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Abstract: Litchi downy blight caused by Peronophythora litchii is the most serious disease in litchi
production, storage and transportation. Existing disease identification technology has difficulty
identifying litchi downy blight sufficiently early, resulting in economic losses. Thus, the use of diffuse
reflectance spectroscopy to identify litchi downy blight at different stages of disease, particularly to
achieve the early identification of downy blight, is very important. The diffuse reflectance spectral
data of litchi fruits inoculated with P. litchii were collected in the wavelength range of 350–1350 nm.
According to the duration of inoculation and expert evaluation, they were divided into four categories:
healthy, latent, mild and severe. First, the SG smoothing method and derivation method were used
to denoise the spectral curves. Then, the wavelength screening methods competitive adaptive
reweighted sampling (CARS) and successive projections algorithm (SPA) were compared to verify
that the SPA method was more effective. Eleven characteristic wavelengths were selected, accounting
for only 1.1% of the original data. Finally, the characteristic wavelengths were tested by six different
classification models, and their accuracy was calculated. Among them, the ANN model performed
best, with an accuracy of 90.7%. The results showed that diffuse reflectance spectroscopic technology
has potential for identifying litchi downy blight at different stages, providing technical support for
the subsequent development of related automatic detection devices.

Keywords: litchi downy blight; spectroscopy analysis; SG smoothing; CARS; SPA; classification models

1. Introduction

Litchi (Litchi chinensis Sonn.) is a subtropical evergreen fruit tree. Because of its high
nutrition and delicious taste, this fruit tree has been planted in many places worldwide
and is deeply loved by consumers. In addition, litchi has high economic value and is an
important commercial crop. The annual output value of China’s litchi industry exceeds
four billion US dollars [1]. However, litchi downy blight caused by Peronophythora litchii
seriously threatens the development of the litchi industry and is one of the most serious
and widespread diseases in litchi production, storage and transportation [2]. Litchi downy
blight mainly affects mature or nearly mature litchi fruits. The onset of this disease mostly
starts from the fruit pedicle [3]. At the beginning, irregular brown spots appear on the
fruit surface, and then the spots spread rapidly, causing the whole fruit to turn black and
brown within 2–3 days. As the flesh decays and falls off, the tawny juices flow out, giving
off a sour wine taste. In the middle and late stages of the disease, especially under humid
conditions, white downy mildew is produced on the surface of fruits [4]. Litchi downy
blight is highly infectious and occurs quickly. If prevention and control measures are not
taken in time, this disease can generally cause a 10–30% yield loss or an 80% yield loss in
epidemic years.
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Currently, the identification of litchi downy blight mainly relies on a visual screen
by agricultural experts to manually identify this blight in orchards, or fruit samples are
sent to laboratories for testing using biochemical or molecular methods [5]. The former
method is quite subjective, laborious and inefficient. The latter method is destructive and
highly expensive. In view of the high infectivity and rapid onset of litchi downy blight,
these methods have difficulty identifying an epidemic in actual production, resulting in
further loss. Therefore, advanced sensors combined with computer technology have the
potential to realize the nondestructive, rapid and accurate automatic identification of litchi
downy blight, which can identify an epidemic in orchards and help farmers take measures
to prevent the spread of the epidemic so that the yield loss of litchi is markedly reduced [6].
In addition, reducing pesticide use is vigorously promoted. Automatic identification is of
great significance for the accurate prevention and control of litchi downy blight.

Regarding the identification of crop diseases, many experts and scholars have per-
formed extensive research, including on cucumber downy mildew [7], leek white tip
disease [8], leek white tip disease [9], fusarium head blight of wheat grain [10] and other
typical crop diseases. However, there are few studies on litchi disease identification. In
addition, as leaves are the main organs of plants and are one of the main areas of infectious
diseases [11], most studies have focused on leaf diseases but not fruit diseases. For litchi,
the fruit is the most economically valuable part and the main area on which litchi downy
blight occurs. This paper focused on this fruit disease and explored the identification of
litchi downy blight.

