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Abstract: In this work, we quantified goat milk powder adulteration by adding urea, melamine,
and starch individually and simultaneously, with the utilization of near infrared (NIR) spectroscopy
coupled with chemometrics. For single-adulterant samples, the successive projections algorithm
(SPA) selected three, three, and four optimal wavelengths for urea, melamine, and starch, respectively.
Models were built based on partial least squares regression (PLS) and the selected wavelengths,
exhibiting good predictive ability with an R2

p above 0.987 and an RMSEP below 0.403%. For multiple-
adulterants samples, PLS2 and multivariate curve resolution alternating least squares (MCR-ALS)
were adopted to build the models to quantify the three adulterants simultaneously. The PLS2 results
showed adequate precision and results better than those of MCR-ALS. Except for urea, MCR-ALS
models presented good predictive results for milk, melamine, and starch concentrations. MCR-ALS
allowed detection of adulteration with new and unknown substitutes as well as the development of
models without the need for the usage of a large data set.

Keywords: goat milk powder; adulteration; near infrared spectroscopy; partial least squares regres-
sion; multivariate curve resolution alternating least squares

1. Introduction

Recently, goat milk powder has attracted much attention for its nutritive value, which
is associated with important functional properties that promote health. It is recognized
worldwide as the closest dairy product to human milk, considering the secondary struc-
tures of milk proteins, amino acid compositions, and smaller fat globules. These benefit
digestibility and help reduce the risk of allergies for consumers [1,2]. Worldwide goat milk
production has increased in the last 50 years and has reached 13.5 million tons per year.
Market trends suggest an increase of approximately 9.7 million tons (a growth of 53%) by
2030. Globally, goat milk production represents 1.9% of all milk production, while cow
milk production is still the largest, at 83.1% [3–5].

Considering nutritional characteristics, production, and market supply, goat milk
has a higher commercial value than cow milk. In France, generally, the average value of
goat milk is four times higher than that of cow milk [5]. In such a scenario, driven by
economic interests, goat milk is highly susceptible to adulteration. The current globalization
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trends and worldwide rapid distribution systems have enabled food fraud to produce
international impacts with far-reaching and negative consequences [6]. Therefore, the
detection of goat milk fraud is critical for the removal of unqualified products from the
supply chain to ensure food safety and to gain consumer confidence.

Goat milk powder can be easily and simply adulterated by adding common adulter-
ants, such as urea, melamine, and starch, into raw milk powder. The common methods
used for adulterants’ detection in milk are the evaluation of physical-chemical parameters
such as specific gravity, freezing point, defatted dry extract, and fat percentage [6,7]. How-
ever, these methods are time-consuming, and the outcomes are not accurate. More efficient
methodologies, such as chromatographic [8], electrophoretic [9], immunoenzymatic [10],
and DNA-based [11] methods, have been investigated by researchers, although there are
other issues that need to be addressed, for example, laborious samples, pretreatment steps
with environmental unfriendly reagents, expensive instruments, and indoor laboratory
environments. Therefore, rapid and green analytical methodologies have been proposed as
an alternative to the traditional methods for identification of food adulteration and other
aspects of food quality.

Near infrared (NIR) spectroscopy, one of the vibrational spectroscopy methods, presents
unique advantages: absence of sample pretreatment, nondestructive testing, and rapid-
ity [12]. Due to the natural features of NIR spectroscopy data, chemometric tools are
necessary to mathematically process and analyze data sets in a statistical multivariate
way [13]. Many studies and applications worldwide have demonstrated that NIR spec-
troscopy combined with chemometric models can obtain reliable, efficient, and accurate test
results to provide information about product quality in the food, chemical, and pharmaceu-
tical industries [12,14,15]. Nevertheless, the technique has limitations at present with regard
to the included interference information and the weak sensibility to minor constituents,
which may be affected by the physical state of the tested samples, the variability in the
matrix, and the measuring operation [16].

Qualitative and quantitative models based on NIR spectroscopy developed in different
studies have been used to detect different adulterants in milk and dairy products from
cows, demonstrating high predictive capacity [17–19]. For goat milk and its derivatives,
a few studies that reported using NIR spectroscopy have focused on the adulteration by
adding cow milk [20–22]. Other common adulterants in cow milk have not been sufficiently
investigated in goat milk. Additionally, there has been relatively little research conducted
on predictive models for the simultaneous determination of multiple adulterants. Given the
above, we aimed to study quantitative models for common single and multiple adulterants
in goat milk, employing NIR spectroscopy and chemometrics.

