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Abstract: To build a more accurate motor efficiency model with a strong generalization ability in
order to evaluate and improve the efficiency characteristics of electric vehicles, this paper researches
motor efficiency modeling based on the bench tests of two motor efficiencies with differently rated
powers. This paper compares and analyzes three motor efficiency modeling methods and finds
that, when the measured values in motor efficiency tests are insufficient, the bilinear interpolation
method and radial basis kernel function neural networks have poor generalization abilities in full
working conditions, and the precision of polynomial regression is limited. On this basis, this paper
proposes a new modeling method combining correlation analysis, polynomial regression, and an
improved simulated annealing (I-SA) algorithm. Using the mean and the standard deviation of
the mean absolute percentage error of the 5-fold Cross Validation (CV) of 100 random tests as the
evaluation indices of the precision of the motor efficiency model, and based on the motor efficiency
models with verified precision, this paper makes a comparative analysis on the full vehicle efficiency
of electric tractors of three types of drive in five working conditions. Research results show that the
proposed novel method has a high modeling precision of motor efficiency; tractors with a dual motor
coupling drive system have optimal economic performance.

Keywords: electric tractor; motor efficiency; dual motor coupling drive; I-SA algorithm; generalization
ability; parameter identification

1. Introduction

Electric vehicles use a motor as the core power source [1,2] and electric energy as
the driving energy [3]. This is not only convenient for recycling energy, but it can also
achieve low emissions or even zero emissions [4–6]. In addition, electric energy can be
obtained widely and conveniently. Compared with internal combustion engine vehicles,
electric vehicles also have the advantages of low noise and low maintenance costs [7].
These characteristics provide great help for the sustainability of the environment and its
ecology. A purely electric vehicle can realize zero release, and its energy is widely and
easily available. Currently, for all types of vehicles, researchers are continuously studying
and developing drive systems with the motor as the power supply unit, including those in
vehicles such as the electric truck [8], the refuse collection truck [9], the electric urban deliv-
ery truck [10], the electric car [11–14], electric agricultural machinery [15], etc. Especially
in the research field of agricultural machinery, agricultural machinery faces complicated
working conditions. Agricultural machinery such as tractors generally needs to meet the
requirements of operation, including ploughing, rotary tillage, transportation, and normal
road driving [16,17]. Therefore, the research and application of electric tractors can help to
overcome the problems of the traditional tractor, such as complicated variable transmission
structures, frequent operation of the driver, limited energy utilization efficiency, etc. [18–20].
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At the current stage, the multi-power-source purely electric vehicle has certain advan-
tages in price, energy consumption, power transmission, system efficiency, etc., compared
with the single-motor drive vehicle and the hybrid-power vehicle [21]. The two main types
of purely electric vehicles are as follows: distributed independent drive and centralized
coupling drive. In addition, there are few studies on electrical agricultural machinery.
Zhou et al. [22] proposed a wheel-rim motor independent drive scheme, aiming to give the
four-wheel drive electric tractor better tractive performance in the working condition of
traction operation. Han et al. [23] made a simulated analysis on the steering characteristics
of wheel-rim drive electric tractors in heavy-load low-speed working conditions and in
light-load high-speed working conditions. Xie et al. [24] proposed an overall structure
scheme of dual-wheel drive electric tractors (the two rear driving wheels are driven by
the motor independently) and tested the tractive performance, loaded starting and trans-
portation working con-dition through the bench test. Li et al. [25] designed, compared and
analyzed many dual-motor power coupling structure schemes based on the planetary gear
train. The research built a dual-motor power coupling unit transmission simulation model
using the software Simulation X.