Spectral technology has been proven to be effective in crop disease identification [12].
A large number of studies have shown that when crops are affected by plant diseases,
along with the changes in their external morphology, their spectral characteristics usually
change, which can be monitored by spectral data acquisition [13]. Therefore, crop disease
identification is possible through spectral data analysis. Compared with traditional identi-
fication methods based on visible light images, spectral methods have higher sensitivity.
The visible light imaging method only shows good recognition of the late stage of obvious
disease onset; moreover, it is easily interfered with by light conditions and other factors
when applied under natural conditions [14]. Spectral methods enable the identification of
the early stage of crop disease and classification of different disease stages.

However, spectral data contain a large amount of redundant information, which may
affect the efficiency of the modelling analysis [15]. Therefore, to reduce the interference of
useless information, it is necessary to execute characteristic wavelength screening. This
screening method not only increases the accuracy and stability of the identification model
but is also valuable for practical production applications by reducing costs. Currently,
the common characteristic wavelength screening methods mainly include the competitive
adaptive reweighted sampling (CARS) method and successive projections algorithm (SPA)
method [16]. In this paper, these two screening methods were compared and analysed
using different parameters to determine the optimal screening conditions and methods.

In the application of spectral data to solve practical problems, such as crop disease
identification, classification models are important analytical and processing methods [17].
The processed spectral data corresponding to litchi fruits infected with downy blight of
different severities must be correctly classified to identify litchi downy blight. Therefore,
this paper compared different typical classification models, including decision tree, linear
discriminant analysis (LDA), naive Bayesian classifier, K-nearest neighbor (KNN), support
vector machines (SVMs) and artificial neural networks (ANNs).

In summary, the purpose of this study is to provide a nondestructive litchi downy
blight identification method based on spectral data analysis, which can classify litchi fruits
infected with downy blight at different severities, including healthy, latent, mild and severe
infections. The methodology of this study is as follows (Figure 1):

(1) Through scientific and reliable experiments, the diffuse reflectance spectral dataset of
litchi fruits with different stages of downy blight infection was collected as the basis
for the following research and analysis.
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(2) To simplify the spectral data and make the model more efficient, two different methods
of characteristic wavelength screening, CARS and SPA, were evaluated using different
preprocessing parameters.

(3) Six different classification models were evaluated and tested to realize nondestruc-
tive identification of litchi downy blight at different stages. Then, the model that
performed best was identified through comparisons.
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2. Materials and Methods
2.1. Inoculation and Cultivation of Litchi Downy Blight

The inoculation and cultivation experiment of litchi downy blight was carried out in
the China Litchi and Longan Industry Technology Research System Integrated Laboratory,
College of Engineering, South China Agricultural University, in July 2021. The tested
strain of P. litchii was SHS3, which was stored in the College of Natural Resources and
Environment, South China Agricultural University. The tested litchi fruits were harvested
from the litchi orchard at the Institute of Fruit Tree Research, Guangdong Academy of
Agricultural Science. Before inoculation, the strain was activated in fresh carrot agar
medium, and then, after 5 days of cultivation, a fresh colony of P. litchii was obtained.
Sterilized water (5 mL) was added to the colony and shaken gently to obtain a sporangial
suspension. Meanwhile, the litchi fruits were incubated in the sterile environment of the lab
for over 48 h before the experiment to confirm that they were heathy. Afterwards, healthy
litchi fruits of moderate size were selected, ensuring that their surface was clean and dry,
and placed in a crisper box. Then, 0.05 mL of sporangium suspension was drip-inoculated
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using a pipettor onto the epidermal centre of each litchi fruit. The inoculated fruits were
placed in an incubator at 25 ◦C for moisturizing cultivation. The specific processes of the
inoculation and cultivation experiment are shown in Figure 2.
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All litchi samples were ensured to be healthy before inoculation, and litchi downy
blight was inoculated and cultivated using scientific procedures. Thus, all subsequent
changes in litchi samples were due to litchi downy blight, including color changes, disease
spots, white downy mildew and some other surface properties.

