
����������
�������

Citation: Fuentes, S.; Chávez, C.

Modeling of Border Irrigation in Soils

with the Presence of a Shallow Water

Table. I: The Advance Phase.

Agriculture 2022, 12, 426. https://

doi.org/10.3390/agriculture12030426

Academic Editors: Yanqun Zhang

and Jiandong Wang

Received: 5 March 2022

Accepted: 17 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Modeling of Border Irrigation in Soils with the Presence of a
Shallow Water Table. I: The Advance Phase
Sebastián Fuentes and Carlos Chávez *

Water Research Center, Department of Irrigation and Drainage Engineering, Autonomous University
of Queretaro, Cerro de Las Campanas SN, Col. Las Campanas, Queretaro 76010, Mexico;
sebastian.fuentes@uaq.mx
* Correspondence: chagcarlos@uaq.mx; Tel.: +52-442-192-1200 (ext. 6036)

Abstract: The overelevation of the water table in surface irrigation plots is one of the main factors
affecting salinization in agricultural soils. Therefore, it is necessary to develop simulation models
that consider the effect of a shallow water table in the process of advance-infiltration of the water in
an irrigation event. This paper, the first in a series of three, develops a simple mathematical model
for the advance phase of border irrigation in soils with the presence of a shallow water table. In
this study, the hydrodynamic model of the Barré de Saint-Venant equations is used for the water
surface flow, and the equations are solved using a Lagrangian finite-differences scheme, while in the
subsurface flow, an analytical solution for infiltration in soils with a shallow water table is found
using the bisection method to search for roots. In addition, a hydraulic resistance law is used that
eliminates the numerical instabilities presented by the Manning–Strickler law. The model results
for difference irrigation tests show adjustments with an R2 > 0.98 for the cases presented. It is also
revealed that, when increasing the time step, the precision is maintained, and it is possible to reduce
the computation time by up to 99.45%. Finally, the model proposed here is recommended for studying
the advance process during surface irrigation in soils with shallow water tables.

Keywords: Barré de Saint-Venant equations; hydrodynamic model; analytical solution; flow profiles;
irrigation tests; inverse modeling; water use efficiency; agricultural water management

1. Introduction

Surface irrigation is one of the main factors in the fluctuation of shallow water tables in
agricultural plots. Around the world, surface irrigation is the most frequently used method
for water application in agricultural plots, where the water is distributed over the field and
through the soil [1].

The presence of a shallow water table changes the water content of the soil profile
(Figure 1), due principally to the capillary process, which is present in porous media [2]. It
has been found that in shallow water conditions, irrigation can be reduced by up to 80%
without affecting yield and without increasing soil salinity [3].

Poor design of surface irrigation, for example losses from tailwater due to the selection
of an inappropriate irrigation flow or due to poor operation in the water distribution
network as a result of poor leveling in the ground by percolation, can cause overelevation
of the water table and the progressive salinization of the soil [4].

It is estimated that 20% of the arable land and 33% of irrigated agricultural plots
in the world are affected by high salinity [5]. Water-table levels play an essential role in
the salt distribution in the soil profile and could be controlled by subsurface drainage [6].
However, drainage leads to an increase in irrigation costs. Therefore, it is necessary to
model surface irrigation both for the surface water movement and infiltration into the soil,
using an equation that considers soil with a shallow water table for the latter.
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Figure 1. Irrigation scheme in soils with shallow water table. 

The border irrigation water flow can be characterized using the hydrodynamic model 
of the Barré de Saint-Venant equations, which accurately describes surface irrigation [7]. 
The relationship between the width and the water depth in a border makes it possible to 
consider the equations corresponding to runoff for an infinite surface width [8]. The con-
tinuity equation in the hydrodynamic model is written as follows: 
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border, t is the time, U is the mean velocity, h is the water depth, VI = ∂I(x,t)/∂t is the 
infiltration flow, that is, the water volume infiltrated per unit width per unit length of the 
border, I is the infiltrated depth, g is gravitational acceleration, β = UIX/U is a dimension-
less parameter where UIX is the projection in the direction of the output velocity of the 
water mass due to the infiltration, Jo is the topographic slope, and J is the friction slope 
that can be determined by the fractal law of hydraulic resistance [10]: 
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effects of soil roughness, and the exponent d has a fractal interpretation. From this law, 
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Figure 1. Irrigation scheme in soils with shallow water table.

