formulation for both the Mann–Kendall tau-b
nonparametric technique and the Theil–Sen formula is well known in the literature. The
computation procedures are presented in many studies [61,66,67].

2.3.5. Unit of Analysis

The unit of analysis used in this study is based on annual and decadal scales for
future climate change analysis. A flowchart of the paper is illustrated in Figure S1. In
addition, to better characterize the drought events over the African region, the projected
drought changes are performed for six spatial domains defined by Iturbide et al. [29] and
are adopted in the IPCC AR6 [1] and other studies [42,43]. The new demarcation provides
a possible scientific basis for describing drought events under different climate zones and
proposing tailormade adaptations and mitigation policies for different regions.

Based on lessons from past studies [16,18,68], this work defines drought episodes
as periods with a monthly drought index (less than −2) under the thresholds shown in
Table 1. Thus, we calculate the drought index for each grid and the four SSP scenarios
of the CNRM-CM6 data. The drought properties are then spatially averaged for each
20-year period. The projected droughts are computed by subtracting the historical mean
(1995–2014) from the entire projected time series: near future (2020–2039), mid-century
(2050–2069), and end-of-century (2080–2099). All data processing is performed using the
Climate Data Operation (CDO).

Table 1. Classifications of droughts based on scPDSI.

Categories scPDSI

Extremely dry ≤−4.0

Severely dry −3.99 to −3.0

Moderately dry −2.99 to −2.0

Near normal −1.99 to 1.99

Moderately wet 2.0–2.99

Severely wet 3.0–3.99

Extremely wet ≥4.0

3. Results
3.1. Projected Climatological Changes in Drought Characteristics

Figure 2 illustrates the projected drought frequency for the four SSPs scenarios during
2015–2100 relative to the baseline period (1995–2014). In general, the frequency of future
drought events shows an increasing trend for all SSP scenarios. Moreover, the magnitude
of the trend increases with an increase in radiative forcing.

SSP5-8.5 (red) and SSP3-7.5 (orange) illustrate an increasing trend throughout the
century, with the frequency of drought events estimated to range between 3–8 yr−1. The
magnitude of the frequency of drought events is slightly lower (3–6 yr−1) in SSP1-2.6 (deep
blue) and SSP2-4.5 (light blue). Overall, all the SSP scenarios show an increasing trend in
drought frequency throughout the century.

Figure 3 illustrates the time series of projected drought intensity for the four SSP
scenarios. The projected time series presents different drought intensities for the different
SSPs. Overall, the projected intensity varies significantly across all SSP scenarios with
values ranging from −2.5 to −4 for different periods. These changes in drought intensities
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are more distinguishable in the mid- (2050–2069) to end-of-century (2080–2099), as projected
intensity changes from severe (i.e., −2.5–−3.5) to extreme (i.e., ≥3.5) droughts under SSP3-
7.0 (orange) and SSP5-8.5 (red) at the end of the century. In the SSP1-2.6 (deep blue) and
SSP2-4.5 (light blue) scenarios, the drought intensities are moderate (i.e., ≤2.5) in the
near future (2020–2039), changing to severe in the mid-century (2050–2069), and back to
moderate drought intensity at the end of the century (2080–2099).

Figure 2. Annual drought frequency averaged over Africa during the baseline (1995–2014; black line)
and future (2015–2100) periods. The colored lines represent results under the four SSP: SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5.

Figure 3. Annual drought intensity averaged over Africa during the baseline (1995–2014, black line)
and future (2015–2100) periods. The color lines represent the results under the four SSP: SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5.
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Figure 4 shows the time series of the projected drought-affected area for the different
SSP scenarios during the 21st century. The figure shows mixed upward and downward
trends during the different time periods. Quantitatively, the affected areas range from
900–1800 (104 km−2) in the near future (2020–2039) under all SSP scenarios, followed by an
increase in coverage from 2000 (104 km−2) in the 2060s and a decrease to 1700 (104 km−2)
at the end of mid-century (i.e., 2070). The end-of-century projects upwards trends for all
SSP scenarios from 1600 to 2099 (104 km−2). The affected areas for SSP3-7.0 (orange color)
and SSP5-8.5 (red) are slightly closer to each other in magnitudes, while SSP1-2.5 (deep
blue) and SSP 2-4.5 (light blue) scenarios show a similar increase in range of magnitudes.

Figure 4. Annual drought spatial coverage averaged over Africa during the baseline (1995–2014;
black line) and future (2015–2100) periods. The color lines represent the results under the four SSP:
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.