2.2. Spectral Data Acquisition

Spectral data acquisition of litchi downy blight was conducted in July 2021 in the outdoor
space of South China Agricultural University. Spectral data, ranging from 350–1350 nm,
of litchi fruits inoculated with P. litchii were collected by an ASD Field Spec 3 Portable
Spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA). The instrument is
sensitive to visible and near-infrared light, has a spectral sampling interval of 1.377 nm and
has a spectral resolution of 3 nm at 700 nm [18]. During data acquisition, an optical fibre
probe with a 25◦ field of view was equipped and placed 2 cm vertically above the litchi
sample to be measured. In particular, we ensured that there were no other miscellaneous
objects in the field of view of the probe and that the amount of sunlight was sufficient.
Three spectral data curves were collected for each litchi sample. The process of spectral
data acquisition is shown in Figure 3. The first spectral data acquisition was carried
out before inoculation; thereafter, spectral data were acquired every 24 h. Moreover,
litchi samples were continuously observed, especially the progression of symptoms and
growth of white downy mildew, until the litchi samples were severely infected, at which
time the last spectral data were acquired. Finally, a total of 7 spectral data acquisitions
were accomplished.

2.3. Disease Stages of Downy Blight

The disease stages of litchi downy blight were divided into 4 categories: healthy, latent,
mild and severe. Before the experiment, all litchi samples were observed for 36 h to ensure
healthy conditions. The latent category was defined as the period between inoculation with
P. litchii and the first appearance of prominent lesion spots. As shown in Figure 4, the mild
category refers to visible brown lesion spots on the surface of litchi fruit accounting for
10–30% of the surface area. The severe category refers to the surface of litchi fruit being
totally browned and covered with white downy mildew.
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Figure 4. Images of litchi fruit at different disease stages: (a) healthy, (b) latent, (c) mild and (d) severe.

Principally, the division of different disease stages was based on the duration of
inoculation of P. litchii; however, due to experimental error and individual differences
between litchi fruit samples, the actual disease progression of each sample was slightly
different. Therefore, to improve the quality of the data, agricultural experts were also
invited to evaluate the stages of individual litchi samples through images to calibrate
the division results. Samples whose disease stage was difficult to accurately define were
discarded. Finally, a total of 609 data points were obtained and are shown in Table 1.

Table 1. Distribution of the dataset.

Healthy Latent Mild Severe Total

121 186 109 193 609

2.4. Spectral Data Preprocessing

The original spectral data not only contained the characteristic spectrum of the tested
litchi sample but also contained noise data such as high-frequency random noise and
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baseline drift. Moreover, they are also affected by the physical properties of the samples,
such as viscosity, particle size, surface texture and density. Therefore, before using spectral
data for sample attribute analysis, pretreatment should be carried out first to achieve noise
reduction and reduce the interference of other influencing factors.

2.4.1. Savitzky–Golay Smoothing

The Savitzky–Golay (SG) smoothing method is a widely used spectral denoising
method. Compared with traditional methods, such as moving average smoothing, this
method emphasizes the central role of the centre point. The principle of SG smoothing
is to set a smoothing frame in advance, use the weighted average method to carry out
polynomial least square fitting to the data in the moving frame, and then use the convolution
calculation method to move the frame backwards to complete the smoothing processing of
all data [19].

The smoothing effect varies with the size of the smoothing frame. The larger the frame
size is, the more significant the smoothing effect but the greater the possibility of losing
useful information. In this study, different smoothing frame sizes ranging from 31–51 and
different polynomial orders ranging from 2–4 were tested.

2.4.2. Derivation

The derivative method can be used to eliminate the influence of baseline drift or
gentle background, which is beneficial to improve the resolution and sensitivity of spectral
data. However, if the signal-to-noise ratio (SNR) of the original spectral data is not high
enough, the derivation will further amplify the noise signal and adversely affect the analysis.
Therefore, the derivative method was combined with the SG smoothing method. The SG
smoothing method is a polynomial fitting, and the weighted average expression of the
frame centre required by the derivation of the polynomial can be obtained. The derivative
coefficient can be obtained by least square calculation. The specific calculation method is
as follows

xi′ =
1
A∑ m

j=−mwjxi+j, i =1, ..., n− 2m (1)

where the smoothing frame size is 2 m + 1, A is the normalization constant, xi′ is the
smoothing data of spectral data xi, wj is the corresponding derivative coefficient, and
wj is determined after the frame size is determined. The purpose of multiplying each
measured value by the derivative coefficient wj is to minimize the effect of smoothing on
the useful information, and wj is obtained by polynomial fitting based on the least square
principle. The smoothing effect varies with the differentiation order. In this study, different
differentiation orders ranging from 0–2 were tested. After smoothing, the spectral data
will lose m wavelengths at both ends, and the remaining wavelengths correspond to each
original data point. Therefore, smoothing will not affect the feasibility of the following
further analysis in practical applications.