The border irrigation water flow can be characterized using the hydrodynamic model
of the Barré de Saint-Venant equations, which accurately describes surface irrigation [7].
The relationship between the width and the water depth in a border makes it possible
to consider the equations corresponding to runoff for an infinite surface width [8]. The
continuity equation in the hydrodynamic model is written as follows:

∂h
∂t

+
∂q
∂x

+
∂I
∂t

= 0 (1)

and the momentum equation is as follows [9]:

h2 ∂q
∂t

+ 2hq
∂q
∂x

+
(

gh3 − q2
)∂h

∂x
+ gh3(J− Jo) + βqh

∂I
∂t

= 0 (2)

where q(x,t) = U(x,t)h(x,t) is the discharge per unit width of the border or the unitary
discharge, x is the spatial coordinate in the main direction of the water movement in the
border, t is the time, U is the mean velocity, h is the water depth, VI = ∂I(x,t)/∂t is the
infiltration flow, that is, the water volume infiltrated per unit width per unit length of the
border, I is the infiltrated depth, g is gravitational acceleration, β = UIX/U is a dimensionless
parameter where UIX is the projection in the direction of the output velocity of the water
mass due to the infiltration, Jo is the topographic slope, and J is the friction slope that can
be determined by the fractal law of hydraulic resistance [10]:

q = kν

(
h3Jg
ν2

)d

(3)

where ν is the kinematic viscosity coefficient, k is a dimensionless factor that includes the
effects of soil roughness, and the exponent d has a fractal interpretation. From this law, the
Chezy formula is deduced with d = 1/2 and the Poiseuille law with d = 1.

The initial and boundary conditions for a closed border, avoiding loss by tailwater
outside the irrigation domain, are as follows:

q(x, 0) = 0 ; h(x, 0) = 0 (4)

q(0, t) = q0 ; q(xf, t) = 0 ; h(xf, t) = 0 (5)

where xf (t) is the position of the wave front at time t and qo is the unitary discharge at the
entrance of the border.
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Numerous practical situations require a numerical solution of the Richards equation,
with dimensions depending on the complexity of the studied problem. In surface irrigation,
a one-dimensional equation is sufficient to represent the infiltration phenomenon [11].
However, the equation lacks general analytical solutions, and therefore complex numerical
methods are often required in order to solve it [12–14]. There are other physics-based
models resulting from the simplification of the initial conditions, in particular the Green
and Ampt equation [15]. This equation has been used in surface irrigation [16–18]. How-
ever, with this equation, only a homogeneous moisture profile can be represented in the
soil profile.

Fuentes et al. [19] developed an analytical solution of the Richards equation using the
Green and Ampt hypotheses to describe the infiltration of water into the soil with a shallow
water table (Pf). The solution considers a hydrostatic initial moisture distribution (Figure 2),
where the initial moisture is calculated with the expression θi(z) = θo + (θs − θo)(z/Pf).
Thus, the moisture content at the soil surface is θi(0) = θo and at the water-table surface is
θi(Pf) = θs. The suction in the wetting front is a linear function of the moisture content at
the front, hf (θi,θs) = hf (θs − θi)/(θs − θo), that is:

hf[θi(zf), θs] = hf(θo, θs)

(
1− zf

Pf

)
(6)

such that hf[θi(0),θs] = hf and hf[θi(Pf),θs] = 0. The infiltrated depth is defined by:

I(t) =

zf(t)∫
0

[θs − θi(z)]dz (7)

that is:
I(t)/IM = 1− [1− zf(t)/Pf]

2, IM =
1
2

∆θPf (8)

where IM is the maximum infiltrated depth.
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Introducing Equation (6) into the Green and Ampt equation yields the differential
equation for the analytical solution that considers a shallow water table [19]:

dI
dt

= Ks

[
1 +

h + hf(1− zf/Pf)

zf

]
, zf = Pf

(
1−

√
1− I/IM

)
(9)

