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Abstract: Tractors are usually applied in field operations, road transport, and other operations.
Modern agriculture has higher design requirements for tractor powertrains due to the complicated
working environments and various operations. To meet the driving requirements of the tractor
under multiple operations, a mechanic-electronic-hydraulic powertrain system (MEH-PS) for tractors
has been designed according to the characteristics of the hydro-mechanical composite transmission
and electromechanical hybrid system. The principle of multiple driven and transmission modes of
MEH-PS are introduced, the speed regulation characteristic curve of hydro-mechanical transmission
(HMT) is given, and the related power element model, tractor model, and efficiency model are
established. The HMT optimal economy transmission ratio control strategy and hybrid rule-based
optimization energy management strategy were developed. Take three typical tractor operations for
analysis: ploughing, harvesting, and transport. The results show that the engine operating points
are mainly distributed in the higher load area, the tractor maintains high system efficiency, and the
relative error between simulated and tested fuel consumption is within 5%, which further proves
the reliability of the model. The solution also showed lower fuel consumption in all three operations
compared to DLG’s announced PowerShift tractors and CVT tractors. Thus, the powertrain system
can meet the tractor’s drive requirements under complex operating conditions and maintain high
efficiency and is therefore suitable for tractors that need to operate frequently in the field and on
the road.

Keywords: agriculture tractor; powertrain design; composite transmission; hybrid tractor; energy saving

1. Introduction

Tractors are extremely important in modern agriculture. According to the data issued
by the Ministry of Agriculture and Rural Affairs, China’s total number of various types
of tractor surpassed 22.24 million by 2019, and the annual usage of agricultural diesel
reached 2003 million tons, with a steady increasing trend [1]. China’s 13th five-year plan
for energy development and the 2022 Central Document No. 1 both aim to promote energy
savings in agricultural production [2,3]. The higher the production efficiency, the higher
the performance requirements of the tractor, reducing fuel consumption while improving
tractor performance brings challenges to the design of tractor powertrains [4].

Hydrostatic transmission, mechanical transmission, and hydro-mechanical transmis-
sion are the most common transmission modes for tractors [5,6]. Hydrostatic transmission
has the advantage of stepless transmission, but most tractors are not suitable for long oper-
ation of hydrostatic transmission to ensure transmission efficiency [7]. The operation of the
mechanical transmission is complex, and for tractors with a wide range of power variations,
more gears are required to meet the requirements of the corresponding operations [8], and
ordinary gear transmission cannot realize stepless speed change [9]. Hydro-mechanical
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transmission realizes stepless speed change by combining hydraulic and mechanical trans-
missions into a composite transmission that can meet the transmission requirements of a
high-horsepower tractor while also ensuring the engine operates on the optimal economic
curve by adjusting the transmission ratio [10]. Xiao studied the transmission ratio control
strategy to maximize the engine and HMT overall efficiency [11]. Ahn proposed a control
algorithm to realize the optimal economy of the tractor by controlling the transmission
ratio of HMT [12]. The above study can indeed achieve fuel savings in the actual operation
of the tractor. However, the hydraulic system is inefficient under part-load conditions due
to volumetric efficiency [13]. When tractors perform the transit operation which is usually
unloaded, it will lead to a decrease in tractor efficiency due to low load [14].

Electrification of road vehicles indicates that hybrid systems use battery energy to
assist the engine to perform work at high loads, and use the remaining engine power to
charge the battery at low loads, which can effectively reduce fuel consumption and improve
vehicle performance, as well as for tractors [15,16]. Guo proposes a SOC-constraint-based
energy management strategy, which was tested on a bus with a 5.9% fuel saving rate [17].
Kim found that hybrid tractors have a better economy than conventional tractors at part-
load conditions due to the hybrid system regulating the engine operating point to an
efficient region and turning off the engine for a purely electric drive when necessary [18,19].
A tractor starting with a load requires large torque because the electrical components’
power density is much smaller than the hydraulic components, which requires high battery
and motor power, resulting in large equipment size. Hydraulic components make up for
this shortcoming and have the advantage of starting smoothly with better comfort [20].
Another significant difference between tractors and road vehicles is the need for additional
power to the power take-off (PTO), and one of the key issues in modern tractor design
includes the independence of the PTO output speed from the wheel speed [21].

In this study, a MEH-PS for tractors is proposed to solve the problems of conventional
HMT and the hybrid system in tractors [22], which enables the tractor to have good driving
performance and high efficiency from low to high load and from low to high speed. The
hydro-electro-mechanical transmission (HEMT) was proposed by Haughery, who studied
its transmission performance without considering the energy problem [23]. This paper first
studies the structural principle of the MEH-PS and establishes the mathematical model
of each component, then the ratio control strategy of HMT and the rule-based optimal
energy management strategy of the hybrid system are developed. Finally, the scheme
was simulated and tested in ploughing, harvesting, and transportation operations using
SimulaitonX model and manufactured test bench successively, and compared with the
fuel consumption of PowerShift tractors and CVT tractors published by DLG to verify the
advantages of the powertrain compared with those of conventional tractors.

