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Abstract: The nondestructive discrimination model based on near-infrared is usually established by
detected spectra and chemometric methods. However, the inherent differences between instruments
prevent the model from being used universally, and calibration transfer is often used to solve these
problems. Standard-sample calibration transfer requires additional standard samples to build a math-
ematical mapping between instruments. Thus, standard-free calibration transfer is a research hotspot
in this field. Based on near-infrared spectroscopy (NIRS), the new combined strategy of wavelength
selection and standard-free calibration transfer was proposed to transfer the model between two
portable near-infrared spectrometers. Three transfer learning (TL) algorithms—transferred compo-
nent analysis (TCA), balanced distribution adaptation (BDA), and manifold embedded distribution
alignment (MEDA)—were applied to achieve standard-free calibration transfer. Moreover, this paper
presents a relative error analysis (REA) method to select wavelength. To select the optimal model, the
parameters of accuracy, precision, and recall were examined to evaluate the discriminatory capaci-
ties of each model. The findings show that the MEDA-REA model is capable of higher prediction
accuracy (accuracy = 94.54%) than the other transferring models (TCA, BDA, MEDA, TCA-REA,
and BDA-REA), and it is demonstrated that the new strategy has good transmission performance.
Moreover, REA shows the potential to filter wavebands for calibration transfer and simplify the
transferable model.

Keywords: standard-free calibration transfer; near-infrared spectroscopy; wavelength selection

1. Introduction

At present, China is the global major producer and exporter of apples. To ensure the
quality of exported apples, quality testing is essential, so near-infrared non-destructive
testing technology needs to be adopted [1,2]. There are many Fuji-producing areas in China,
and famous amongst these are Aksu in Xinjiang and Yantai in Shandong, followed by
Shaanxi, Sichuan, etc. Red Fuji from different origins have different tastes and internal
qualities, but as it is usually difficult to distinguish them based on external morphology,
there is a tendency for defective products to be substituted for the quality products. Near-
infrared spectroscopy (NIRS) is a commonly used technique to determine the origin [3],
variety [4], and optimum harvest time [5] for agricultural products, etc.

However, NIRS has the limitation of “one model for one instrument”, even if these
instruments are of the same type. Inherent differences between spectrometers are the
main cause of this limitation, such as differences in the durability of hardware, as well as
differences in illumination intensities, in the instruments’ environments, and in temperature
or humidity [6,7]. Therefore, an instrument can be used in a new environment only by
calibrating the model, and this process is called calibration transfer [8].

Generally, calibration transfer methods are split into two categories: standard-sample
calibration transfer and standard-free calibration transfer. Standard-sample calibration
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transfer is a mathematical method according to which the adaptability of the near-infrared
model is improved by computing the mathematical relationship between the spectrum
collected by the source and the target instruments [9]. There are commonly used methods of
standard-sample calibration transfer, such as the slope/bias (S/B) algorithm [10], Shenk’s
algorithm [11], the slope/bias correction (SBC) algorithm [12], the direct standardization
(DS) algorithm [13], the piece-wise direct standardization (PDS) algorithm [14], the transfer
by orthogonal projection (TOP) algorithm [15], the spectral space transformation (SST)
algorithm [16], the canonical correlation analysis (CCA) algorithm [17], and the extreme
learning machine auto-encoder (TAEM) method [18], etc. Dong et al. [19] studied the
calibration transfer between near-infrared models of White Leghorn eggs and Bantam
eggs by DS and SBC algorithms, respectively; the best prediction results for albumen
pH with an Rp of 0.908 and an RMSEP of 0.133 was obtained by Poerio et al. [9], who
demonstrated the effectiveness of TOP in the field of calibration transfer of NIRS, and
showed a significant correction effect in the apparent baseline by testing on three near-
infrared data sets. Li et al. [20] studied three calibration transfer methods (PDS, SST, and
CCA) between two developed portable Vis/NIR devices to establish a robust model to
predict the soluble solids content (SSC) of apples. The results indicated that the PDS method
had the best calibration performance (Rp = 0.926, RMSEP = 0.778).