2.5. Characteristic Wavelength Screening
2.5.1. Competitive Adaptive Reweighted Sampling

CARS is a characteristic wavelength screening method combining Monte Carlo sam-
pling and the regression coefficient of the PLS model, imitating the principle of “survival
of the fittest” in Darwinian evolution theory [20]. In the CARS algorithm, points with
a large absolute weight of the regression coefficient in the PLS model were reserved as
new subsets through adaptive weighted sampling (ARS) each time, and points with small
weights were removed. Then, the PLS model was established based on the new subsets.
After several calculations, the wavelengths in the subset of the minimum root mean square
error (RMSECV) of the PLS model were selected as the characteristic wavelengths.
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2.5.2. Successive Projections Algorithm

SPA is a forward selection variable method of characteristic wavelength screening. By
using projection analysis of vectors, the wavelength is projected onto other wavelengths,
and the size of the projections is compared [21]. The wavelength with the largest projec-
tion vector is selected as the wavelength to be selected, and then the final characteristic
wavelengths are selected based on the correction model. SPA selects the combination of
variables with the least redundant information and the least collinearity. The main steps of
the algorithm are as follows.

The initial iteration vector is denoted as xk(0), the number of variables to be extracted
is N and the number of columns of the spectral matrix is J. Any one column in the optional
spectral matrix is denoted as column j, and we assign column j of the modelling set to xj,
denoted as xk(0).

The set of unselected column vector positions was denoted as s

s = {j, 1 ≤ j ≤ J, j /∈ {k(0), ..., k(n− 1)}} (2)

The projection of xj to the remaining column vectors was calculated separately Pxj

Pxj = xj −
(

xT
j xk(n−1)

)
xk(n−1)

(
xT

k(n−1)xk(n−1)

)−1
, j ∈ s (3)

The spectral wavelength of the largest projected vector was extracted

k(n) = arg
(

max
(
‖Pxj‖

)
, j ∈ s

)
(4)

To make xj = Pxj , j ∈ s, when n ≤ N, the rule n = n + 1 was applied, and then loop
calculations were performed.

Finally, the extracted variables were
{

xk(n) = 0, ..., N − 1
}

, corresponding to k(0) and
N in each cycle. Multivariable linear regression (MLR) models were built separately, and the
root mean squared error (RMSE) for the interactive validation of the model was obtained.
For different candidate characteristic subsets, the values of k(0) and N corresponding to
the smallest RMSE value were the optimal values.

2.6. Classification Models

To correctly evaluate the spectral data corresponding to different disease stages of
litchi downy blight, the problem was approached as a classification problem. When a group
of litchi spectral data is obtained, the model can automatically determine which data point
is healthy, latent, mild or severe to complete the identification of the disease stages of litchi
downy blight. There are many classification models that can achieve such tasks, such as
decision trees, LDA, naive Bayesian classifiers, KNN, SVMs and ANNs.

The decision tree algorithm [22] uses a tree structure and layer reasoning to achieve
the final classification. The amount of calculation is relatively small, and it is easy to convert
into classification rules. In this study, the split criterion was set as gin’s diversity index, and
the maximum number of splits was 20.

LDA [23] finds the optimal projection direction, projects the points in the high-
dimensional space to the low-dimensional space, and then reclassifies the low-dimensional
space. Generally, for linearly separable samples, LDA makes the samples remain linearly
separable after dimensionality reduction through a projection direction, the distance be-
tween samples of different categories is as far as possible, and the same sample is as
concentrated as possible.

The idea of the naive Bayesian classifier [24] is to treat the spectral characteristic vector
of the classified sample, calculate the probability of each category under the condition of
the spectral characteristic vector, and consider the sample to be classified as the category
with the highest probability. In this study, the numeric predictors are set as the kernel, and
the kernel type is set as Gaussian.
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KNN [25] is a nonparametric method, the idea of which is that if most of the samples
have similar K values in the feature space (that is, the closest neighbors in the feature space)
belong to a certain category, the sample also belongs to this category. In this study, the
distance metric was set as a cosine, and the number of neighbors was 10.