2. Principle of Powertrain Configuration
2.1. Driving Mode Analysis

A mechanic-electronic-hydraulic powertrain system with independent intellectual
property rights was designed for tractors, and the main components are shown in Figure 1.
The powertrain system consists of a diesel engine, an electric motor (EM), a set of power
batteries, a variable displacement pump, a fixed displacement motor, four planetary gear
mechanisms, three fixed shaft gears, five clutches, and five brakes. Where C1~C5 are
clutches, B1~B5 are brakes, PG1~PG4 are planetary gears, i1~i3 are the transmission ratios
of gear pairs, and e is the displacement ratio of the hydraulic system.

The powertrain system has two power sources, and the clutches C1, C2, and C3 and
the brake B1 can be controlled to achieve four driving modes. Table 1 shows the switching
element engagement states of each mode.
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Figure 1. Configuration Scheme.

Table 1. Element engagement status of each driving mode.

Driving Mode C1 C2 C3 B1

Pure electric drive (1) N N
Pure engine drive (2) N N

Torque coupling drive (3) N N N
Speed coupling drive (4) N N

Note: “N” means that the switching element is in the engaged state, the same is below.

2.2. Transmission Mode Analysis

There are three transmission modes of HMT. Hydrostatic transmission, hydro-mechanical
transmission, and mechanical transmission can all be achieved by controlling clutches C4
and C5 and brakes B1, B2, B3, B4, and B5. Table 2 shows the transmission ratio and
switching element engagement states of each mode.

Table 2. Element engagement status and transmission ratio of each gear.

Gear C4 C5 B1 B2 B3 B4 B5 ig

F(H) N N N − i1i2k4(1+k2)
e

R(H1) N N N i1i2k4(1+k2)(1+k3)
e(k3k4−1)

R(H2) N N N i1i2(1+k2)
e

F
(HM1) N N N i1i2k1k4(1+k2)(1+k3)

[k1e+k2i1i2(1+k1)](k3k4−1)

F
(HM2) N N N i1i2k1(1+k2)

k1e+k2i1i2(1+k1)

R(HM) N N N − k1k4(1+k2)
k2(1+k1)

F
(M1) N N N k1k4(1+k2)(1+k3)

k2(1+k1)(k3k4−1)

F
(M2) N N N k1(1+k2)

k2(1+k1)

R(M) N N N − k1k4(1+k2)
k2(1+k1)

Where F is forward gear, R is reverse gear, H is hydrostatic transmission, M is mechanical transmission, HM is
hydro-mechanical transmission; ig is the transmission ratio.

Keeping the speed of the tractor at mechanical gear as much as possible with the
frequent speeds over the life cycle of the tractor can obtain a higher operating efficiency
of the tractor. The parameters of each transmission element are obtained by a genetic
algorithm, as shown in Table 3 [24].
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Table 3. Transmission element parameters.

Parameters k1 k2 k3 k4 i1 i2

Value 1.80 1.60 1.65 1.65 0.62 1.00
Where k1 ∼ k4 are the standing ratio of the planetary gears.

The above parameters are substituted into each transmission ratio to obtain the curve
of transmission ratio about displacement ratio shown in Figure 2.
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3. Powertrain Modeling
3.1. Engine Model

The research object of this paper is a tractor, which is usually equipped with a diesel
engine. The engine modeling is mostly a static model, which can reflect the engine char-
acteristics within a certain accuracy. The static interpolation model of the engine can be
established as follows [25]: 

Te = α · Te_max(ωe)
be = f1(Te, ωe)
Pe = Te ·ωe

(1)

where Te is the engine torque; α is the throttle opening of the engine; ωe is the engine
angular speed; be is the brake specific fuel consumption (BSFC) of the engine; f1 is the
look-up table functions; Pe is the engine power.

This paper selects the WP6.180E40 diesel engine as the research object and gives the
output torque, power, and BSFC curves of the engine at full throttle opening shown in
Figure 3.
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3.2. Motor Model

Ignoring the influence of motor thermodynamics, the static interpolation model of the
motor can be established as follows [26]:

Tm = β · Tm_max(ωm)

Pm = Tmωmη
j
m

ηm = f j(Tm, ωm)

(2)

where Tm is the motor torque; β is the motor torque load rate; Pm is the motor power; ηm is
the motor efficiency; ωm is the motor angular speed; j is a parameter to judge the motor
state, if j = 1 the power is positive, it is a motor; if j = −1 the power is negative, it is a
generator; f j is the motor efficiency interpolation function.