Even though standard-sample calibration transfer can realize an excellent correction
effect with the model, additional standard samples are still needed in the transfer process,
which is the method’s major flaw. The rapid growth of standard-free calibration transfer is
a response to this defect [21]. For this method, standard samples are not needed; instead,
waveband screening, spectral signal pre-processing, or other patterns are used to calibrate
the deviation between instruments. For example, Zhang et al. [22] and Zheng et al. [23]
developed the stability competitive adaptive reweighted sampling (SCARS) algorithm
and the double competitive adaptive reweighted sampling (Double CARS) algorithm,
respectively—two algorithms that belong to standard-free calibration transfer and which
have been found to have a good correction performance. The screening wavelengths with
consistent and stable signals (SWCSS) method proposed by Zhang et al. [24] could transfer
a model between instruments, and the study in which the calibrated model was predicted
with Rp = 0.959 and RMSEP = 0.236 achieved a better prediction than before. Xu et al. [25]
developed the correlation analysis-based wavelength selection (CAWS) method, which
takes a Pearson correlation coefficient as the screening condition, and the transferred model
obtained the lowest RMSEP (0.069). In recent years, same transfer learning (TL) algorithms,
such as TrAdaBoost [26], transfer component analysis (TCA) [27], and easy transfer learning
(EasyTL) [28], were led into the standard-free calibration transfer field. Yu et al. [29] used
the TrAdaBoost to simulate verification of ten datasets (fuels and foods) from different
instruments, and the prediction accuracy of the cetane number of the fuels with R2

p = 0.993
and RMSEP = 0.438 was significantly improved. Mishra et al. [30] compared dynamic
orthogonalization projection (DOP) with TCA in the study of prediction model of fruit’s
interior quality, and the experimental results showed that the number of latent variables
of TCA was lower, indicating that TCA could achieve the underlying subspaces more
efficiently than DOP. Zhao et al. [31] used EasyTL to realize calibration transfer from a
desktop HSI system to a near-infrared portable spectrometer, and the accuracy of the
discrimination model of pollution degree in soil was 69%.

Introducing a TL algorithm into the calibration transfer field is a current research
hotspot [21]. Wang et al. successively developed two new TL algorithms named mani-
fold balanced distribution adaptation (BDA) [32] and embedded distribution alignment
(MEDA) [33]. The problem of quantitatively estimating the marginal distribution and
conditional distribution in TL can be systematically solved by MEDA. The BDA is used to
deal with the issue of class imbalance in the TL field and to add weights to each category. To
date, the application of MEDA and BDA in the calibration transfer field has not been investi-
gated. Therefore, this research implemented calibration transfer between two near-infrared
portable spectrometers, and three TL methods (MEDA, TCA, and BDA) were applied
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to calibrate a discrimination model for determining the origin of apples (Aksu Xinjiang,
Yantai Shandong, Panzhihua Sichuan, Luochuan Shaanxi) in this work. The wavelength
selection process is often lacking in the calibration transfer process because the traditional
wavelength selection algorithms are not suitable for the calibration transfer process [34].
Thus, this paper proposed a new wavelength selection method (relative error analysis,
REA) for the calibration transfer process. This method was used in combination with TCA,
BDA, and MEDA algorithms, respectively, to achieve the calibration of the model.

2. Materials and Methods
2.1. Samples and Pretreatment

Apple samples (Red Fuji) were collected from four regions of China, denoted as
Fuji-1, Fuji-2, Fuji-3, and Fuji-4, and stored in a preservation box at 5 ◦C. The sampling
sites were located in the area of Aksu city (80◦15′54′′ E, 41◦10′15′′ N), Panzhihua city
(101◦42′58′′ E, 26◦34′50′′ N), Luochuan county (109◦25′58′′ E, 35◦45′39′′ N), and Yantai city
(121◦23′29′′ E, 37◦32′21′′ N), respectively. Altogether, 949 samples were selected with a
uniform shape (280 samples of Fuji-1, 244 of Fuji-2, 225 of Fuji-3, and 200 of Fuji-4), a single
fruit weight of 200 ± 10 g, and intact epidermis. Four circle marks were uniformly made at
the equatorial region of each sample. To avoid temperature effects, all samples were placed
in the laboratory for 0.5 h at an ambient temperature of 21–23 ◦C before spectra acquisition.
Four Fuji samples are represented in Figure 1.
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Figure 1. Fuji apples from four regions.