2. Materials and Methods
2.1. Sample Preparations

The goat milk powder (Meiling, Shaanxi Province, China; protein content: 21.0%,
carbohydrate content: 42.0%, and fat content: 22.0%) used in the experiment was purchased
from a local supermarket. Urea, starch, and melamine powder were obtained from Baoding
Huaxin Reagent and Instrument Co., Ltd. (Baoding, China) with purity of ≥99.5%. Goat
milk powder samples with a single adulterant were prepared by adding urea, melamine,
and starch, separately. For the urea–milk powder mixture, urea was added at levels of
0.5, 0.8, 1, 2, 5, 8, or 10 g/100 g. For the melamine–milk powder mixture, melamine was
added at 0.01, 0.05, 0.1, 0.5, 1, 5, or 10 g/100 g. For the starch—milk powder mixture, starch
was added at levels of 1, 5, 10, 15, 20, 25, or 30 g/100 g. Goat milk powder samples with
multiple adulterants were prepared by adding the groups of urea, melamine, and starch
according to Table 1. All the mixture samples were homogeneously mixed before spectral
collection.

Urea and melamine are industrial chemicals. They are added to milk powder to
increase the nitrogen content, resulting in a falsely high protein content. Starch is a kind
of food ingredient and additive. It is allowed to be added to some dairy products. How-
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ever, excessive addition unlawfully increases the profit on the sale of the product while
reducing nutritional value. According to the above, adulteration concentrations of urea
and melamine were lower than those of starch in this work. Concentrations of different
adulterants largely ranged from low levels to high levels, which allowed us to consider
prediction results under various adulteration conditions.

Table 1. The proportioning of goat milk powder with multiple adulterants.

Number Goat Milk Powder Urea Melamine Starch

1 98.5% 0% 0.5% 1%
2 97.7% 0.8% 1.5% 0%
3 97.3% 1.5% 0% 1.2%
4 92% 1% 2% 5%
5 84% 2% 4% 10%
6 72% 5% 8% 15%
7 60% 8% 12% 20%

2.2. Acquisition of NIR Spectra Data

A Bruker MPA FT-NIR spectrometer (Bruker Optik GmbH, Ettlingen, Germany) set
to integrating sphere diffuse reflection measurement mode was employed to acquire NIR
spectral data, in a range of 12,500–4000 cm−1, at a 16 cm−1 spectral resolution, and by
integrating 64 scans. The samples were placed into a sample cup rotating during spectra
collection. For pure goat milk powder, 20 spectra were obtained and divided randomly
into a calibration set (14 spectra) and prediction set (6 spectra). The same operations for
pure adulterants (3) and mixtures (3 × 7 + 7) powder were also performed. In total, 640
spectra were collected.

2.3. Pretreatment and Successive Projections Algorithm

The acquired spectra contained external disturbance, which adversely affected the
extraction and analysis of target information. Initially, 5 pretreatment techniques: moving
average smoothing (MAS) (five-point window), normalizing (NOR) (area normalization),
standard normal variable (SNV) [23], Savitzky-Golay smoothing (SGS) (second-order
polynomial fitting and five-point window), and Savitzky-Golay first-order derivative
(SGD1) (second-order polynomial fitting and five-point window), were applied by using
the software of Unscrambler X (CAMO, Oslo, Norway).

The recorded NIR spectra exhibited high dimensionality, multicollinearity, and redun-
dancy due to the strong correlation over contiguous wavelength channels. It was necessary
to use a wavelength optimization algorithm to choose vital wavelengths for modeling,
which also lowered computation time and detector cost. The successive projections algo-
rithm (SPA) applied herein is a forward variable selection method. SPA performs calculation
depending on a criterion of choosing the maximum projection of the selected wavelength
on other wavelength variables in each subsequent cycle. SPA mostly enables minimizing
the collinearity and reducing redundant information in spectral vector space [24].

2.4. Partial Least Squares Regression (PLS)

We used PLS to define the mathematical relationship between spectra and adulteration
concentrations. PLS is a heuristic method based on linear algebra, employing a soft
modeling approach where no assumption is imposed on the data distribution [25]. The
algorithm overcomes the overlapping and interference contained in spectra by using
powerful multicomponent analysis [26]. PLS subjects independent and dependent variables
to a suitable bilinear decomposition and conducts regressions in the latent space. PLS is a
versatile method that is dominant in many areas, often providing better models than other
regression methods.