This paper selects the TZ205XS85K01 motor as the research object and gives experi-
mentally measured maximum rated output torque; maximum rated output power curves
of the motor shown in Figure 4.
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3.3. Battery Model

The battery state of charge (SOC) is an important input signal for energy management
and can be calculated as follows [27]: SOCt = 1−

∫ t
0 Ibdt
Qb

Ib =
Voc−
√

V2
oc−4rbPb

2rb

(3)

where Qb is the rated capacity of the battery; Ib is the charge and discharge current of the
battery; Voc is the open-circuit voltage of the battery; rb is the internal resistance of the
battery; Pb is the charge and discharge power of the battery.

The voltage and internal resistance of the battery can be expressed as:
Vb = Voc − rb Ib
Voc = fvoc(SOC)
rb = fint(SOC)

(4)

where fvoc and fint are the look-up table functions of battery open-circuit voltage and
battery internal resistance, respectively.

The internal resistance and the open-circuit voltage of the NiMH battery connected in
series about SOC curves are shown in Figure 5.
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3.4. Transmission Model

As shown in Figure 6, there are three different power flow types of the HMT, and
its efficiency depends on factors such as mechanical and volumetric efficiency, pressure,
displacement angle, etc. Which can theoretically be determined by Pout/Pin [28,29].
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tion engine; VDP: variable displacement pump; FDM: fixed displacement motor; DA: drive axle;
PPTO: power take-off power; PH: hydraulic system power; Pt: traction power.).

According to Figure 6: in type I power flow, the power of the hydraulic path is greater
than the input power, and the HMT efficiency of this transmission mode is low because
a large amount of power is transmitted through the inefficient hydraulic path; in type II
power flow, the power of the hydraulic path is transmitted in the reverse direction, resulting
in an increased power of the mechanical path, and the HMT efficiency of this mode is
higher than type I and lower than type III; in type III power flow, the power is divided into
hydraulic and mechanical paths and then merged, the power of both paths is transmitted
in the positive direction, and the HMT efficiency in this mode is the highest.
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(
1− PH

Pin

)
+ η−1

H

(
PH
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)
; PH
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Type II : ηHMT = η−1
M

(
1− PH
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)
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(
PH
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)
; PH
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Type III :ηHMT = ηM

(
1− PH
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)
+ ηH

(
PH
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)
; 0 < PH
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< 1

(5)

where ηHMT is the efficiency of hydro-mechanical transmission, ηM is the mechanical effi-
ciency of the hydraulic components; ηH is the total efficiency of the hydraulic system. The
efficiency of hydraulic components is varied under different test environments, Figure 7
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gives the relevant efficiency curves of the SAUER_DANFOSS 90-series hydraulic compo-
nents measured experimentally at different pressures.
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The powertrain system efficiency of the tractor in each operating condition can be
obtained by analyzing the power flow of power components in different operations. The
system efficiency is: 

ηs =
Pt+PPTO+(1−τ)Pb

Pe/ηe+τPb

τ =

{
0 Pb ≤ 0
1 Pb > 0

(6)

where ηe is the efficiency of the engine; τ is a parameter to judge the battery state of charging
or discharging; if the battery is in the charge state τ = 0; if the battery is in the discharge
state τ = 1.

3.5. Tractor Model

The longitudinal dynamics of the tractor [30] can be expressed as:
Ttigi0ηt − Tw = Jwαw
Tw = (FT + 1

2 ρCD Av2
a + mg f cos θ + mg sin θ)rw

va = ωwrw/(1 + δ) = ωinrw/igi0(1 + δ)
(7)

where Tt is the input torque of the traction mechanism; i0 is the transmission ratio of the
drive axle; ηt is the transmission efficiency; Tw is the torque of the driving wheel; Jw is
the equivalent moment inertia of the driving wheel; αw is the angular acceleration of the
driving wheel; FT is the hook tension; ρ is the mass density of air; CD is the air resistance
coefficient; va is the actual speed of the tractor; A is the frontal area of the tractor; m is the
mass of the tractor; g is the gravity acceleration; f is the rolling resistance coefficient; θ is
the ramp angle; rw is the radius of the driving wheel; ωw is the angular speed of driving
wheel; δ is the slip rate of the driving wheel; ωin is the angular speed of the input shaft.

4. Tractor Control Strategy

The tractor equipped with MEH-PS has a variety of driving modes and transmission
modes, according to the tractor’s requirement for power and speed in different operating
conditions, and a reasonable choice of driving mode and transmission mode to maximize
its performance. When using multiple power sources, drive also needs to consider the
power distribution between power sources to achieve the optimal system efficiency.