2.2. Spectra Acquisition

The spectra of the samples were acquired using two F750 handheld near-infrared
spectrometers (Felix Instruments, R&D and manufacturing: Camas, WA, USA; Agent:
Zhejiang tuopuyunnong Technology Co., Ltd., Zhejiang, China), with a 32 W halogen light
and a near-infrared spectrometer module mounted in each device (MMS1, Zeiss, Jena,
Germany, 729−975 nm and a resolution of 3 nm). The source instrument was marked as
S1 and the target instrument was marked as S2. The physical map of the experimental
device is shown in Figure 2a. Each measured spectrum includes 83 wavelength points. For
the collection of spectra, the sample’s mark was put on the equipment’s detection port
before pressing the acquisition button. The spectrometer automatically scanned seven
times and took the average as the output spectrum. Four spectra were obtained for each
sample, and their average was taken as the final spectrum signal of the sample. The average
spectra of four kinds of apples are shown in Figure 2b. Although most of the average
spectral bands of these four kinds overlap, there are apparent differences in absorbance
at 740 nm (Figure 2b-A), 932 nm (Figure 2b-B), and 963 nm (Figure 2b-C) that have been
found from the figure. To reflect the standard deviation of each waveband, Figure 2c draws
the standard deviation curve of the average spectrum of four types of samples, and this
figure corresponds to the wavebands of the four average spectra in Figure 2b. It can be
seen that all the standard deviations of the marked bands in Figure 2b are relatively large
in Figure 2c. This means that these wavelengths with deviations can be used to identify the
origin of apples.



Agriculture 2022, 12, 366 4 of 13

Agriculture 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 

large in Figure 2c. This means that these wavelengths with deviations can be used to iden-

tify the origin of apples.  

 

 

Figure 2. Spectral acquisition of Fuji apples. (a) Experimental instrument. (b) Averaged NIR absorb-

ance spectrum of apples acquired from S1. (c) Standard deviation of average spectra of four catego-

ries of Fuji apples. 

Figure 2. Spectral acquisition of Fuji apples. (a) Experimental instrument. (b) Averaged NIR
absorbance spectrum of apples acquired from S1. (c) Standard deviation of average spectra of four
categories of Fuji apples.



Agriculture 2022, 12, 366 5 of 13

2.3. Division Training Set and Testing Set

The joint x–y distance (SPXY) algorithm was used to divide the training and testing
sets in this study. It is developed based on the Kennard–Stone (KS) algorithm. The x and y
variables are taken into account by SPXY when calculating the Euclidean metric between
samples [35]. In this work, 238 samples as a testing set and 711 samples as a training set
were selected by SPXY in a ratio of 3:1.

2.4. Relative Error Analysis

The REA method was first proposed for application in standard-sample calibration
transfer [34]. However, this study required REA to combine with the standard-free cali-
bration transfer method. Therefore, a slight alteration to the former made REA available
for standard-free calibration transfer. Figure 3 shows the wavelength selection process of
improved REA for standard-free calibration transfer.
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Figure 3. The flowchart of REA’s operating principle.

Firstly, the average spectra of source training and target testing spectra are calculated
and denoted as Xs and Xt, respectively. Secondly, the mean absolute error (MAE) between
Xs and Xt is computed using Equation (1), where j is the number of spectral wavelength
points, Xsj is the average source spectrum at the j-th wavelength point, and Xtj is the aver-
age target spectrum at the jth wavelength point. The MAE value of each wavelength point
has been substituted into Equation (2) to calculate the mean relative error (MRE).

MAEj = Xsj − Xtj (1)

MREj =

∣∣∣∣∣MAEj

Xsj
× 100%

∣∣∣∣∣ (2)

Finally, wavebands are sorted according to the MRE value, and these wavebands
are removed, largest to smallest. When one waveband is eliminated, the accuracy of the
built model by remaining bands is calculated one time until all wavebands are rejected.
Then, setting the maximum accuracy as the objective to be searched, the optimal set of
wavelength points for the full spectrum is derived.