The basic idea of SVMs [26] is to construct an optimal decision hyperplane in the
feature space, which maximizes the distance between the hyperplane and the nearest
samples of different classes. SVMs are suitable for solving the problem of high-dimensional
classification of small samples. In this study, the kernel function of the SVM was set
as quadratic.

ANNs are designed based on the research results of biological neural networks and are
systems composed of many simple processing units working in parallel. The ANN function
depends on the structure of the network, the connection strength and the processing mode
of each unit. ANNs have great potential in information processing. In this study, the type
of ANN was a wide neural network, and the number of fully connected layers was one,
with a layer size of 100. The activation function was ReLU, the iteration limit was 1000, and
the regularization strength (lambda) was 0.

In summary, the classification models were used to identify the spectral data of
litchi downy blight at different disease stages. In this study, both the original full-band
spectral data and the selected characteristic wavelength data were tested, and their accuracy
calculated and compared.

All of the analytical procedures used in this study were performed with algorithms
developed in MATLAB vR2021a software; specifically, the classification models were
analysed using the Statistics and Machine Learning Toolbox (Version 12.1).

3. Results
3.1. Spectral Data Characteristics of Litchi Downy Blight

The pathogenic process of litchi downy blight developed rapidly after inoculation
with P. litchii, and it only took 5 days to achieve the severe stage. The figures show the
original spectral data corresponding to samples at different disease stages of litchi downy
blight. Overall, the trend of the spectral curves was basically consistent, indicating that
the experiment is reliable. The characteristics of spectral curves corresponding to different
disease stages were significantly different, especially in the range of 400–950 nm, which
covers visible and near-infrared light (Figure 5). Therefore, it is feasible to distinguish
different disease stages of litchi downy blight through spectral data.

Litchi fruits of the healthy category of downy blight had abundant spectral reflection
in the visible light range, showing a reflection peak at approximately 660 nm, reflecting the
red color characteristic of litchi fruits and forming a platform characteristic at 750–930 nm
(Figure 5a).

During the latent category of downy blight, the litchi fruit surface began to show
slight browning, which was difficult to detect by visual observation. The spectral curve of
litchi fruit in the range of 600–930 nm was smoother than that of healthy fruit, showing
an upwards convex curve in general, especially the small wave valley at 685 nm, which
decreased or even disappeared (Figure 5b).

When the mild category of downy blight was present, there were obvious dark brown
spots on the surface of litchi fruits, with white downy mildew present around the spot area.
The reflectance of the spectral curve in the range of 600–930 nm was lower than that of the
latent category, and the slope was close to 1 (Figure 5c).

The surface of litchi fruit of the severe category of downy blight was completely brown
and covered with a thick layer of white downy mildew. The reflectance of the spectral curve
decreased further in the range of 700–930 nm but increased in the range of visible light,
which was inferred to be related to the significant change in the surface color characteristics
of litchi fruit (Figure 5d).
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In addition, in the near-infrared spectrum range of 950–1350 nm, the spectral data
corresponding to different disease stages of downy blight showed little difference. At
approximately 1150 nm, relatively obvious noise was observed. This noise existed in the
spectral data of all samples and was relatively uniform. Therefore, noise was not considered
to affect the subsequent experimental analysis.

3.2. Result of Spectral Data Preprocessing

The original spectral data without processing have a large number of fluctuations
caused by high-frequency noise, showing a jagged shape on the spectral curve. In addition,
due to the difference in ambient light in different samples and the scattering influence
brought by sample surface granularity, although the equipment was calibrated in time
during the experiment, there was still a certain difference in the amplitude of the spectral
curve (Figure 6a).
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order: 2.

The original spectral data were processed by SG smoothing, the sawtooth on the
spectral curve was reduced, the curve became smoother, and the noise was reduced.
Moreover, the original trend and characteristics of the spectral curves were preserved. In
particular, the noise near 1150 nm was substantially reduced, which sufficiently reflected
the effect of smoothing (Figure 6b).