4.1. Overall Control Strategy

The overall control strategy architecture of the tractor is shown in Figure 8. Firstly, the
power demand of the tractor is determined based on the current tractor speed and the target
speed of the driver as well as the real-time load of the tractor, then the optimal economy
driving mode is selected according to the real-time battery SOC, and according to the
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tractor’s current mode to consider whether to switch the mode. The most suitable driving
mode is selected between pure electric drive, pure engine drive, torque coupling drive,
and speed coupling drive. Finally, the appropriate transmission mode is selected between
hydrostatic transmission, hydro-mechanical transmission, and mechanical transmission to
meet the optimal power transmission.
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The matching of driving and transmission mode is developed according to the operat-
ing characteristics of the power source and transmission mode. For example, if the pure
electric drive mode is selected, because the motor speed and torque can be freely adjusted
in a wide range, there is no need to select the hydrostatic transmission or hydro-mechanical
transmission while the mechanical transmission with the highest transmission efficiency
can meet the transmission requirement and achieve stepless transmission [31].

4.2. HMT Transmission Ratio Control Strategy

The transmission ratio of HMT should enable the engine to work on the optimal curve
and meet the requirement of tractor speed [32]. Taking the optimal economy as an example,
the relationship between the tractor speed and the engine speed is as follows:

ig =
2πne_optrw

60i0va(1 + δ)
(8)

where ne_opt is the optimal economic speed of the current throttle opening of the engine,
which can be obtained by calibration of an experimental test bench. For the diesel engine
(WP6.180E40) selected in this paper, the fitting curve between ne_opt and α is:

ne_opt = −210α4 − 150α3 + 810α2 + 1000α + 750 (9)

According to the above relationship, the HMT optimal economic transmission ratio
map of the engine driving mode is shown in Figure 9.

4.3. Mode Division of Rule-Based

A generally applicable rule-based pattern recognition strategy, as shown in Figure 10,
was applied to classify the tractor in each power range to achieve the optimal performance
of a tractor equipped with MEH-PS [33].

In the figure Topt is the optimal engine torque; T1 is the maximum torque of pure
electric drive mode; T2 is the maximum torque of driving charging; T3 is the maximum
torque of pure engine drive mode; T4 is the maximum torque of speed coupling drive;
ne_max is the rated speed of engine; SOCh is the higher limit of the SOC efficient region;
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SOCl is the lower limit of the SOC efficient region; vsta1 is the start completion speed of start
type 1; vsta2 is the start completion speed of start type 2; ig_min is the minimum transmission
ratio of HMT; s is the equivalence factor.
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The initialization input parameters include SOC, ig, Treq, and v. Firstly, whether
the tractor needs to start is judged, and if so, determine the start type according to the
required torque; for example, if the tractor is in the ploughing or transport or other starting
conditions that require it to provide a large torque, the starting type (1) can be selected; if
the tractor is in the transit condition, the required torque is small and SOC is sufficient, the
starting type (2) can be selected. After the tractor reaches the start completion speed that is
to switch to the operating mode, when the transmission mode is mechanical transmission,
if stepless speed change is required then only the pure electric drive mode can meet the
requirements, otherwise stepless speed change can be achieved through the engine-driven
hydro-mechanical transmission.

Whether ig < ig_min reflects the tractor’s requirement for higher input speed. If so, the
required speed is greater than the rated engine speed and SOC is high, it can be switched to
the speed coupling drive mode to meet the requirement of higher speed; if SOC is low, the
tractor can only be driven by the engine. If ig ≥ ig_min, the tractor’s speed requirement is
lower, according to the required torque, and SOC can choose the most appropriate driving
mode in turn: pure electric drive, pure engine drive, torque coupling driving charging, and
torque coupling motor assist.

4.4. Optimization Strategy with Minimal Equivalent Fuel Consumption

The first step of energy management is to select the appropriate driving mode ac-
cording to the currently required torque. If a single power source drive is selected, the
power output is performed directly without power distribution. If dual power sources are
selected, taking torque coupling as an example, torque is distributed to the engine and
motor in the way that consumes the least amount of fuel according to the required torque.

The equivalence factor (s) can equate the power consumption of the battery with
the fuel consumption of the engine and calculate the power distribution combination
corresponding to the lowest fuel consumption of the engine and the motor at any moment.
The equivalence factor reflects the tendency of energy use, if s is large there will be a
preference for using fuel and more power output from the engine; if s is small there
will be a preference for using electricity and more power output from the motor [34].
Considering the SOC and energy distribution strategy, fuel consumption is saved through
motor-driven if SOC is high; lower SOC is avoided through engine-driven if SOC is low.
The special relationship between the equivalence factor and SOC can achieve the best
power distribution between power sources and ensure the SOC within the high-efficiency
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region [35]. The above analysis obtains the relationship between SOC, equivalence factor,
and power distribution shown in Figure 11.
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The mathematical model [36] of equivalent fuel consumption is:
.

meq =
.

me +
.