Besides the type of energy used, energy consumption and emission control are also
affected by system transmission efficiency. Using the electric tractor as an example, the
efficiency characteristics of a power transmission system with the core of a motor plays
a decisive role in the full vehicle’s economic performance and in its energy utilization
performance. Therefore, the correct description and modeling of efficiency characteristics
of motors have great significance and necessity. However, currently there are few studies
on the modeling of motor efficiency characteristics. Most researchers used polynomial
regression, the bilinear interpolation method, and the table look-up method to build
efficiency models, and they made subsequent research and applications based on the
models. Additionally, most studies on electric vehicles’ kinetic analysis, control, and
performance improvements require considering motor efficiency. Ma et al. [26] proposed
a planetary gear coupling mechanism based on the dual motor structure and used the
particle swarm optimization method to optimize the parameters of the transmission system.
Their research was made according to the efficiency characteristics of motors. Hu et al. [27]
proposed a new dual motor coupling power drive system and combined the efficiency
characteristics of motors to analyze and make power distribution strategies for different
drive modes. Li et al. [28] used a motor efficiency model for parameter matching, power
management strategy development, and power distribution control research of a dual
motor coupling drive system. Their research measured and recorded the data of torque,
speed, and efficiency through a bench test and then obtained the motor efficiency in any
state using the interpolation method. Li et al. [29] designed a dual motor multi-mode
power coupling drive system for the purely electric tractor (the system can realize four
drive modes) and made a simulation test on the ploughing and transportation working
conditions of tractors. Their research used the quasi-static maps of output speed and torque
to build the dual motor efficiency model and to obtain the motor efficiency in any working
state though the table look-up method. Chen et al. [30] pointed out that the current studies
on power system parameter design focused mainly on electric cars but less on electrical
agricultural machinery. Their research used a quantified motor efficiency to optimize the
system in order to improve the performance of electric tractors.

Therefore, for electric vehicles, the evaluation, analysis, and improvement on their
power performances and economic performances should be made according to the effi-
ciency characteristics of motors. In addition, the design of reasonable and effective power
transmission systems and parameter matches also depend on the efficiency characteristics
of motors. Therefore, building an accurate model of motor efficiency characteristics is
an important premise of the design, control, and improvement of electric vehicles. How-
ever, different motors have different efficiency characteristics and change laws. Therefore,
only the modeling of motor efficiency characteristics with specific test data and scientific
verification methods is effective. In addition, building a motor efficiency model with a
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specific mathematical expression form can further help the kinetic analysis and control
of the system. In addition, current studies on electric vehicles such as the electric tractor
focus mainly on the comparison of an electrically driven car and a railway motor car and
on the comparison of a single motor and multiple motors, but there are few comparative
studies on the working efficiency of dual motor coupling drives, of dual motor rear wheel
independent drives, and of four-wheel independent drives based on the wheel hub motor.

Based on the above literature, there are some deficiencies in the research of electric
vehicles at the present stage: (1) There is more research on electric vehicles but less research
on electric agricultural machinery. (2) Comparative studies on distributed independent
drives and on centralized coupling drives of tractors with multiple power sources are
relatively less abundant. This makes it difficult to develop a drive system with relatively
better performance in the conceptual design stage, although the actual characteristics of the
motor have been obtained. (3) There are many research papers on the application of motor
efficiency but few studies on the establishment of the motor efficiency characteristics model.
(4) Polynomial regression, bilinear interpolation, and the table look-up method are often
used to establish the motor efficiency characteristics model, which lacks the application
and comparison of advanced modeling methods, resulting in limited precision of model
estimation. (5) The interpolation method and the table look-up method are difficult to
use to form specific mathematical expressions, so the effect of extrapolation prediction is
limited. (6) When polynomial regression is applied, only the power function form of speed
and torque and the interaction term of each order are considered, and the influence of other
data transformation forms on the efficiency characteristics of the motor is not explored.