3.2. Projected Changes in Drought Frequency

Figure 5 illustrates the spatial distributions of climatological drought frequency across
Africa for the different SSPs scenarios during 2020–2099. The drought frequency is com-
puted by subtracting each grid of the baseline period from that of the future periods.
Overall, the spatial pattern of drought frequency is projected to increase for different
periods and SSP scenarios. The spatial trend of drought frequency across Africa comple-
ments the temporal trend by indicating the regions of possible increase or decrease in
drought frequency.

The analysis of the projected drought frequency across the continent shows striking
differences in spatial patterns. Regional differences are observed when considering the
different sub-regions (Figure 5). In SAH, high drought frequency values (6 to >10) are
observed for each scenario (Figure 5). The drought frequency is projected to increase with
an increase in radiative forcing scenarios in this region over the period. Similar patterns are
noted for WSAF and ESAF, with the drought frequency varying from 6 to >10. However, we
observed higher frequency values over the arid regions of WSAF than over the semi-arid
region of ESAF, except under SSP5-8.5. The drought frequency pattern of SAH and WSAF
is related to the similarity in PRE pattern and the amount of the regions.

In contrast, the equatorial region shows different drought frequencies under each
scenario. In WAF, the drought frequency is relatively lower and ranges from 2 to 4, with the
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frequency slightly reducing with increasing scenarios. In CAF, drought frequency varies
from <2 to 6 and the value reduces from SSP1-2.6 to SSP5-8.5. We observe values of <2 in
drought frequency in CAF, especially over the Congo Basin. In the EAF, we observe slightly
mixed results. For example, NEAF presents slightly higher drought frequency values
ranging from 2 to >8, while SEAF shows values ranging from 2 to 6. Drought frequency
of 4–6 yr−1 is observed over parts of Sudan and Ethiopia but reduces from 6 to 2 over the
Somalia and Eritrea region for each scenario. In summary, drought frequency is projected
to decrease in CAF and WAF and slightly in SEAF for each scenario while an increase is
expected in SAH, WSAF, and ESAF.

Figure 5. Geographic distribution of projected annual mean drought frequency (yr−1) during
2020–2099 under the four SSP scenarios. (a) SSP1-2.6; (b) SSP2-4.5; (c) SSP3-7.0; and (d) SSP5-8.5. The
anomaly is calculated as projection minus baseline period. The white background shows areas with
no values.

We further investigate the spatial distributions of projected climatological changes in
drought frequency in the three time slices (Figure 6). Overall, the spatial pattern shows
nearly similar value ranges in drought frequencies across the continent. However, sub-
regional analysis shows an interesting pattern with a distinguishable reduction in the
number of drought occurrences in WAF and CAF. WAF shows progressively decreasing
values in drought frequency throughout the century. The number of drought occurrences
decreases at a much lower rate, with a sharper decrease noted in CAF. In general, in WAF
and CAF, drought frequencies is lower under SSP3-7.0 and SSP5-8.5 than under SSP1-2.5
and SSP2-4.5.

On the contrary, an increase in the number of drought occurrences is noted in SAH,
WSAF, and ESAF. On the other hand, the drought frequency in NEAF and SEAF is relatively
similar for each scenario. The drought frequency is likely to increase in SAH, WSAF, and
ESAF under SSP3-7.0 and SSP5-8.5 than under SSP1-2.5 and SSP2-4.5.
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Figure 6. Geographic distribution of projected mean drought frequency (yr−1) for the near fu-
ture (2020–2039), mid-century (2050–2069), and end-of-century (2080–2099) under (a–c) SSP1-2.6,
(d–f) SSP2-4.5, (g–i) SSP3-7.0, and (j–l) SSP5-8.5 scenarios. The white background shows areas with
no values.

3.3. Projected Wetting and Drying Trends

This section focuses on the projected scPDSI trends for the different scenarios during
the 2020–2099. For this purpose, we consider an event as dry and wet when scPDSIPM
is <−2 and scPDSIPM >+2, respectively. Figure 7 illustrates the spatial distribution of
scPDSIPM linear trends based on the Mann–Kendall test. The results are tested at 5%
significance level.

The spatial patterns clearly illustrate that those mixed drying and wetting signals are
likely to dominate many parts of Africa throughout the 21st century. The spatially complex
trends show that drying conditions are likely to increase from 0.05 to 0.25 decade−1 under
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SSP1-2.5 and SSP2-4.5 across Africa, with packets of wetting conditions scattered in the
continent (Figure 7a,b).