2.5. Model Construction, Model Evaluation, and Software

In terms of multivariate modeling methods, the traditional supporting vector machine
(SVM) algorithm can be extensively used for building a near-infrared discrimination model.
Therefore, SVM was employed as a fundamental modeling algorithm in this research. To
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select a robust model and obtain the best prediction result, the application of evaluation
indexes is indispensable. These evaluation indexes were accuracy (Equation (3)), precision
(Equation (4)), and recall (Equation (5)), which can be calculated from the confusion matrix
(Figure 4):

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false
positives, and false negatives, respectively (Figure 4). Accuracy is the proportion of correctly
classified samples relative to the total number. Although accuracy is commonly used, it
cannot satisfy all the demands of the assignment. Hence, precision and recall are introduced
to evaluate the model comprehensively. Precision and recall are contradictory. Generally,
the recall rate is often low when the precision rate is high [36]. The reasonable way to judge
a model’s performance is to consider the extent to which the “double high” of precision
and recall is achieved [37].
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3. Results
3.1. Traditional Discrimination Model before Calibration
3.1.1. SVM Model Constructed for S1

The SVM model was established based on 711 training samples and 238 testing samples
to examine its predictive performance. All of these spectral signals are measured by S1.
The confusion matrix in Figure 5a shows the prediction result of the discrimination model,
and its accuracy can reach 96.22%. Recall can intuitively reflect the probability of being
detected in a particular class, while precision can intuitively reflect the correctness of a
detected class. The precision and recall for the testing samples from four habitats have been
illustrated in Figure 5b. These precision and recall values are comparatively high, and the
SVM model has optimal predictive performance for Fuji-4.

3.1.2. Transfer the SVM Model from S1 to S2

However, the discrimination model constructed by S1 cannot be directly applied to
another spectrometer, even if they are of the same type. This is a common deficiency among
portable spectrometers. The data in Figure 6a support this conclusion. When the model
established by S1 is transferred to S2, the accuracy decreases from 96.22% to 84.45%. In
particular, the model’s predictive performance for Fuji-3 declined sharply. Many Fuji-3
samples are misclassified as Fuji-1 or Fuji-2. This phenomenon can also be observed in
Figure 6b, in which it can be seen that precision for Fuji-1 dipped from 92.41% to 79.31%,
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while precision for Fuji-2 fell from 95% to 68.42%. Therefore, to avoid generating additional
human and material resource costs by rebuilding the model, it is essential to calibrate the
model established by S1 to enhance its universality and make it applicable to S2.
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3.2. Calibration Transfer from S1 to S2

This study mainly used three TL methods for standard-free calibration transfer: TCA,
BDA, and MEDA. TCA is a relatively primitive TL method. It has been applied to the
calibration of the near-infrared model and proved its good performance. BDA and MEDA
algorithms are extended and evolved based on TCA, and they have not been used in this
field. This research compared them with TCA to explore their calibration performance to
find a more suitable TL algorithm. Figure 7 shows the confusion matrix of the prediction
results of the calibrated models. The data analysis spotted that although TCA has a certain
degree of optimization effect on the model (accuracy = 86.13%) and the model’s predictive
performance for Fuji-3 has been improved, it is not as good as BDA and MEDA. MEDA
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has the best calibration performance for the transferred model, and the model’s accuracy
can reach 92.02%. The main finding in analyzing these confusion matrixes is that the
misjudgment rate for Fuji-3 is significantly reduced (Figure 7c).
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Table 1 presents the precision and recall of each class to comprehensively analyze the
performance of the optimized model by three TL algorithms. According to forecasted re-
sults, there is a large difference between recall and precision before calibration. Researchers
have designed performance metrics in machine learning territory to consider precision
and recall synthetically. The Break-Even Point (BEP) [38] is such a metric, which is the
value when precision is equal to recall. When a class’s precision and recall are closer to
the BEP, the model has good predictive performance for this class. These data in Table 1
indicate that each class’s recall and precision with the MEDA model are close to the BEP,
not only recall and precision for Fuji-3 (recall = 83.72%; precision = 85.71%) but others also.
However, although MEDA has obtained better results than TCA and BDA, there is still
some gap between the accuracy of the calibrated model (92.02%) and the accuracy of the
original model (96.22%), so there is room for improvement of the transfer model.