There are two approaches available in PLS regression when more than one dependent
property is expected for calibration. Each of all properties is calibrated separately to
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develop models (PLS1) or all properties are calibrated simultaneously to establish one
model (PLS2). Compared to PLS1, PLS2 is simpler and more convenient, modeling all
the target properties at once. However, PLS1 models generally outperform PLS2 models,
except when the dependent variables are strongly correlated [27]. In this work, PLS1
and PLS2 were applied to build quantitative models for single-adulterant samples and
multiple-adulterants samples, respectively. Five-fold cross-validation was used to evaluate
both PLS1 and PLS2 models’ efficiency.

2.5. Multivariate Curve Resolution Alternating Least Squares (MCR-ALS)

Multivariate curve resolution alternating least squares (MCR-ALS) is a powerful
resolution method allowing quantification in the analysis of complex mixtures by using
spectroscopic means. MCR-ALS has been successfully applied to the resolutions of mul-
tidimensional spectroscopy [28], spectroscopic images [29], multiple coeluted peaks in
chromatography [30], mixtures in flow injection analysis [31], and components in kinetic
reactions [32], as well as to studies of protein folding processes [33], electrophoretic char-
acteristics of peptides [34], and conformational changes of polynucleotide [35]. The use
of MCR-ALS can be more beneficial for the identification of adulteration with new and
unknown substitutes because it enables estimating pure spectral profiles from first-order
spectrophotometric data and building models by adopting selectable constraint settings
without the need for a large data set [36,37]. For all the foregoing reasons, we proposed
using MCR-ALS to build calibration models to simultaneously quantify adulterants for
analysis of samples with multiple adulterants. Figure 1 shows the steps of the MCR-ALS
resolution process.
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Figure 1. Flowchart of steps of the resolution process in the MCR-ALS method.

Iterations continue until convergence is achieved, i.e., when, in two successive iter-
ative cycles, the relative divergence in the standard deviations of the residuals between
experimental and ALS calculated data values is less than a previously ascertained value
(usually set to 0.1%) or the maximum number of iterations is reached [38]. The performance
of the iterative ALS procedure is evaluated by 3 parameters: the percent of lack of fit (LOF),
the percent of variance explained (EV), and the standard deviation of residuals with respect
to experimental data (σ), which are calculated according to the following equations [39]:

LOF(%) =

√√√√∑i,j (dij − d̂ij)
2

∑i,j d2
ij

× 100 (1)
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EV(%) =
∑i,j d̂2

ij

∑i,j d2
ij
× 100 (2)

σ =

√√√√ ∑i,j (dij − d̂ij)
2

nrows × ncolumns
(3)

where dij represents an element in experimental matrix data D and d̂ij is the corresponding
value calculated based on the results of MCR-ALS models.

In this work, the number of the MCR-ALS components was set to 4, which was the
number of the components included in multiple adulterants samples. The iterative ALS
procedure began with an initial estimation of the spectral profile for each analyte (goat milk,
urea, melamine, and starch). The initial estimate was manually generated by using the pure
spectra of the four analytes as the input. The non-negativity spectra profile constraint was
applied because all the spectral values were non-negative after 3 different pretreatments
(NON, NOR, and MAS). Additionally, the non-negativity concentration profile constraint
and concentration correlation constraint were adopted. Only the concentrations of goat
milk powder and melamine in the calibration samples (98 samples = 14 × 7 mixtures)
obtained by ALS at each iteration were correlated with previously known referenced
concentration values, which were input into the concentration correlation constraint. The
concentrations of urea and starch in both the calibration and prediction sets (140 samples)
were all predicted by MCR-ALS based on the resolved spectra. In this work, the MCR-
ALS procedure was conducted through a graphical user interface [40] in the MATLAB
environment R2018b (The MathWorks Inc., Natick, MA, USA).