In order to solve the above problems, combined with the bench test data of tractor
motors, this paper aims to put forward a model to correctly describe the efficiency charac-
teristics of motors by comparing four different modeling methods and by exploring the
influence of other data transformation forms of physical quantities (speed and torque) on
the efficiency characteristics of motors. In addition, the efficiency of tractors’ different
driving systems is compared and analyzed through the measured data and the new model
(based on the typical multiple working conditions of tractors). This provides a direct
basis for the further research and development of electric tractor drive systems and for
the establishment of a high precision motor model. Specifically, this paper proposes a
10-parameter motor efficiency modeling method combining the correlation coefficient and
the improved simulated annealing (I-SA) algorithm. The method mainly adopts the idea of
polynomial regression and error compensation. According to the measured data of motor
efficiency through the bench test, an initial fitting model made through polynomial regres-
sion analysis is built. In the case of the lack of polynomial regression precision, the variable
with the maximum correlation is determined according to the calculation of the correlation
coefficient, and it is introduced into the initial fitting model as a compensation variable to
obtain a new motor efficiency model. Additionally, the proposed method identifies the
parameters of a new model of motor efficiency using the I-SA algorithm according to the
bench test data. Then, the new model of motor efficiency is built. To improve and verify
the effectiveness and precision of the new efficiency model, this paper uses the mean of the
5-fold Cross Validation (CV) accuracy of multiple tests as the evaluation index and compar-
atively analyzes the novel modeling method with those using polynomial regression (PR),
the bilinear interpolation method (BI), and the radial basis kernel function neural network
(RBF-NN). This paper uses two motors with different powers of tractors in the research.
Finally, this paper researches and comparatively analyzes the differences among three
drive types (the dual motor coupling drive, the dual motor rear wheel independent drive,
and the four-wheel independent drive based on wheel hub motor) of multi-power-source
purely electric vehicles in working efficiency with their motor efficiency models built. This
paper uses different reserve power states of electric tractors, including the running speed
working condition, the normal running working condition, the transportation working
condition, the ploughing working condition, and the rotary tillage working condition, as
examples for the comparison of the efficiency characteristics of full vehicles.
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2. Materials and Methods
2.1. Characteristic Analysis of the Distributed Independent Drive System

Figure 1 gives a structural diagram of a dual motor dual-wheel distributed indepen-
dent drive system [31]. (The drive system is mainly composed of two independent motors
and two independent reducers. The left rear wheel or right rear wheel is driven by a
separate “wheel side motor-reducer” system.) Figure 2 gives a structural diagram of a
four-motor four-wheel distributed independent drive system [22,32]. (Approximate to the
dual motor dual-wheel distributed drive system, four wheels of the vehicle are driven by
four separate “wheel motor-reducer” systems.) Different from the traditional “combustion-
motor-variable-transmission-unit” and the single-motor-variable-transmission-unit struc-
tural forms, the distributed independent drive system removes most mechanical connection
mechanisms (mainly referring to complicated mechanical transmission mechanisms such
as the gearbox, the differential mechanism, etc.). Using a tractor as an example, the drive
system increases the flexibility of the spatial structure arrangement greatly and helps realize
the light weight of a full vehicle.

Agriculture 2022, 12, x FOR PEER REVIEW 4 of 22 
 

 

including the running speed working condition, the normal running working condition, 

the transportation working condition, the ploughing working condition, and the rotary 

tillage working condition, as examples for the comparison of the efficiency characteristics 

of full vehicles. 

2. Materials and Methods 

2.1. Characteristic Analysis of the Distributed Independent Drive System 

Figure 1 gives a structural diagram of a dual motor dual-wheel distributed independ-

ent drive system [31]. (The drive system is mainly composed of two independent motors 

and two independent reducers. The left rear wheel or right rear wheel is driven by a sep-

arate “wheel side motor-reducer” system.) Figure 2 gives a structural diagram of a four-

motor four-wheel distributed independent drive system [22,32]. (Approximate to the dual 

motor dual-wheel distributed drive system, four wheels of the vehicle are driven by four 

separate “wheel motor-reducer” systems.) Different from the traditional “combustion-

motor-variable-transmission-unit” and the single-motor-variable-transmission-unit struc-

tural forms, the distributed independent drive system removes most mechanical connec-

tion mechanisms (mainly referring to complicated mechanical transmission mechanisms 

such as the gearbox, the differential mechanism, etc.). Using a tractor as an example, the 

drive system increases the flexibility of the spatial structure arrangement greatly and 

helps realize the light weight of a full vehicle. 

According to Figures 1 and 2, the calculation formula of speed-regulating character-

istics of a distributed independent drive system is as follows: 

( ) ( )= ×3.6 2 / 60
a m d g

u π n r i  (1)

where 
a

u  is the running speed of the electric vehicle (km/h), 
d

r  is the rolling radius of 

the driving wheel (m), 
g

i  is the transmission ratio of the reducer, and 
m

n  is the output 

speed of the motor (r/min). 

 

Figure 1. Structural diagram of dual motor dual-wheel distributed independent drive system. 