Additionally, the original spectral data were processed by first and second derivatives
with the SG smoothing method, which greatly reduced the difference in the amplitude of the
spectral curve and made all curves more concentrated. The smoothing process of spectral
data also plays a role in normalization, and the absolute value difference between different
spectral curves can be weakened, while the relative value difference can be prominent.
Among them, the normalization effect of data smoothed by the second derivative was
better than that achieved by the first derivative, and all curves were clustered near each
other, which simplified and stabilized subsequent operations. The positions with large
curve fluctuations reflect the differences of different curves, and these positions are also
more likely to have characteristic wavelengths (Figure 6c,d).

In conclusion, smoothing processing can effectively reduce the impact of noise on
spectral data and helps the subsequent selection of characteristic wavelengths and the
establishment of an analysis model [27]. However, in the process of smoothing, the selection
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of key parameters is also very important, and parameter selection will be further discussed
in the following paragraphs.

3.3. Characteristic Wavelength Sensing Results
3.3.1. Result of Key Parameter Selection

In the experimental process, it was found that when derivations with the SG smoothing
method were used to preprocess spectral data, different key parameters not only had a
direct impact on the shape of the spectral curve but also had a significant impact on
the subsequent results of characteristic wavelength screening. Among them, different
frame sizes, polynomial orders and differentiation orders had a decisive influence on
data smoothing and subsequent characteristic wavelength screening. Thus, orthogonal
experiments were designed for these parameters to optimize the combinations. Through
a certain pretest, three levels of smoothing frame size were selected, 31, 41 and 51; three
levels of polynomial order were selected, 2, 3 and 4; three levels of differentiation order
were selected, 0, 1 and 2. In summary, an orthogonal experiment with three factors and
three levels was designed, with a total of nine groups of experiments. Then, on the basis of
the results of each group of experiments, CARS and SPA were used to select characteristic
wavelengths, and the corresponding number of characteristic wavelengths was obtained,
as shown in Table 2.

Table 2. Orthogonal experiments of parameter combinations in preprocessing and the corresponding
number of characteristic wavelengths obtained using CARS and SPA.

Frame Size Polynomial Order Differentiation Order CARS SPA

1© 31 2 0 146 37
2© 31 3 2 41 21
3© 31 4 1 60 22
4© 41 2 2 36 11
5© 41 3 1 99 26
6© 41 4 0 113 44
7© 51 2 1 68 32
8© 51 3 0 77 25
9© 51 4 2 87 26

It can be seen from the experimental results that the influence of different parameter
combinations on the selection of characteristic wavelengths was significant. Overall, the
results of CARS and SPA showed the same variation trend under different parameter
combinations, but the result of SPA was better than that of CARS in each group. Among
them, the best results all appeared in group 4©, where the smoothing frame size was 41, the
polynomial order was 2, and the differentiation order was 2. CARS selected 36 wavelengths,
and SPA selected 11 wavelengths.

3.3.2. Result of Competitive Adaptive Reweighted Sampling

The process of CARS characteristic wavelength screening was as follows. After re-
peated comparison, Monte Carlo sampling times were set to 50 in this study [28]. As
shown in Figure 7a, with increasing sampling times, the number of selected wavelengths
gradually decreased. As shown in Figure 7b, RMSECV gradually decreased and then
gradually increased after reaching the lowest point. It is generally believed that the decline
in RMSECV reflects the removal of invalid information in spectral data, while the rise
in RMSECV reflects the removal of effective information in spectral data. Therefore, the
lowest RMSECV was selected as the result. The positions marked by solid vertical lines in
Figure 7c represent the regression coefficients of each variable when RMSECV reached the
minimum value. At this time, the sampling ran 27 times, and the number of characteristic
wavelengths selected by CARS was 36.
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3.3.3. Result of Successive Projections Algorithm

The process of applying SPA to characteristic wavelength screening was as follows.
SPA determined the number of characteristic wavelengths based on RMSE. As shown in
Figure 8a, when the number of wavelengths increased from 1 to 11, the RMSE decreased
rapidly and then plateaued after a slight fluctuation. Through experiments, it was found
that RMSE tended to flatten after a rapid decline, and the RMSE changed very little at this
time. If the minimum RMSE point was pursued, the number of characteristic wavelengths
increased to varying degrees. Therefore, a point that was not significantly greater than
the minimum RMSE was selected as the result according to the F test in this study to
optimize the characteristic wavelength screening process [29]. Finally, 11 wavelengths were
selected as characteristic wavelengths, and the specific distribution is shown in Figure 8b.
The characteristic wavelengths were mainly distributed in the visible spectral range of
550–760 nm and the near-infrared spectral range of 1100–1150 nm.