In contrast, the spatial patterns in Figure 7c,d, clearly show that wetting conditions are
likely to increase throughout the 21st century, with distinguished variations observed in
the equatorial region (i.e., WAF and CAF), with trends of SSP3-7.0 and SSP5-8.5 scenarios
increasing from 0.05 to 0.25 decade−1. Moreover, a clear distinction is observed in SAH,
WSAF, and ESAF, showing that future drying conditions are likely to increase from −0.05
to −0.25 decade−1 for SSP3-7.0 and SSP5-8 scenarios. It is worth observing that NEAF and
SEAF present mixed results of wetting and drying in different scenarios.

The spatial distribution in SEAF shows a slightly larger increase in wetting than in
NEAF under all scenarios. In SEAF, a striking pattern is the wetting trends before 30–40◦ E
and the drying trend along 40–45◦ E in the SSP3-7.0 and 5–8.5 scenarios. However, in
Figure 7a,b, a distinct spatial pattern between the two scenarios in NEAF and SEAF shows
no trends in SSP1-2.5 and wetting trends in SSP 2-4.5 along 40–45◦ E. In WSAF and ESAF,
a drying trend gradually increases from SSP1-2.5 to the SSP5-8.5 scenario. Our analysis
shows more pronounced drying conditions in SSP3-7.0 and SSP5-8 scenarios over WSAF
and ESAF.

Figure 7. Pixel-wise linear trends for scPDSIPM <(−2.0, during 2020–2099. (a) SSP1-2.6, (b) SSP2-4.5,
(c) SSP3-7.0, and (d) SSP5-8.5 scenarios. The values are expressed in changes per decade (the dots
denote passing a 5% significance test). The white background shows areas with no values.

Figure 8 illustrates the spatial distribution of linear trends for scPDSIPM for all sce-
narios during the near future ((2020–2039), mid-century (2050–2069), and end-of-century
(2080–2099), based on the Mann–Kendall test at 5% significance level. In general, a dis-
tinguishable spatial pattern of wetting and drying trends is shown for each SSP scenario
and time slice. The sub-regional analysis shows different spatial patterns of wet and dry
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conditions with differences in trend values for the three time slices under all SSP scenarios.
SAH show mixed results of wetting and drying trends in all SSPs. In WAF and CAF, we ob-
served a more distinct drying trend under SSP2-4.5 (Figure 8d) than SSP1-2.6 (Figure 8a) in
the near future (2020–2039), which reverts to a wetting trend in the mid-century (2050–2069)
with magnitudes >0.25 decade−1 in Figure 8b,d, and mixed trends at the end-of-century
(2080–2099) (Figure 8c,f). On the contrary, NEAF and SEAF are relatively similar, but they
have mixed wetting and drying trends in three SSPs except for SSP5-8.5. A strong wetting
trend under SSP5-8.5 is observed in the near future and end-of-century in NEAF and SEAF
but with mixed trends in mid-century (2020–2039). On the other hand, WSAF and ESAF
show a mixed trend in all SSPs but more pronounced drying conditions in the SSP3-7.0 and
SSP5-8 scenarios at ESAF than WSAF at the end of century.

Figure 8. Pixel-wise linear trends for scPDSIPM < −2.0, for the near future (2020–2039), mid-century
(2050–2069), and end-of-century (2080–2099) under (a–c) SSP1-2.6, (d–f) SSP2-4.5, (g–i) SSP3-7.0, and
(j–l) SSP5-8.5 scenarios, respectively. The values are expressed in changes per decade (dots denote
passing a 5% significance test). The white background shows areas with no values.
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4. Discussion

This study uses the CNRM-CM6 data to investigate future drought characteristics
and trends during the 21st century (near future, mid-century, and end-of-century) for four
SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Using these scenarios provides
the scientific community with an opportunity to investigate changes in droughts across
the African continent against the backdrop of the continent’s vulnerability to weather and
climate variability, which is coupled with population growth.

The time series of change in drought intensity between the future and the baseline
periods are computed and presented in Figure 3. An increase in drought event intensity
is experienced under all SSP scenarios and different time periods. The extent of the
drought-affected areas significantly increases over time and the upward trend increases
with increasing SSPs (Figure 4). This indicates that the frequency of future drought events
will be higher and drought-event severity will intensify over time, thus increasing the
spatial extent of the affected area. Overall, higher emissions (i.e., SSP370 and SSP585)
scenarios will exhibit higher frequency of drought events, more severe drought over
significantly larger areas than lower emissions scenarios (SSP1.2.6 and SSP2-4.5). This
result is consistent with the IPCC AR6 [1].