Driving wheel

Battery

Reducer 

Battery

Motor controller system

Motor

Motor

Reducer 

Driving wheelDriven wheel

Driven wheel

Chassis support

Figure 1. Structural diagram of dual motor dual-wheel distributed independent drive system.
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According to Figures 1 and 2, the calculation formula of speed-regulating characteris-
tics of a distributed independent drive system is as follows:

ua = 3.6× 2π(nmrd)/
(
60ig

)
(1)

where ua is the running speed of the electric vehicle (km/h), rd is the rolling radius of the
driving wheel (m), ig is the transmission ratio of the reducer, and nm is the output speed of
the motor (r/min).

The following is the calculation formula of the torque of the distributed independent
drive system:

nTmig/rd = FL (2)

where n is the number of the motor of the distributed independent drive system, Tm is
the output torque of a single motor (Nm), and FL is the carrying capacity of the electric
vehicle (N).

The following is the calculation formula of efficiency characteristics of the distributed
independent drive system:

ηsys1 = ηm(nm, Tm)η0 (3)

where ηsys1 is the efficiency value of the distributed independent drive system, ηm is the
efficiency of the motor (a function with motor speed nm and torque Tm as independent
variables), and η0 is the overall working efficiency of other systems (mainly composed of
the efficiency of the storage battery, the efficiency of the reducer, etc.) and is also a fixed
value in this paper.

2.2. Characteristic Analysis of a Dual Motor Centralized Coupling Drive System

Figure 3 gives a structural diagram of a dual motor centralized coupling drive system
used in this paper [33]. The system is a speed coupling drive system. The power output
from motor 1 and motor 2 is transmitted into the planetary gear train’s gear ring and sun
gear. The two parts of power converge through the planetary gear structure and then are
output through the planetary carrier. The power output passes through the reducer and
the differential mechanism and then forms the power of the driving wheels.
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The following is the calculation formula of the speed-regulating characteristics of the
dual motor centralized coupling drive system:

ua = 0.377
kpnm1 + nm2(

1 + kp
)
ig

rd (4)

where kp is the characteristic parameter of the planetary row and nm1 and nm2 (r/min) are
the output speeds of motor 1 and motor 2, respectively.
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The following is the calculation formula of the torque of the dual motor centralized
coupling drive system:

Tm1

kp
= Tm2 =

FLrd
ig

(5)

where Tm1 and Tm2 (Nm) are the output torques of motor 1 and motor 2, respectively.
This paper analyzes the loss of power flow in motor 1, motor 2, and the planetary

gear train to deduce the overall efficiency characteristics of the system. By dividing the
whole system into a series subsystem (mainly motor 1 to the gear ring; motor 2 to the
sun wheel; planetary carrier to the other transmission systems) and a parallel subsystem
(mainly confluence mechanisms), the efficiency characteristics model is then obtained by
combining the series and parallel subsystems [16,34].

The calculation formula of the efficiency characteristics of the dual motor centralized
coupling drive system is as follows:

ηsys2 = kp
(
ηrcηm1nm1 + ηscηm2nm2/kp

)
/
(
kpnm1 + nm2

)
η0 (6)

where ηsys2 is the efficiency of the dual motor centralized coupling drive system, ηrc is the
transmission efficiency of the power flow from the gear ring to the planetary carrier, and
ηsc is the transmission efficiency of power flow from the sun gear to the planetary carrier.

This paper uses the transmission ratio method [16,35] to calculate the transmission
efficiency ηrc of power flow from the gear ring to the planetary carrier and the transmission
efficiency ηsc of the power flow from the sun gear to the planetary carrier. The calculation
formula is as follows:

ηsc =
1 + kpη

sign[
kp

1+kp
× ∂(1+kp)

∂(kp)
]

c

1 + kp
(7)

ηrc =
1 + kpη

sign[
k2

p
1+kp

×
∂(

1+kp
kp

)

∂(kp)
]

c

η
sign[

k2
p

1+kp
×

∂(
1+kp

kp
)

∂(kp)
]

c
(
1 + kp

) (8)

where ηc is the friction transmission efficiency of the 2K-H planetary gear train.