When the water depth is independent of time, h = h, and integration of Equation (9)
with the condition I = 0 at t = 0 leads to the following infiltration equation, where hf 6= Pf:

Kst =



Pf
Pf−hf

I− 2 Pf(h+Pf)(h+hf)IM

(Pf−hf)
3

ln
[
1 + Pf−hf

h+hf

(
1−

√
1− I

IM

)]
+

2 Pf(h+hf)IM

(Pf−hf)
2

(
1−

√
1− I

IM

) (10)

and when hf = Pf:

Kst =
PfIM

h + Pf

[
I

IM
+

2
3

(
1− I

IM

)3/2
− 2

3

]
(11)

where h ∼= [4d/(5d + 1)]ho is the mean water depth and ho = (ν2/gJo)1/3(qo/kν)1/3d is the
normal depth [20].

Equation (10) reduces to the Green and Ampt infiltration equation when Pf → ∞,
considering that IM = 1/2∆θPf. In this limit, 1 – (1 – I/IM)1/2 ∼= I/2IM = I/∆θPf holds. The
third term is of the order of 1/Pf and tends to zero. In the second term, the argument of the
logarithm tends to 1 + I/∆θ(h + hf) and its coefficient to ∆θ(h + hf). Finally, in the first term,
the coefficient of I→ 1. Using the definition λ = ∆θ (h + hf), the Green and Ampt equation
is deduced.

In recent years, many different software packages have been developed to model
surface irrigation (e.g., [21,22]); however, they have some limitations due to the infiltration
equations used. For example, they only represent constant initial moisture conditions along
a homogeneous soil column, and they are empirical equations for a specific irrigation event.
Furthermore, they are not representative for the soils with shallow water tables (where the
moisture profile is not constant) existing in some irrigated agricultural areas.

The objectives of this study, the first in a series of three, are: (a) to model the advance
phase of surface irrigation in a soil with a shallow water table by coupling an analytical
solution to the Barré de Saint-Venant equations and (b) to validate the model obtained with
data from an irrigation test reported in the literature. In the second paper, the three phases
of irrigation will be included: advance, storage, and recession. Finally, in the third article,
this solution will be compared with the Barré de Saint-Venant equations coupled internally
with the Richards equation.

2. Materials and Methods
Numerical Solution

The numerical solution of the Barré de Saint-Venant equations uses a Lagrangian
scheme [9,23]. The discrete form of the continuity equation is as follows:[

ωqL + (1−ω)qJ

]
δt− [ωqR + (1−ω)qM]δt

−[ϕhL + (1−ϕ)hR +ϕIL + (1−ϕ)IR](xR − xL)

+[ω(hR + IR) + (1−ω)(hM + IM)](xR − xM)

−[ω(hL + IL) + (1−ω)(hJ + IJ)](xL − xJ)

+[ϕhJ + (1−ϕ)hM +ϕIJ + (1−ϕ)IM](xM − xJ) = Rc

(12)

Due to the numerical instability presented in the calculation cells at the beginning,
a discrete form of the momentum equation was developed, considering the following
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assumptions: (a) the derivatives in time were calculated as a rectangular cell (Eulerian)
and (b) average flow and water depth coefficients were considered for the calculation of an
average friction slope. The discrete form of the momentum equation is as follows:

2hq
[
ω(qR − qL) + (1−ω)

(
qM − qJ

)]
δt

+
(

gh
3 − q2

)
[ω(hR − hL) + (1−ω)(hM − hJ)]δt

+h
2
{
[ϕqL + (1−ϕ)qR](xR − xL)−

[
ϕqJ + (1−ϕ)qM

]
(xM − xJ)

}
+gh

3(
J− Jo

)
[ω(xR − xL) + (1−ω)(xM − xJ)]δt

+λδtqh{[ϕIL + (1−ϕ)IR](xR − xL)− [ϕIJ + (1−ϕ)IM](xM − xJ)} = Rm

(13)

where Rc and Rm represent the residuals of the continuity equation and momentum, re-
spectively, the coefficient q = ω[(1 − ϕ)qR + ϕqL] + (1 − ω)[(1 − ϕ)qM + ϕqJ], and the
coefficient h = ω[(1 − ϕ)hR + ϕhL] + (1 − ω)[(1 − ϕ)hM + ϕhJ], taking into account the ex-

treme values of each calculation cell, and consequently the coefficient J = ν2(q/kν)1/d/gh
3
.