Geographically, the drought-event frequency shows some mixed results under differ-
ent climate conditions. In absolute terms, drought events will be more frequent in areas
under arid and semi-arid climate conditions in Africa (Figure 5) for different future periods.
These results are consistent with a previous study over the region, but it is based on SPI
and SPEI [69]. Moreover, this pattern is comparable to RCP2-4.5 and RCP8.5 scenarios from
CMIP5 [32]. The spatial pattern shows similar value ranges in drought frequencies across
the continent (Figure 6). The WAF region shows progressively decreasing values in drought
frequency across all three time slices (Figure 6a–i). The number of drought occurrences
decreases at a much lower rate, with a sharper decrease noted in the CAF (Figure 6a–i).
This result is consistent with previous studies in the WAF and CAF regions [70,71]. On the
contrary, an increase in the number of drought in SAH, WSAF, and ESAF (Figure 6a–i) is in
agreement with Shongwe et al. [72]. On the other hand, the number of drought frequencies
in NEAF and SEAF is relatively similar for different time slices and under each SSP-RCP
scenario (Figure 6a–i), in agreement with Makula, and Zhou [73] and Ayugi et al. [68]. A
general spatial pattern shows a likely increase in drought frequencies over SAH, WSAF,
and ESAF under SSP3-7.0 and SSP5-8.5 than under SSP1-2.5 and SSP2-4.5.

To investigate future trends in wetting and drying conditions, the Mann–Kendall
test [64] and the Theil–Sen slope estimator were used [65]. The scPDSI present signifi-
cant trends for all different scenarios. The trends are mostly negative (indicating likely
increases in drying conditions) across Africa. Overall, lower emissions (SSP1-2.5 and 2-4,
Figure 7a,b) present a larger area of drying trends than higher emission (SSP3-7.0 and
SSP5-8.5, Figure 7c,d). The regional analysis of projected wetting and drying trends shows
spatial pattern differences across the continent. A larger area of negative trends obtained
in SAH, WSAF, and ESAF indicate that future drought events may be further intensified
in arid regions. Similar drying conditions were observed in Bellprat et al. [74] in WSAF
and ESAF, and in SAH [75]. This may be partly attributed to the spatial pattern of future
PRE in this region due to water-limited conditions. Droughts respond more to PRE than
PET, which is consistent with Munday and Washington [76], or model uncertainties [77].
Considering the SSP scenarios, lower emissions (i.e., SSP1-2.6 and SSP2-4.5) are expected to
witness more drying conditions than higher emissions (SSP3-7.0 and SSP5-8.5). The WSAF
and ESAF point to drying conditions, with trends significant under SSP2-4.5, SSP3-7.0, and
SSP5-8.5. This result is consistent with a study by Iyakaremye et al. [78], who projected that
SAH and WSAF would warm faster, relative to other parts of the continent with changes in
PRE [13,79]. The magnitudes of negative trends under SSP3-7.0 and SSP5-8.5 signal severe
aridification trends in the arid region of WSAF and semi-arid conditions of ESAF than in
SAH. The striking difference in drying trends in SAH relative to WSAF and ESAF is that
the projected increase in PRE in the Northern Hemisphere (NH) is slightly higher than
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that in the Southern Hemisphere (SH), consistent with Almazroui et al. [55], Lim Kam Sian
et al. [56], and Babaousmail et al. [80]. These results indicate that the arid conditions in the
SH (i.e., WSAF and ESAF) exhibit more pronounced drying conditions than the NH (i.e.,
SAH). Similar results were noted in Lee & Wang [81]. The plausible reason for these results
may be related to the interhemispheric difference in the warming rate documented in Kitoh
et al. [82]. This signal has a potential implication for this region, as these impacts may affect
regional socio-economic stability and ecological security for countries located in the SAF.

In WAF and CAF, SSP1-2.5 and SSP2-4.5 (Figure 7a,b) show opposite indicators to
SSP3-7.0 and SSP5-8.5 (Figure 7c,d), as the magnitude of change cannot be ignored. Large
changes are expected in the WAF and CAF regions, as large areas of significant positive
trends under a high emissions rate and negative trends under lower emissions rate are
observed. The possibility of an increase in negative trends under SSP1-2.5 and SSP2-4.5
(Figure 7a,b) and positive trends under SSP3-7.0 and SSP5-8.5 (Figure 7c,d) provides an
interesting result, since, in humid conditions, drought responds to PET rather than PRE.
A lower emissions rate likely will present a drying trend, and wetting trends in higher
emissions scenarios in a humid environment such as WAF and CAF may be related to a
weakening of the land–atmosphere coupling [11,83–85]. Similar results were reported in
Dosio et al. [28] using both regional climate models (RCM) and GCMs over WAF but for
PRE projections. A further study is recommended to examine this phenomenon of low
emission scenarios (i.e., SSP1-2.6 and SSP2-4.5) that shows a stronger wetting trend with
high magnitudes than high emission scenarios (i.e., SSP3-7.0 and SSP5-8.5).