3.3.4. Result of Characteristic Wavelengths

By observing the characteristic wavelength distribution corresponding to the charac-
teristic wavelength selection test results, it was found that the characteristic wavelengths
selected by CARS were relatively scattered, with many consecutive adjacent wavelengths
and more redundancy, which had a relatively poor performance.

The characteristic wavelengths selected by SPA were mainly distributed in the visible
spectral range of 560–760 nm and the near-infrared spectral range of 1100–1150 nm, which
corresponded to the regions with large fluctuations, as shown in Figure 6d, with fewer
numbers and better effects. Therefore, 11 wavelengths selected by SPA in group 4© of
the experiment shown in Table 2 were finally confirmed as characteristic wavelengths for
subsequent analysis [30]. The selected characteristic wavelengths are shown in Table 3.
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Table 3. Characteristic wavelengths.

Method Selected Wavelength (nm)

CARS
426, 549, 550, 637, 638, 639, 689, 707, 708, 727, 728, 739, 740, 746, 806, 811,
812, 817, 831, 832, 833, 834, 902, 903, 984, 997, 1011, 1026, 1075, 1192, 1208,

1224, 1275, 1284, 1292, 1295
SPA 567, 695, 709, 746, 812, 1014, 1106, 1124, 1134, 1145, 1149

3.4. Result of Classification Models

In this study, full-band spectral data and 11 characteristic wavelengths selected by SPA
were tested to compare the effects of different classification models. As shown in Table 4,
70% of all 609 data points were used as training data, and 30% were used as test data.
Considering the small training set, cross-validation was adopted in the training process,
and the number of cross-folds was 15.

Table 4. Partitioning of the training set and test set.

Quantity Percentage

train 426 70%
test 183 30%
total 609 100%

The data of the training set were imported into a decision tree, LDA, a naive Bayesian
classifier, KNN, an SVM and an ANN. After the training, the model was tested with the
test set, and the accuracy of different classification models was calculated. Accuracy P was
calculated as follows, where T represents the total number of samples in the test set and C
represents the number of correctly classified samples in the test set.

P =
C
T
× 100% (5)

Finally, the accuracy of each classification model is shown in Table 5. In general, the
accuracy of the test set reached a good level, which had reference significance for practical
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production practice. Among them, the average accuracy of the test set of full-band spectral
data was 92.1%, and the average accuracy of the test set of 11 characteristic wavelengths
selected by SPA was 85.6%. By selecting characteristic wavelengths, 1001 wavelengths
were replaced by 11 wavelengths, and the number of wavelengths was only 1.1% of the
original. Even if the number of wavelengths was greatly reduced, the accuracy of the
classification model was only reduced by 6.5 percentage points, and the performance of
classification was basically not reduced, which fully embodied the value of preprocessing
with SG smoothing and the SPA algorithm.

Table 5. The accuracy of each classification model.

Model
Full Wavelengths 11 Selected Wavelengths

Validation Test Validation Test

Decision Tree 91.5% 87.4% 92.0% 82.5%
LDA 89.9% 94.5% 88.5% 80.3%

Naive Bayes 90.1% 83.6% 93.0% 86.3%
KNN 91.5% 93.4% 91.8% 84.2%
SVM 99.5% 96.2% 94.8% 89.6%
ANN 99.5% 97.3% 91.8% 90.7%

Specifically, the best classification models were the SVM and ANN. The accuracy of
the test set of the full-band spectral data reached 96.2% and 97.3%, and the accuracy of
the test set of the 11 characteristic wavelengths reached 89.6% and 90.7% for the SVM and
ANN, respectively.

For further analysis of the ANN model, with the highest accuracy of 90.7% in the
test set, 11 characteristic wavelengths were used. Through a confounding matrix, the
accuracy of categories of health, latent, mild and severe were 100%, 85.7%, 72.7% and 100%,
respectively (Figure 9).
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In the classification and recognition of litchi downy blight, the classification model
can recognize and classify health and severe categories well, but it may misidentify the
latent and mild categories to some extent. This result is because both the healthy and severe
categories have distinct and definite characteristics that are relatively easy to accurately
evaluate. However, the latent and mild categories were the transition state in the process
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of change, and the characteristics were relatively obscure, so they were more difficult
to classify.