Table 1. Prediction results of these models. Bold figures represent the best results.

Training Set/
Testing Set

Calibration
Transfer

Accuracy
Fuji-1 Fuji-2 Fuji-3 Fuji-4

Recall Precision Recall Precision Recall Precision Recall Precision

S1/S1 None 0.9622 0.9865 0.9241 0.8837 0.95 0.9767 0.9767 0.9744 1

S1/S2

None 0.8445 0.9324 0.7931 0.9070 0.6842 0.3721 1 0.9872 0.9872
TCA 0.8613 0.9189 0.7556 0.7674 0.7857 0.6512 0.9333 0.9744 1
BDA 0.8739 0.8784 0.7927 0.8837 0.9048 0.6279 0.8438 1 0.9512

MEDA 0.9202 0.9324 0.8734 0.8605 0.9250 0.8372 0.8571 0.9872 1

3.3. Visualization of Wavelength Selection Process
3.3.1. Determining the Optimal Wavelength Combinations

To intuitively present the difference in spectra collected by S1 and S2, respectively,
the MRE curve of each waveband is drawn in Figure 8a. The boxes with dashed borders
superimposed on the curves in the figure represent the deviations of the wavebands
corresponding to these curves, which are relatively large. The REA algorithm eliminates
the wavebands with a large difference according to the MRE value of the wavelength, so it
is requisite to determine the most appropriate filtration range. Figure 8b represents this
process. In the iterative process of REA, wavebands were sorted according to the MRE value
and these wavebands were removed, largest to smallest. Whenever one waveband was
eliminated, the model’s accuracy established by the remaining wavebands was calculated
to find the optimal waveband set based on the accuracy. For example, the red curve in
Figure 8b represents the MEDA-REA model’s iterative process, and the model’s accuracy
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varies with the number of remaining wavelengths. The starred position is the optimal
wavelength combination. The number of wavebands corresponding to this position is 77
(the total number of wavebands is 83). This means that when the previous 6 wavebands
with large MRE values are removed, the model has achieved optimal performance, and is
constructed using the surplus 77 wavebands for the MEDA algorithm.
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3.3.2. Prediction Results of the Optimized Model

Figure 9 shows the confusion matrices of TCA-REA, BDA-REA, and MEDA-REA.
These prediction results indicate that the MEDA model’s accuracy is improved from 92.02%
to 94.54% by REA, and the advantage of this model’s low misjudgment rate for each class
is maintained. Nevertheless, REA represents the most obvious amelioration of the BDA
algorithm; the misjudgment rate of BDA for Fuji-2 and Fuji-3 is reduced and the accuracy
is pushed up to 91.60% (an increase of 4.21%). REA has the most negligible influence on
the TCA model, its accuracy is only raised by 1.26%, and the high misjudgment rate of the
model for Fuji-3 has not been improved.
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According to Table 2, REA has made the most apparent improvement to the BDA
model, screening 81 wavebands, while 77 wavebands were selected by the MEDA-REA
method, and 68 wavebands were selected by the TCA-REA method. Nevertheless, the
predictive performance levels of the TCA-REA and BDA-REA models for Fuji-3 are still on
the low side. Therefore, by comprehensively analyzing the accuracy, precision, and recall
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of each model, the combined strategy of MEDA and REA is the best, effectively improving
and simplifying the discrimination performance of the model.

Table 2. Prediction results of these models. Bold figures represent the best results.

Calibration
Transfer

Spectral
Variables

Accuracy
Fuji-1 Fuji-2 Fuji-3 Fuji-4

Recall Precision Recall Precision Recall Precision Recall Precision

TCA-REA 68 0.8739 0.9189 0.8095 0.9302 0.8333 0.5581 0.8571 0.9744 0.9744
BDA-REA 81 0.9160 0.9459 0.9091 0.9535 0.8039 06744 1 1 0.9630

MEDA-REA 77 0.9454 0.9324 0.9583 0.9302 0.8889 0.9070 0.8864 0.9872 1

4. Discussion

The application of multivariate chemometric models is usually limited by devices.
Even slight variations in detection environment, spectral platform, or sample state may
lead to deviations in the prediction results and make the model no longer applicable [37].
The model’s predictive accuracy decreased from 96.22% to 84.45% when S1 established the
discrimination model applied to the testing data gathered by S2 (Figures 5 and 6).