The NEAF and SEAF regions present distinct spatial patterns between the four scenar-
ios (Figure 7a–d). The SSP2-4.5 illustrates a positive trend in the NEAF and SEAF region,
while the SSP1-2.5 exhibits no trend in large areas, with scattered packets of negative
trends. However, the drought conditions under the SSP3-7.0 and SSP5-8.5 in the NEAF
and SEAF generally present negative and positive trends. The negative trend is related
to a decrease in PRE [79,80] and the increase in ET [35] or TEMP [55] in the NEAF and
SEAF regions in the future. The drying conditions identified here agree with previous
studies in this region, reflecting the complex patterns of PRE and ET trends [86,87]. The
results noted that the negative trends are located in already vulnerable states, such as
Kenya and Somalia, with arid conditions and poor adaptation mitigation. This pattern in
NEAF and SEAF shows that the results are comparable in SSP2-4.5 and SSP5-8.5 scenarios
from CMIP6 in Haile et al. [30]. Overall, the CNRM-CM6 model indicates that the possible
future wetting and drying patterns are changing in different regions across Africa. We urge
readers to interpret the results with caution, as the results are based on non-bias adjusted
CNRM-CM6 data. Different studies have noted that non-bias adjusted data may over- or
underestimate regions with significant variation in local features, such as topography and
water bodies [88–90]. Future studies should consider the impact of bias adjustment on the
historical and projected droughts events over Africa. This information may provide insight
into the ongoing climate discussion and improve our understanding of drought events
over the African region.

In summary, stakeholders have reiterated the need for an evidence-based approach to
studing extreme events to inform policymaking at local scales. Many countries in Africa
are highly dependent on rain-fed agriculture. The projected wetting and drying trend
throughout the century for all SSP scenarios may likely impact the future agricultural
production and ecological stability of humid, arid and semi-arid climates, as documented
in past studies [30,91]. The regional analysis of projected drought climatology shows
significant spatial differences. The spatial differences suggest that drought impact may vary
with locations, and so will a region’s capacity to respond to drought events. Future climate
adaptation policies should be tailored to specific regional needs. The results form a wider
network of previous related studies published in FAO [41] to inform national policymakers
of the identified future drought-prone regions to develop adaptation policies across Africa.
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5. Conclusions

This study describes the long-term changes in drought characteristics using the scPDSI
based on the CNRM-CM6 model of the CMIP6 datasets. The following conclusions are
drawn from the model projections across Africa for all four SSP scenarios.

• The spatio-temporal pattern and trends reveal that Africa is likely to experience
changes in drought characteristics under all SSP scenarios.

• The spatial pattern of drought frequency across the continent reveals regional differ-
ences, as arid and semi-arid regions are to likely to have more droughts.

• The CNRM-CM6 model projections indicate a regional difference in wetting and
drying trends over Africa for different SSP scenarios.

• Overall, regions in Africa located below the equator are likely to experience a general
drying trend with droughts intensifying over time, while arid regions above the
equator are likely to show moderate drying conditions in all SSP scenarios.

• The CNRM-CM6′s ability to satisfactorily identify the extent of drought parameters
and trends over Africa is consistent with previous studies and further increases the
confidence of the CMIP6 datasets for future studies of extreme events.

Within the context of the Paris Agreement, the Agenda 20,230 of the United Nations
Sustainable Development Goals (SDGs), and the Malabo 2025 declaration, the findings
of this study are significant and provides a basis for stakeholders in the region to further
explore the changing trends of projected drought episodes and its potential impact on
various sectors of the society. Readers are urged to interpret the results with caution as the
objective of this study is not to confirm the superiority of the CNRM-CM6 datasets over
other CMIP6 datasets or the ensemble approach, but rather to demonstrate its potential
use in a local context. A future study plans to explore the implication of future drought
climatology on direct (e.g., water use efficiency and crop yields) and indirect costs in
African countries whose economy is tied to climate variability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture12040495/s1, Figure S1: Methodological Flowchart.
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