The weight factors for time and space are denotedω and ϕ, respectively.
In the discrete forms, a weight factor in space of ϕ = 1/2 was considered for interior

cells [23–26]. For the last cell and the first time step, ϕ = π/4 was used, deduced from the
analysis of the short-time coupling of the Saint-Venant and Richards equations [27]. The
weight factor for time was taken asω = 0.60 [24–26,28].

Figure 3 shows the Lagrangian cells during the advance phase. The subscripts L and
R denote the values of each variable to the left and right of the next time ti+1, and J and M
represent the values at the current time ti.
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The solution developed is implicit, where Equations (12) and (13) are solved simul-
taneously for all cells at each time step. By linearizing the discrete equations, a system of
2N + 2 nonlinear algebraic equation with 2N + 4 unknown variables is produced, where N
is the number of computational cells. The solution of the system is obtained by applying
the double sweep algorithm, which assumes a linear relation between the variation of the
water depth δh and the discharge δq in a given time step [29]:

δqi = Ei+1δhi + Fi+1 (14)
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and for the last cell the equation is expressed in terms of the advance distance, considering
that δhN and δqN are equal to zero:

δδ = FN+1 (15)

where the values of E and F are calculated by the partial derivatives of the residual equations
of continuity and momentum for each cell with respect to hL, qL, hR, and qR.

With the coefficient values E and F, the improved solution for the new values of flow,
water depth, and position of the wave front is determined by:

hn+1
i = hn

i + δhi, 0 ≤ i ≤ N (16)

qn+1
i = qn

i + δqi, 1 ≤ i ≤ N (17)

δxn+1
N = δxn

N + δδ (18)

The convergence criterion selected for advancing in time is that the residual values
of the continuity equation (Rc) and the momentum equation (Rm) in the current iteration
must be less than 1 × 10−5.

The analytical solution for infiltration in a soil with a shallow water table is obtained
using the bisection method, which is widely used to find the roots of a function.

3. Results
3.1. Soil Characterization

Simulations were performed with the information reported by Pacheco [30] for a
clay soil from La Chontalpa, Tabasco, Mexico, using the coupling of the Barré de Saint-
Venant equations and the analytical solution to model infiltration in a soil with a shallow
water table. The measured data from the irrigation tests were: border width B = 10.5 m,
border length L = 100 m, border slope Jo = 0.00085 m/m, moisture content at saturation
θs = 0.5245 cm3/cm3, and the dimensionless parameter β = 0. The values of the hydraulic
conductivity at saturation (Ks) and the suction in the wetting front (hf) were optimized using
the Levenberg–Marquardt algorithm [31]. In the hydraulic resistance law, Equation (3),
d = 1 was used. The values of qo, Pf, IM, initial moisture (θo), h, Ks, and hf are reported in
Table 1 for each irrigation test.

Table 1. Values of the initial conditions in three irrigation tests.

Test qo (m3/s/m) Pf (cm) IM (cm) θo (cm3/cm3) h (cm) Ks (cm/h) hf (cm) R2

1 0.001428 152 14.54 0.3331 2.73 1.1800 23.84 0.9983
2 0.001428 50 2.15 0.4386 2.73 1.5325 44.00 0.9814
3 0.001238 52 2.32 0.4353 2.60 0.0500 10.00 0.9967

This table shows the correlation coefficient R2 between the measured data and those
calculated with the optimized parameters of Ks and hf. Good adjustments were observed
for the three irrigation tests.

3.2. Applications

Simulations corresponding to each irrigation test were performed using the values
reported in Table 1 and the optimized values of Ks and hf.