mb
me =

Pe
ηeQl

mb = s(t)
ηbQl

Pb

(10)

where me is the engine fuel consumption; mb is the battery equivalent fuel consumption; ηb
is the charging or discharging efficiency of the battery; Ql is the lower heating value of the
fuel, s(t) is the equivalence factor which can be calculated by the following equation [37]:

s(t) = s0 + ∆s
∆s = ε ∆SOC

SOCh−SOCl
∆SOC = SOCh − SOC(t)

ε = sh − sl
s0 = sl

(11)

where s0 is the initial value of the equivalence factor; ∆s is the change of the equivalence
factor; ∆SOC is the change of SOC; sh is the higher limit of the equivalence factor; sl is the
lower limit of the equivalence factor; ε is the SOC penalty factor.

According to the principle of Pontryagin minimization, the optimal output torque can
be calculated from Equations (13)–(15) by the objective function J.{

min
u∈U

{
J(u) =

∫ T
0 L(x(t), u(t), t)dt

}
H(u(t), x(t), t) = L(x(t), u(t), t) + p(t)

.
x(t)

(12)

where J is the objective function; L is the instantaneous fuel consumption; u is the distribu-
tion of energy between the engine and motor; H is the Hamiltonian function, x(t) is the
SOC; p(t) is the co-state variable of the system.

The minimum fuel consumption can be reached by:

∂H
∂u

=
∂L
∂u

+ p
∂ f
∂u

= 0 (13)

where f is the function controlling variations of state of charge of the battery.
The optimal command uopt can be obtained by Equation (14), and obtain Topt

m and Topt
e by:{

uopt(t) = Topt
m (t) = argmin{H(u(t), x(t), t)}

Treq(t) = Topt
m (t) + Topt

e (t)
(14)

where Topt
m and Topt

e is the optimal torque of the motor and engine.
The multiple constraints given by the system’s components engine, motor, and the

battery is as follows: 
Te ∈ [0, Te,max(ωe)]
ωe ∈ [ωe,min, ωe,max]
Tm ∈ [Tm,min(ωm), Tm,max(ωm)]
ωm ∈ [ωm,min, ωm,max]
SOC ∈ [SOCmin, SOCmax]

(15)

Taking the motor torque as the control variable, the equivalent fuel consumption of
all possible combinations of engine and motor torque is calculated according to a certain
iterative gradient when the required torque is determined [38], and the combination of the
lowest fuel consumption is taken as the optimal power distribution scheme, the calculation
flow is shown in Figure 12.
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5. Simulation and Experiment 
5.1. Simulation Modeling 

A tractor model equipped with the MEH-PS shown in Figure 13 was established in 
SimulationX. The performance of the powertrain can be evaluated through simulation. 
With the help of the component library of SimulationX, the engine model, motor model, 
transmission model, chassis model, mode switching unit, transmission ratio calculation 
unit, and power distribution unit are created using the cross-domain equation-based con-
cept of the Modelica language. The tractor simulation parameters are shown in Table A1 
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5. Simulation and Experiment
5.1. Simulation Modeling

A tractor model equipped with the MEH-PS shown in Figure 13 was established in
SimulationX. The performance of the powertrain can be evaluated through simulation.
With the help of the component library of SimulationX, the engine model, motor model,
transmission model, chassis model, mode switching unit, transmission ratio calculation
unit, and power distribution unit are created using the cross-domain equation-based
concept of the Modelica language. The tractor simulation parameters are shown in Table A1
(see Appendix A).
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5.2. Test Bench and Principle

The test bench illustrated in Figure 14 was established to verify the performance of a
tractor equipped with a MEH-PS, which is based on the AVL dynamometer. The overall test
scheme architecture of the test bench is shown in Figure 15. The main control computer of
the test bench communicates with the HCU (hybrid controller unit) to realize observation
and calibration. The HCU indirectly communicates with the variable frequency drive
and control system, the battery, and the dynamometer power cabinet through the data
acquisition and exchange system. The motor is directly controlled by the motor controller.
The HMT displacement ratio is controlled by the DSP (digital signal processing) controller.
The clutches and brakes are indirectly controlled by the PWM (pulse width modulation)
voltage amplifier and electromagnetic reversing valve to complete the mode switching.
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5.3. Simulation and Test of Tractor Operation 
5.3.1. Ploughing Analysis 

Ploughing is the main task of the tractor, the pulling force [39] of the plough on the 
tractor’s hook is: 
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where GF  is the weight of the plough; λ  is the soil specific resistance; κ  is the rele-
vant coefficient of plough surface and soil; a  is the ploughing depth; b  is the plough-
ing width; n  is the number of ploughs. The plough in this study is a six-share turning 
plough (1LF-550) with dimensions of 5200 × 2600 × 1850 mm (L × W × H) and a mass of 
1800 kg. 
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Agriculture 2022, 12, x FOR PEER REVIEW 16 of 25 
 

 

1

2 3 4 5 6

7

8

9

 
Figure 14. Test bench: 1. Oil cooling system; 2. motor cooling system; 3. variable frequency motor; 
4. driving motor and coupling mechanism; 5. HMT; 6. central transmission device; 7. power cabinet 
of dynamometer; 8. electrical dynamometer; 9. data acquisition cabinet. 