3. Results and Discussion
3.1. Raw Spectral Characteristic Analysis

Figure 2 shows the raw NIR spectra of the goat milk (in purple), urea (in orange),
melamine (in green), and starch (in blue). As can be seen, the spectra of goat milk were
similar to those of starch, with smooth peaks and valleys. The spectra of urea and melamine,
with sharper profiles, exhibited distinct differences from goat milk. From the spectral
profiles of goat milk and starch, the two main absorption peaks observed, one at 1450
nm and the other at 1923 nm, were both associated with the O–H water bond [7]. The
bands corresponding to fat content appeared at 1200 nm (the second overtone from –CH
stretching) and 1724–1754 nm (the first overtone of –CH stretching) [21,41]. A spectral peak
between 1724 and 1754 nm was observed only from the goat milk spectra. The prominent
band at 2000 nm observed from the spectra of urea and melamine was attributed to amide
bond [21]. The molecular structures of urea, melamine, and starch illustrated in Figure 3
were consistent with the above-mentioned spectral characteristics. In Figure 2, the spectra
of urea present an overall high absorbance level. This was due to the intensity also being
dependent on particle size, influencing the scattering of photons within the powder. The
particle size of pure urea powder was different from that of the others in our experiment.

3.2. Adulteration Analysis of Single Adulterant
3.2.1. Spectral Pretreatment and Full Spectral Model

The performance of the PLSR models for single-adulterant samples using different
pretreatment methods based on the full spectral range is shown in Supplementary Material
Table S1. All the PLSR models presented a strong ability to quantify the adulteration
levels with an R2 above 0.978 and an RMSE below 0.543%. For urea adulteration, the best
performance was obtained by using NOR pretreatment six LVs, reaching an R2

cv of 0.993
and RMSECV of 0.307% in the five-fold cross-validation and an R2

p of 0.992 and RMSEP of
0.321% in the prediction set. For melamine adulteration, the best PLSR model was obtained
by employing NOR pretreatment and six LVs, reaching an R2

cv of 1.000 and RMSECV of
0.040% in the five-fold cross-validation and an R2

p of 1.000 and RMSEP of 0.042% in the
prediction set. For starch adulteration, the best output was obtained after the application of
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MAS as the pretreatment and six LVs, achieving an R2
cv of 1.000 and RMSECV of 0.132% in

the five-fold cross-validation and an R2
p of 1.000 and RMSEP of 0.139% in the prediction set.

Figure S1 visualizes the process of selecting LV numbers in the best models for the three
adulterants. Table 2 shows the averages of the specific predictive values of each adulterant
in prediction set based on the corresponding best models and the absolute errors. The
quantification achieved adequate results with absolute errors 0.4% or less for all adulterants.
To illustrate the good fit of the three best models, the predicted vs. reference plots for the
prediction set are shown in Figure 4.
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Table 2. Results of each adulterant in the prediction set based on the corresponding best models.

Actual Value (%) Predicted Value (%) Absolute error (%)

Urea Melamine Starch Urea Melamine Starch Urea Melamine Starch

0.0 0.00 0.0 0.0 −0.01 −0.1 0.0 0.01 0.1
0.5 0.01 1.0 0.3 −0.00 1.1 0.2 0.01 0.1
0.8 0.05 5.0 0.9 0.04 4.9 0.1 0.01 0.1
1.0 0.10 10.0 1.4 0.13 9.9 0.4 0.03 0.1
2.0 0.50 15.0 2.2 0.47 15.2 0.2 0.03 0.2
5.0 1.00 20.0 5.3 1.02 20.1 0.3 0.02 0.1
8.0 5.00 25.0 7.7 5.05 25.0 0.3 0.05 0.0
10.0 10.00 30.0 10.0 9.98 29.9 0.0 0.02 0.1
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3.2.2. Multispectral Models Optimized by SPA

To reduce the number of input variables for modeling and to improve the robustness
of the quantitative model, SPA screened the characteristic wavelengths of the optimal
pretreatment spectra. The results for each of the three single adulterant samples are shown
in Table 3. Only three wavelengths of 993, 1037, and 1219 nm; three wavelengths of 1027,
1929, and 2208 nm; and four wavelengths of 802, 1612, 1724, and 1873 nm were selected
as the characteristic wavelength subsets to determine the adulteration levels of the three
adulterants (urea, melamine, and starch, respectively). The SPA algorithm is essentially
based on mathematical statistics. The selection criteria were driven by using a searching
algorithm with prediction accuracy (RMSE) [42]. Hence, the selection results lacked in-
terpretability and were not quite consistent with the spectral characteristics discussed in
Section 3.1.