Figure 4 shows the good fit of the measured data for the advance phase and those
obtained by the proposed model when optimizing the values of Ks and hf, which is
corroborated by the high R2 values obtained.
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3.3. Comparison of the Theorical Advance Curve with the Measured Data

The information from the second irrigation test (Pf = 50 cm) was used for a more
exhaustive analysis. Figure 5 shows the advance curve obtained by the model, which
shows a good fit between the measured data obtained in the field and those obtained with
the model.
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Figure 6 shows that when the infiltrated depth reaches the IM calculated with Equation (8),
the soil is no longer capable of storing more water. Therefore, the soil was considered
completely saturated 36 min after irrigation had started.

The surface and subsurface flow profiles are shown in Figure 7, where it can be
observed that the infiltration over all points of the border is limited by the maximum
infiltration shown in Figure 6. It is also evident from the third curve (39 min), that a
determined region of the soil was already at saturation, because the soil could no longer
store more water. Due to the complexity of obtaining the roots in the analytical solution,
the time used for this process was 55 min; however, the time discretization can be increased
to obtain reliable results in a shorter time.



Agriculture 2022, 12, 426 8 of 12Agriculture 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 6. Evolution of the infiltrated depth in a border irrigation with a shallow water table. 

The surface and subsurface flow profiles are shown in Figure 7, where it can be ob-
served that the infiltration over all points of the border is limited by the maximum infil-
tration shown in Figure 6. It is also evident from the third curve (39 min), that a deter-
mined region of the soil was already at saturation, because the soil could no longer store 
more water. Due to the complexity of obtaining the roots in the analytical solution, the 
time used for this process was 55 min; however, the time discretization can be increased 
to obtain reliable results in a shorter time. 

 
Figure 7. Flow profiles every 13 min of a border irrigation with a shallow water table. 

3.4. Time Step Analysis 
An analysis of the computation time was performed at different values of δt in the 

numerical coupling of the Barré de Saint-Venant equations and the analytical solution of 
infiltration with a shallow water table. Table 2 shows that there was no difference for the 
different values of δt studied here. The computer equipment used to perform the simula-
tions has an Intel® CoreTM i7-4710 CPU @ 2.50 GHz and 32 Gb of RAM. 

0.00

0.50

1.00

1.50

2.00

2.50

0 10 20 30 40

C
um

ul
at

iv
e 

in
fi

ltr
at

io
n 

(c
m

)

Time (min)

3

2

1

1

2

3

4

0 20 40 60 80 100

In
fi

ltr
at

ed
 d

ep
th

 (c
m

)  
   

 W
at

er
 d

ep
th

 (c
m

)

Distance (m)

13.0 min
26.0 min
39.0 min
51.9 min

Figure 6. Evolution of the infiltrated depth in a border irrigation with a shallow water table.

Agriculture 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 6. Evolution of the infiltrated depth in a border irrigation with a shallow water table. 

The surface and subsurface flow profiles are shown in Figure 7, where it can be ob-
served that the infiltration over all points of the border is limited by the maximum infil-
tration shown in Figure 6. It is also evident from the third curve (39 min), that a deter-
mined region of the soil was already at saturation, because the soil could no longer store 
more water. Due to the complexity of obtaining the roots in the analytical solution, the 
time used for this process was 55 min; however, the time discretization can be increased 
to obtain reliable results in a shorter time. 

 
Figure 7. Flow profiles every 13 min of a border irrigation with a shallow water table. 

3.4. Time Step Analysis 
An analysis of the computation time was performed at different values of δt in the 

numerical coupling of the Barré de Saint-Venant equations and the analytical solution of 
infiltration with a shallow water table. Table 2 shows that there was no difference for the 
different values of δt studied here. The computer equipment used to perform the simula-
tions has an Intel® CoreTM i7-4710 CPU @ 2.50 GHz and 32 Gb of RAM. 

0.00

0.50

1.00

1.50

2.00

2.50

0 10 20 30 40

C
um

ul
at

iv
e 

in
fi

ltr
at

io
n 

(c
m

)
Time (min)

3

2

1

1

2

3

4

0 20 40 60 80 100

In
fi

ltr
at

ed
 d

ep
th

 (c
m

)  
   

 W
at

er
 d

ep
th

 (c
m

)

Distance (m)

13.0 min
26.0 min
39.0 min
51.9 min

Figure 7. Flow profiles every 13 min of a border irrigation with a shallow water table.