Mechanical connection

Signal connection

Electrical connection

Electromechanical 
coupling mechanism

electro-hydraulic 
proportional valve

Solenoid 
directional valve

DSP controllerPWM voltage 
amplifier

HMT

Pump Clutch Brake 

Dynamometer 
power cabinet

Drive 
axle

Dynamometer1 Dynamometer2

Simulated 
engine

Variable frequency 
drive and control 

system

Modelica 
External 

Object*.dll Automatic code 
generation

Observation and 
calibration based on 

CCP / XCP

torque&
speed sensor2

torque&
speed sensor1

Data acquisition and 
exchange system

Battery 

Motor controller

Motor

HCU

Main control 
computer of test 

bench  
Figure 15. Test bench architecture scheme. 

5.3. Simulation and Test of Tractor Operation 
5.3.1. Ploughing Analysis 

Ploughing is the main task of the tractor, the pulling force [39] of the plough on the 
tractor’s hook is: 

2
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where GF  is the weight of the plough; λ  is the soil specific resistance; κ  is the rele-
vant coefficient of plough surface and soil; a  is the ploughing depth; b  is the plough-
ing width; n  is the number of ploughs. The plough in this study is a six-share turning 
plough (1LF-550) with dimensions of 5200 × 2600 × 1850 mm (L × W × H) and a mass of 
1800 kg. 

Figure 15. Test bench architecture scheme.
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5.3. Simulation and Test of Tractor Operation
5.3.1. Ploughing Analysis

Ploughing is the main task of the tractor, the pulling force [39] of the plough on the
tractor’s hook is:

FT = FG f + (λ + κv2)abn (16)

where FG is the weight of the plough; λ is the soil specific resistance; κ is the relevant
coefficient of plough surface and soil; a is the ploughing depth; b is the ploughing width; n
is the number of ploughs. The plough in this study is a six-share turning plough (1LF-550)
with dimensions of 5200 × 2600 × 1850 mm (L ×W × H) and a mass of 1800 kg.

Tractors do not have a specific driving cycle, therefore speed and tension sensors
are used to collect data of driving speed and traction resistance, which are important
input conditions for the cycle [40]. The actual ploughing is affected by soil properties,
and the change of ploughing resistance is random. The relevant conditions of the actual
measurement process are shown in Table 4. Take the traction resistance shown in Figure 16
as the input resistance, and the measured tractor speed shown in Table 4 is adopted as the
target tractor speed during ploughing operation.

Table 4. Measurement conditions of ploughing resistance.

Time (s) Tractor Speed (km/h) Ploughing Depth (m)

0~100 9.00 0.10
100~200 9.00 0.18
200~300 9.00 0.26
300~400 7.00 0.34
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Figure 17 shows the results of the ploughing operation. Although the ploughing
resistance keeps changing, the tractor speed remains constant. Due to the large starting
torque, the starting type 1 is selected at 0~5 s. At 10~100 s the tillage depth is small, and the
required torque is small, the excess torque is used for power generation so that the engine
operating point is transferred to a higher load. After 100 s, the tractor works in the pure
engine drive mode, HMT can adjust the transmission ratio according to the driving force
required for ploughing so that the engine operating points are distributed in the lower
fuel consumption region, and the BSFC is maintained in the range of 205~211 g/(kW·h).
The instant fuel consumption is between 11~31 L/h, and the overall fuel consumption of
the tractor is relatively low. In the ploughing process, the HMT efficiency under different
loads is between 0.84~0.9, and the system efficiency is between 0.34~0.37. The above results
show that the whole ploughing operation has a good fuel consumption performance under
different ploughing resistance.
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5.3.2. Harvest Analysis

Taking the data measured during the harvest operation as input condition, the tractor
driving force, target tractor speed, and PTO required power are shown in Figure 18.
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Figure 18. Harvest cycle.