Table 3. Characteristic wavelengths selected by SPA.

Adulterant Wavelength (nm)

urea 993, 1037, 1219
melamine 1027, 1929, 2208

starch 802, 1612, 1724, 1873

To display the distribution of the characteristic wavelengths and to present the in-
fluence of spectral pretreatment, the average spectra of goat milk powder and the three
adulterants after the application of optimal pretreatments are illustrated in Figure 5 with
the flagged characteristic wavelengths. The scattering effect induced by the particle size of
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pure urea powder (mentioned in the Section 3.1) could be eliminated by spectral pretreat-
ment (shown in Figure 5a). As can be seen from Figure 5, the characteristic wavelengths
of 1037 nm in Figure 5a and 1027 nm in Figure 5b were distributed around an absorp-
tion peak, where spectral profiles after the NOR pretreatment exhibited more obvious
differences between the goat milk and urea or melamine adulterant. Likewise, Masemola
and Cho [43] selected 1027 and 1036 nm as the characteristic wavelengths to estimate leaf
nitrogen concentration from the spectra (400–2500 nm) of whole fresh and dry leaves of
Eucalyptus grandis. As shown in Figure 5c, 1724 nm was selected as one of the key variables
for quantification of starch adulteration in goat milk powder. Similarly, Qiu et al. [44]
and Lee et al. [45] identified 1724 nm as the characteristic wavelength in their research on
cultivar classification of sweet corn seeds and prediction of the amylose content of polished
rice. The peak around 1724 nm corresponded to the first overtone vibration absorption of
the -CH2 and -CH function groups in carbohydrate [44].
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Multispectral PLSR models of three kinds of single-adulterant samples were estab-
lished individually using the corresponding characteristic wavelengths, and the perfor-
mance statistics of the models are shown in Table 4. The results demonstrated good
quantification ability, although the precision of the models was slightly poorer than that of
the full spectral models. Such reduction in numbers of the input wavelengths for modeling
would benefit the development and application of online or portable instruments for pro-
cessing monitoring and market inspection. Predicted vs. reference plots for prediction sets
of the three multispectral PLSR models are shown in Figure 6. As can be seen in Figure 6,
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the limits of detection of the multispectral models were 0.5%, 0.05%, and 1% for urea-,
melamine-, and starch-adulterated samples, respectively. The regression equations derived
from the multispectral PLSR models to determine the adulteration levels of each of the
three adulterants were as follows:

Yurea = 70.68 − 145.20X993 + 302.71X1037 − 116.60X1219 (4)

Ymelamine = −18.73 + 17.47X1027 − 34.20X1929 + 42.16X2208 (5)

Ystarch = 108.18 − 6.52X802 + 99.72X1612 − 174.22X1724 + 8.45X1873 (6)

Table 4. Performance of the multispectral PLSR models for quantification of each of the three
adulterants based on the characteristic wavelengths.

Adulterant LVs
Calibration Cross-Validation Prediction

R2
c RMSEC (%) R2

cv RMSECV (%) R2
p RMSEP (%)

urea 3 0.990 0.361 0.989 0.369 0.987 0.403
melamine 3 0.999 0.129 0.999 0.129 0.999 0.133

starch 4 1.000 0.210 1.000 0.213 1.000 0.220
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3.3. Adulteration Analysis of Multiple Adulterants
3.3.1. PLS2 Models

Table 5 shows the PLS2 models that presented the best predictive abilities within
each of the three pretreatments. In addition to spectra without pretreatment, the spectral
data only after NOR and MAS pretreatment were taken into consideration because these
outperformed other pretreated spectra in PLS1 modeling. As can be seen in Table 5, all
the models exhibited good predictive ability for every analyte (goat milk powder, urea,
melamine, and starch) in the multiple-adulterants samples. The results did not show
statistically significant differences between the use of raw spectral data (NON) and the
other two methods for preprocessing. To illustrate the good fit of the model with NON
pretreatment for each analyte determination, predicted vs. reference plots for prediction
sets are shown in Figure 7. Although the PLS2 models demonstrated good predictive
ability, there was still an intrinsic limitation due to the need for enough previously known
reference information for modeling. This would result in losing effective prediction when
considering the adulteration with new and unknown substitutes, which often occurs in
practical applications.

Table 5. Performance of the PLS2 models for multiple-adulterants samples using different pretreat-
ment methods based on the full spectral range.