3.4. Time Step Analysis

An analysis of the computation time was performed at different values of δt in the
numerical coupling of the Barré de Saint-Venant equations and the analytical solution of
infiltration with a shallow water table. Table 2 shows that there was no difference for
the different values of δt studied here. The computer equipment used to perform the
simulations has an Intel® CoreTM i7-4710 CPU @ 2.50 GHz and 32 Gb of RAM.

Table 2. Computation time for different time steps (δt).

δt Computation Time (min) R2

1.0 55.0
1.5 14.5 1.0
2.0 8.2 1.0
5.0 1.3 1.0

10.0 0.3 1.0
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According to Figure 8, for design purposes it is recommended to use δt = 10 s to
increase the processing speed, and this give a fast response for the advance/infiltration
process in each plot where irrigation was required, with presence of the water table.
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For the purpose of observing whether, with a temporal increment, the accuracy of
the solution was lost, simulations were performed for different values of δt. However, the
coupling method used in this work yielded excellent results and when performing the
temporal increments the errors were minimal (Figure 9). Nevertheless, it is recommended
to use a small δt for research purposes, since it is necessary to observe the phenomenon in
detail in order to provide solutions for particular cases that may occur in irrigation areas
with these characteristics.
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4. Discussion

The numerical coupling of the Barré de Saint-Venant equations with the analytical
solution for a soil with a shallow water table allows the effect of this on the infiltration
process to be analyzed and related to the maximum infiltrated depth of the soil and the
most suitable crop for soils with this characteristic, as well as showing how the advance
wave process is affected at the surface.

By optimizing the parameters Ks and hf, it was possible to represent surface irriga-
tion in soils with shallow water tables, obtaining excellent results for the coefficient of
determination for each irrigation test, which confirms that the proposed model adequately
reproduces the data measured in the field. In addition, with the values obtained it is
possible to calculate, for the next irrigation, the optimal irrigation flow that should be
applied in each border, by means of an analytical representation that takes into account
the border length, the net irrigation depth, and the characteristic parameters of infiltration
obtained through the inverse process shown here [32].

Solving the numerical coupling of the model developed by the explicit method has a
high computational cost. However, by having δt > 1 s, the computational time decreases by
up to 99.45% compared to δt = 1 s, and the results provided by the model still fit correctly.
This method makes it possible to increase the processing speed and to ideally reproduce
the advance/infiltration process in the border irrigation in soils with shallow water tables.
It is important to note that for research purposes it is advisable to use a small δt to observe
in detail what happens in the advance phase of irrigation.

By using an implicit scheme for the discretization of the equations, a higher degree
of accuracy is provided, because the solution is iterative and considers what is occurring
in the current state of the flow profiles, as well as in the previous state. In contrast, the
explicit scheme only solves the system once, without considering the current state of the
flow profiles, which can generate accuracy problems when using different values of δt.

The developed model has the advantage of not requiring as many physical parameters
associated with the plots and irrigation, without losing the representativeness of the soils,
while the use of the Richards equation requires a hydrodynamic characterization of the
soil including the characteristic moisture curve and the hydraulic conductivity curve.
This represents more exhaustive characterization work and more time to obtain solutions
in the process of border irrigation, because the equation requires a complex numerical
solution [11].

Our method is therefore a robust and efficient model for the advance phase in soils
with shallow water table, compared to others reported in the literature that use infiltration
equations without a physical basis, such as the Kostiakov (e.g., [21,23]) and Kostiakov–
Lewis equations (e.g., [22,33]).

5. Conclusions

A numerical solution of the Barré de Saint-Venant equations coupled to the analyt-
ical solution of the infiltration for a soil with a shallow water table was implemented to
describe the advance phase of border irrigation. The proposed solution of the model used
a Lagrangian finite-difference scheme for the Barré de Saint-Venant equations, while the
infiltration equation was solved by the bisection method. The model evaluation in the
simulation of the advance phase revealed that the model fits a set of experimental data.

Finally, the solution shown here can be used with excellent results to design and model
surface irrigation, since the infiltration equation used for a soil with a shallow water table
requires only a few characteristic soil parameters (Ks and hf) that are easy to obtain.
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