Figure 19 shows the harvest operation results: tractor speed and target speed are
consistent, engine speed and transmission ratio are nearly unchanged, and the tractor
operates in the torque coupling mode. The required power in the harvest operation mainly
comes from the PTO, and the required power from the walking mechanism is relatively
small. Under the regulation of the equivalent fuel consumption minimization control
strategy, the motor torque is changed according to the required torque of the walking
mechanism and the PTO, so that the system can obtain the highest efficiency. In addition,
the motor torque regulation keeps the engine speed smooth and provides a stable output
speed for the PTO to drive other mechanisms. The BSFC during harvest operation is
kept in the range of 206~211 g/(kW·h), and the instant fuel consumption is between
10.4~32.3 L/h. The efficiency of HMT is kept above 0.89, and the system efficiency is kept
above 0.39. The above results show that the energy management strategy developed for this
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powertrain system can meet both the PTO and walking mechanism power requirements
while maintaining high tractor system efficiency.
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5.3.3. Transport Analysis

The tractor is subjected to the traction force from the trailer during transport operation.
If the connection between the tractor and the trailer is rigid, they will share the same
longitudinal speed. The longitudinal force of the tractor is:

Ft = mtg sin θ + mtg f cos θ + mt
dva

dt
+

CD Ava
2

21.15
(17)

where mt is the total mass of the tractor and trailer, this paper takes full load transport as
the research objective, the mass of the trailer is 5010 kg, the mass of the cargo is 13,080 kg,
and the total mass of the tractor is 26,350 kg.

Figure 20 shows transport operation results: the tractor starts with starting type 1
at 0~10 s, then switches to the torque coupling motor assist mode at 10~40 s, the tractor
has greater acceleration. When the tractor speed is greater than 40 km/h, it switches to
the speed coupling mode, and the tractor speed increases with the increase of the motor
speed until 60 km/h. Tractor acceleration is relatively slow in this process, which is the
difference between speed coupling and torque coupling, but the maximum speed of the
tractor is improved, and the transport efficiency is higher. The engine is kept at a higher
speed, and the transmission ratio is kept near during transport operation. There are many
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modes in this process, as shown in Table 1 for the corresponding relationship of each mode
in Figure 20d.
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Table 5 summarizes the SOC and fuel consumption data of the three operations
discussed above. The SOC initial and end differences are small, the battery charge and
discharge are generally balanced, and the tractor external energy comes mainly from the
engine. The simulation data are reliable because the fuel consumption of the test value and
the simulation of the maximum error does not exceed 5%.

Table 5. Summary of SOC and fuel consumption.

Parameter Ploughing Harvest Transport

SOC initial
value/final value (%) 60.00/61.96 60.00/59.63 60.00/59.81

SOC difference (%) +1.96 −0.37 −0.19
Simulation/test fuel

consumption (L) 2.59/2.72 6.56/6.80 1.69/1.77

Fuel consumption
error (%) 4.8 3.5 4.5

Figure 21 shows the distribution of engine operating points under the above three
operations. It can be seen from the figure that the developed hybrid system energy man-
agement strategy cooperates with the stepless speed change function of HMT, the engine
operating points are mainly distributed in the area of higher load, and the engine operating
in this area has lower fuel consumption and higher efficiency.
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Since the indicators to measure the fuel consumption of the tractor in different oper-
ations are different, to compare the fuel consumption obtained from the above conditions 
more intuitively the test results were further processed to obtain the average fuel con-
sumption of the tractor equipped with the above transmission in field operations, PTO 
operations, and transport operations as shown in Figure 23. 

Figure 21. Engine working time percentage distribution.

To make the data more comparable, the fuel consumption of the CLAAS AXION 850
Hexashift, a tractor with PowerShift transmission of nearly similar horsepower, and the
Fendt 724 Vario SCR, a tractor with the continuously variable transmission, were compared
according to the standard test cycle for tractors published by the Deutsche Landwirtschafts-
Gesellschaft (DLG). The test cycle consists of 14 operating conditions and is performed on
the PowerMix according to the relevant requirements of the OECD Code2 to simulate the
tractor in typical operating and transport conditions and to measure the fuel consumption,
output power, and efficiency during the cycle. Figure 22 shows the comparison of fuel
consumption under different test conditions for the ploughing condition (PL), the power
take-off operation (PTO), and the transport operation (TR). The specific values are shown
in Table A2. From the figure, it can be seen that the tractor has the lowest fuel consumption
for MEH-PS in field and transport operations compared with PowerShift and CVT.
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Since the indicators to measure the fuel consumption of the tractor in different oper-
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Since the indicators to measure the fuel consumption of the tractor in different opera-
tions are different, to compare the fuel consumption obtained from the above conditions
more intuitively the test results were further processed to obtain the average fuel con-
sumption of the tractor equipped with the above transmission in field operations, PTO
operations, and transport operations as shown in Figure 23.
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Comparing the results above, it was found that the transmission scheme proposed in
this paper is 20% more fuel-efficient than PowerShift tractors under ploughing conditions
and 9% more fuel-efficient than CVT tractors; 18% more fuel-efficient than PowerShift
tractors, and 15% more fuel-efficient than CVT tractors under power output conditions;
15% more fuel-efficient than PowerShift tractors and 19% more fuel-efficient than CVT
tractors under transport conditions. The above results further demonstrate the reliable
fuel-saving capability of the proposed scheme and the developed energy management
strategy in this paper.