TCA, BDA, and MEDA are used to realize standard-free calibration transfer. The
data in Figure 7 has proved that the transfer performance and generality of the model
can effectively be improved by these algorithms. Through a comparison of these models’
accuracy, it is found that the performance of TCA is inferior to BDA and MEDA. The
major reason for this phenomenon is that the distance between the source domain and
the target domain data set can be minimized by TCA. However, the difference of edge
distribution between the source domain and the target domain has not been considered,
and the performance of tasks on unbalanced data sets is limited [27,32]. The central reason
for the predominance of MEDA is that the manifold feature transformation is used to
reduce the data drift between domains [33]. Therefore, the deviation of spectral signals
caused by the inherent differences between instruments can be effectively reduced.

To verify REA’s availability, three calibration transfer methods (TCA, BDA, and MEDA)
are combined with REA, respectively. However, during the MEDA-REA iteration process,
when the number of wavebands is less than 44, an error warning appears in the running
code: this concatenation operation contains an empty array with the incorrect number of
columns. Therefore, the red curve in Figure 8b disappears at x ≤ 44. This error is caused
by the empty array which appears when the MEDA computes the geodesic flow kernel.
This means that the MEDA algorithm cannot effectively build a model with less than 44
variables in the study.

The strategy of combining REA with calibration transfer methods can improve the
model’s predictive performance, eliminate redundant variables, and simplify the model
(Figure 9). However, by analyzing Figure 8b, it can be seen that if eliminating too many
information variables will obtain a worse model and the number of removed variables is
insufficient, the highest accuracy also cannot be achieved [39] Therefore, the REA iterative
process is required to explore optimal combinations of wavelengths. Nevertheless, most
wavebands are still retained after wavelength selection (Table 2). The primary reason is
that the two portable instruments used in this study have the same type and measure-
ment environment, so there are relatively fewer significant deviations in the wavebands.
Li et al. [13] used the REA algorithm for calibration transfer between two instruments
with the same model and two instruments with different models, respectively. The re-
search results demonstrated that when REA was applied for wavelength selection between
spectrometers with different models, more wavebands were eliminated (22.98% of wave-
bands had been removed), and when REA was used for waveband screening between
spectrometers with the same model, only 2.99% of the wavebands were filtered.

In recent years, there has been increasing study of calibration transfer, and researchers
want to achieve better transfer performances than can be obtained with traditional al-
gorithms [40,41]. Previous studies of the calibration transfer method mainly focused on
calibrating spectral signals, and there has been no special treatment of wavelength selection
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for the calibration transfer process. However, reasonable waveband screening plays a
significant role in improving a model’s versatility. Moreover, spectral response can change
with various detection conditions and the wavebands determined during modeling may
not be suitable for the new conditions, so the selected wavelengths for the source domain
have required adjustment according to the target domain. This experiment proves that
the strategy of combining wavelength selection with standard-free calibration transfer is
feasible and that it can be used as part of a new direction for further of study calibration
transfer methods in the future.

5. Conclusions

For the discrimination of the origin of Fuji apples, a combined strategy of wavelength
selection and the TL algorithm was developed to realize standard-free calibration transfer
between two near-infrared portable spectrophotometers. To unravel the issue of standard-
free calibration transfer, this study combined REA with three TL algorithms (TCA, BDA,
and MEDA), and seven calibration transfer models (SVM, TCA, BDA, MEDA, TCA-REA,
BDA-REA, and MEDA-REA) were constructed for comparison. The results showed the
discrimination performance of the MEDA-REA model to have the highest accuracy. The
REA method efficiently demonstrates that it can eliminate wavebands with significant
deviations and the transmission ability of the model is thereby improved. The REA method
makes it possible to select the optimal wavelength combinations during the transference
model step, which means that the model can be simplified and the working efficiency
raised. The overall results indicate that the combined strategy of wavelength selection
and the TL method can provide an available and low-cost approach to decrease modeling
investment. Furthermore, more waveband screening methods for calibration transfer
should be explored to simplify the transference model.
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