4. Discussion

According to the results shown above, the nondestructive testing method based on
the spectral analysis proposed in this paper has unique advantages in the detection of litchi
downy blight. On the one hand, compared with the image recognition method based on
visible light images, the spectral method has higher sensitivity and accuracy, enabling the
identification of the early stage of litchi downy blight and classification of different disease
stages. Imaging methods are unable to easily perform this identification and classification.
On the other hand, compared with traditional biochemical or molecular detection methods,
the spectral method is more intelligent and shows potential to achieve the nondestructive
identification of litchi downy blight at different stages.

In the analysis of spectral data in this paper, the SG smoothing method was used
for pretreatment and was found to be effective. Additionally, the noise caused by the
environment, equipment and other factors in the original spectral data can be effectively
reduced. Smoothing and denoising were essential in the processing of spectral data analysis.
Notably, several parameters, such as frame size, polynomial order and differentiation order,
affected the smoothing results. In general, excessive smoothing resulted in the loss of some
information. Therefore, there was a balance to be achieved.

The original spectral data of litchi downy blight collected in this paper cover a wide
range of wavelengths from 350–1350 nm; however, the large amount of spectral data is
unacceptable in practical applications due to the associated cost. Thus, the selection of
characteristic wavelengths is very constructive. CARS and SPA are typical characteristic
wavelength screening methods. In this paper, SPA performed better, as also reported
in other studies [31]. Moreover, our results confirmed that characteristic wavelength
screening can improve the efficiency of the applied model because the quantity of spectral
data significantly reduced.

Of the 11 characteristic wavelengths selected, four belonged to the visible band, which
was distributed in the region of red and yellow light. Visible light is often used for color
evaluation and pigment analysis. With the infection of downy blight, the surface of litchi
gradually changed from red to brown and white, indicating that the spectroscopy analysis
could be used to identify downy blight by obtaining the color and pigment information [32].
The other seven characteristic wavelengths belonged to near-infrared bands, and the
correlation between these wavelengths and litchi downy blight was difficult to determine,
but it was inferred to be related to the following factors. When infected with downy blight,
the epidermis of litchi became softer, stickier, smoother and moister. Furthermore, the
inside of litchi fruit began to rot when severely infected. Theoretically, the NIR spectrum is
sensitive to these changes, which can be beneficial for identifying litchi downy blight.

In this paper, the last and most important step of spectral data analysis was to classify
spectral data with classification models. Studies in many other fields have verified that
classification models have strong analytical ability. In our identification of litchi downy
blight based on spectral data, it was also verified that classification models perform well.
The excellent performance of ANNs, as advanced deep learning tools, was expected.

5. Conclusions

This study was the first to complete the exploration of applying the diffuse reflectance
spectrum data analysis method to the intelligent identification of litchi downy blight and
confirmed that the classification and judgement of different disease stages of litchi downy
blight can be realized by analyzing diffuse reflectance spectrum data with certain methods.
By preparing experimental materials and collecting experimental data, a controlled and
scientific dataset of litchi downy blight was obtained, including the spectral data of different
categories of healthy and latent, mild and severe infection. In data analysis, SG smoothing
and the derivation method were combined to preprocess the original data, and then CARS
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and SPA characteristic wavelength screening methods were compared. The experiment
showed that the SPA method had better performance after optimizing the parameters.
Afterwards, 11 characteristic wavelengths were selected, accounting for only 1.1% of
the original data. Finally, the characteristic wavelengths were imported into different
classification models for training, and their accuracy was tested. Decision tree, LDA, naive
Bayesian classifier, KNN, SVM and ANN methods were compared, and the ANN model
was the best, with an accuracy of 90.7%. The above work laid a theoretical foundation for
diffuse reflectance spectroscopy in the identification of litchi downy blight and provided
a reference for its application in practical production. An improvement in the precise
control of litchi downy blight is beneficial to promote a reduction in chemical use and
improvements in the yield and quality of litchi. Litchi producers obtain greater economic
benefits, litchi consumers obtain more delicious high-quality litchi, and the litchi industry
continues to develop well.
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