6. Discussion

In this paper, a new mechanic-electronic-hydraulic powertrain system has been de-
signed to solve the problems encountered in hydro-mechanical transmissions and hybrid
tractors with the following main efforts.

1. In terms of structural design, compared to a typical hydro-mechanical transmission,
this paper uses only a single planetary row for the merging of the hydraulic and
mechanical power, which has fewer planetary gears compared to the structure men-
tioned in the paper [41]. Moreover, the advantages of hybrid power can be exploited
without the need for more powerful electrical equipment.

2. The speed ratio control strategy and energy management strategy are designed for the
hybrid tractor, and three tractor operating conditions of the whole tractor is simulated.
Moreda pointed out that there are no standard test conditions for hybrid tractors,
however, the data from the actual tractor operation is reliable and can be a reference
for the research of hybrid tractors [42].

3. The feasibility of the MEH-PS scheme was confirmed by comparing the difference be-
tween bench test and simulation data within 5% and comparing the fuel consumption
of PowerShift tractors and CVT tractors published by DLG under the corresponding
operating conditions. It was found that the device has the lowest fuel consumption,
which further confirms the reliability of the scheme, and the scheme has practical
value for energy saving of agricultural machinery.

7. Conclusions

This paper designs a MEH-PS based on the actual requirements of the tractor. The
principle of drive and transmission implementation of the powertrain system is introduced,
and the HMT transmission ratio control strategy and hybrid system energy management
strategy are developed.

The ploughing, harvest, and transport operations are analyzed. Ploughing opera-
tion is mainly works in the pure engine drive mode, HMT can continuously change the
transmission ratio according to the ploughing resistance so that the engine operates in the
lower fuel consumption region while the transmission also has high efficiency to reduce
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tractor fuel consumption. Harvesting operation mainly works in the torque coupling drive
mode, which can reasonably allocate the power source to perform work according to the
developed rule-based optimization energy management strategy to meet the power re-
quirements of the walking mechanism and PTO. Transport operation can gain more driving
force, broaden the tractor speed range, minimize fuel consumption, and improve transport
efficiency by a variety of driven modes.

The simulation and test fuel consumption error of the three operations are within
5% and is lower than the fuel consumption of similar horsepower PowerShift and CVT
tractors published by DLG. The developed hybrid system energy management strategy and
HMT transmission ratio control strategy can achieve energy saving results. The powertrain
system provides a solution for modern agriculture to reduce tractor energy consumption
under multiple operations.

8. Patents

The mechanic-electronic-hydraulic powertrain system reported in this manuscript has
been authorized in China (Authorization No. CN 112128336 B, Patent No. ZL 2020 1 0766107.2).
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Appendix A

Table A1. Parameters of the tractor and key components.

Item Parameter Specification

Tractor
Mass 8260 kg

Radius of wheels 750 mm

Engine
Rated power 132 kW@2200 r/min

Maximum torque 750 Nm@1300 r/min
Minimum fuel consumption 203 g/kW·h@1500 r/min

Motor
Rated power 45 kW
Rated speed 3300 r/min

Maximum speed 11,000 r/min

Battery Capacity 45 Ah
Nominal voltage 360 V

Driveline
Transmission ratio 0.63~4.33

Gear ratio of main reducer 6.4
Gear ratio of wheel reducer 3.7
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Table A2. Relevant data obtained from DLG test conditions.

Load
Type

Test
Cycle

Engine Speed (r/min) Driving Speed (km/h) Absolute Fuel
Consumption (L/h) BSFC (g/kWh)

PowerShiftCVT MEH-
PS PowerShiftCVT MEH-

PS PowerShiftCVT MEH-
PS PowerShiftCVT MEH-

PS

Drawbar
work

PL1 1407 1348 1684 7.1 6.7 7.0 37.8 34.2 26.9 247 251 208
PL2 1312 1393 1407 8.5 8.8 9.1 27.9 27.8 22.7 246 250 205

Drawbar
+ PTO
work

PTO1 1663 1622 1558 5.6 5.7 5.7 39.9 37.6 32.5 227 230 206
PTO2 1424 1664 1567 5.5 5.9 5.8 28.8 27.9 22.6 227 236 207
PTO3 1433 1684 1574 5.5 5.9 5.8 18.1 18.1 15.7 249 266 207

Transport
work

TR60 1989 1448 2140 60.3 61.2 60.1 33.2 37.4 27.4 573 580 259
TR50 1908 1201 2135 51.1 50.4 50.0 30.0 28.4 12.6 539 610 266
TR40 1478 1015 2079 40.8 40.2 40.0 20.3 21.0 7.09 266 643 236
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