Pretreatment Component LVs
Calibration Cross-Validation Prediction

R2
c RMSEC (%) R2

cv RMSECV (%) R2
p RMSEP (%)

NON

goat milk 6 0.999 0.489 0.999 0.499 0.999 0.541
urea 6 0.999 0.099 0.998 0.106 0.998 0.110

melamine 6 0.998 0.180 0.998 0.182 0.998 0.188
starch 6 0.999 0.271 0.999 0.275 0.998 0.289

NOR

goat milk 6 0.999 0.488 0.999 0.499 0.999 0.538
urea 6 0.999 0.096 0.999 0.102 0.998 0.111

melamine 6 0.998 0.178 0.998 0.181 0.998 0.189
starch 6 0.999 0.268 0.999 0.273 0.998 0.292

MAS

goat milk 6 0.999 0.490 0.999 0.504 0.999 0.537
urea 6 0.998 0.111 0.998 0.115 0.998 0.126

melamine 6 0.998 0.181 0.998 0.184 0.998 0.189
starch 6 0.999 0.267 0.999 0.274 0.998 0.293

3.3.2. MCR-ALS Models

Table 6 shows the performance statistics of the MCR-ALS models for the simultaneous
quantification of the adulteration levels of the three adulterants for multiple-adulterants
samples by using the full-range NIR spectra pretreated with different methods. Similarly,
the results did not show statistically significant differences between the use of raw spectral
data (NON) and other two methods for preprocessing. The predictions for goat milk and
melamine were accurate, with an R2

p ≥ 0.987. However, the results for urea and starch were
poor, with an R2

p ≥ 0.867 for starch and ≥0.679 for urea. The predicted concentrations of
urea and starch were calculated only based on the resolved pure spectra of the components
by MCR-ALS, which differed in the situations with goat milk and melamine. MCR-ALS
allowed modeling with less previously known reference information, which is significant
for practical applications. However, the performance was poor compared to the PLS
calibrations. Additionally, MCR-ALS needed more computing and analyst interaction than
PLS. For a clearer illustration of the fit of the MCR-ALS model with NON pretreatment
for each analyte determination, predicted vs. reference plots for prediction set are shown
in Figure 8.
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Table 6. Performance of the MCR-ALS models for multiple adulterants samples using different
pretreatment methods based on the full spectral range.

Pretreatment Component
Number of

Calibra-
tion/Prediction

LOF(%) EV(%) σ
Calibration Prediction

R2
c RMSEC (%) R2

p RMSEP (%)

NON

goat milk 98/42

0.768 99.99 0.002

0.996 0.838 0.996 0.879
urea 0/140 / 0.679 2.529

melamine 98/42 0.990 0.404 0.989 0.434
starch 0/140 / 0.870 4.279

NOR

goat milk 98/42

0.774 99.99 0.002

0.996 0.834 0.996 0.903
urea 0/140 / 0.681 2.368

melamine 98/42 0.990 0.410 0.989 0.436
starch 0/140 / 0.867 4.524

MAS

goat milk 98/42

0.771 99.99 0.002

0.996 0.835 0.996 0.873
urea 0/140 / 0.686 2.604

melamine 98/42 0.991 0.383 0.987 0.470
starch 0/140 / 0.873 4.254
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4. Conclusions

The obtained results demonstrated the potential of NIR spectroscopy combined with
chemometrics (SPA, PLS1, PLS2, and MCR-ALS) for the quantitative determination of goat
milk powder adulteration through adding common adulterants (urea, melamine and starch)
at various concentrations both individually and simultaneously. For single-adulterant sam-
ples, the multispectral PLS models obtained by using SPA (three wavelengths for urea,
three wavelengths for melamine, and four wavelengths for starch) presented good predic-
tive ability with an R2

p above 0.987 and RMSEP below 0.403%. For multiple-adulterants
samples, PLS2 outperformed MCR-ALS and provided good predictive models to quantify
the adulteration levels of the three adulterants. PLS2 needed enough previously known
reference information for modeling, while MCR-ALS allowed the development of models
without the need for a large data set, even with existence of new and unknown substitutes.
On the contrary, MCR-ALS required more computing and analyst interaction than PLS.
Overall, the proposed methodology will contribute to the decisions made by the regulatory
agencies to identify and prevent this kind of fraud in the local market in the future.
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