2.3. Obtaining the Measured Data of the Bench Test of Motor Efficiency

This paper uses two motors of electric tractors as examples to obtain related data of
the motors through the bench test. The two motors are both brushless direct current motors.
Table 1 shows the specific parameters.

Table 1. Related parameters of the motor.

Type Rated Power/kW Rated Speed/r/min Rated Torque/Nm

Brushless DC motor 5 750 63
Brushless DC motor 8 850 90

The test bench uses a lithium battery pack with a total voltage of 211.2 V to offer power
(see Table 2 for the main parameters of the power battery) and a magnetic powder brake as
the simulation loading unit (Table 3 shows the parameters of the magnetic powder brake).
The information of the overall layout of the test bench, the design of the observation and
control plan, the equipment installation and debugging, and the calibration of the sensors
(mainly including the current sensor, the voltage sensor and the speed torque sensor) can
be found in previous studies [22,36].
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Table 2. Related parameters of power battery.

Type Nominal Voltage
of Monomer/V

Number of
Monomers

Nominal Capacity
of Monomer/(A·h) Total Voltage/V

Lithium battery 3.3 64 100 211.2

Table 3. Related parameters of magnetic powder brake.

Model Rated Torque/Nm Magnetizing
Current/A

Allowable Slip
Power/kW Cooling Mode

CZ-20 200 2 10 Water cooling

Figure 4 shows the test bench of the motor.
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Figure 4. Structural composition of motor test bench. Note: 1© Motor used in the research;
2© magnetic powder brake; 3© speed torque sensor; 4© lithium battery; 5© motor controller; 6© power

management system. (a) The picture of test site; (b) Schematic diagram.

The detailed steps of the motor efficiency test can be found in previous studies [22,36].
For the test, load the motor through the magnetic powder brake. Each loading should be
performed after the motor’s working speed remains stable. The efficiency test results of the
8 kW motor came from a reference document [36]. The following is the calculation formula
of the motor efficiency:

ηm =
Pout

Pin
=

Tmnm

9.55UI
(9)

where Pout is the mechanical power output of the motor (W), Pin is the input power of the
motor (W), U is the input voltage of the motor (V), and I is the current input of the motor (A).

Figure 5 shows the measured results of efficiency of two motors used in the analysis.
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2.4. Three Modeling Methods of Motor Efficiency

Current studies generally use PR [37] and BI as the modeling methods of motor effi-
ciency. Therefore, to comparatively analyze the differences among the modeling methods of
motor efficiency comprehensively, this paper also uses PR and BI as the modeling methods
for the comparative analysis. Additionally, this paper chooses the neural network as one of
modeling methods for comparative analysis. This paper uses the RBF-NN.

The PR model considers the 1-order term, the 2-order term, and the interaction term
of the motor speed nm and the motor torque Tm, and its expression is as follows:

ηm_PR = a0 + a1nm + a2Tm + a3nmTm + a4n2
m + a5T2

m (10)

where ηm_PR is the motor efficiency model built using PR and a0~a5 are the coefficients of
the order terms of the polynomial.

The BI method [38] requires the information of four data points and makes the linear
interpolation in two directions of coordinate axes to finally determine the data value of the
points to be interposed.

The RBF-NN was proposed by J. Moody and C. Darken in 1989, and it is a forward
local neural network that can approach any nonlinear function with any arbitrary small
error [39–41]. Currently, the RBF-NN has a wide range of applications, and many scholars
have found in studies that the RBF-NN is superior to the conventional BP neutral network
in every respect. Figure 6 shows the topological structure of the RBF-NN.
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Figure 6. Technical route of establishing dynamic load characteristics prediction model. Note:
x = [x1, x2, . . . , xn] represents the input vector; h = [h1, h2, . . . , hl ] represents the middle layer;
y = [y1, y2, . . . , ym] represents output vector.

In Figure 6, x = [x1, x2, . . . , xn] represents the input vector. The middle layer uses a Gauss
function for the nonlinear transformation of the input vector to obtain h = [h1, h2, . . . , hl] and
then a linear weighting combination to obtain y = [y1, y2, . . . , ym] and considers it as the
output. The calculation formula is as follows:

yi =
l

∑
j=1

wijhj =
l

∑
j=1

[wij exp{−
(x− cj)

T(x− cj)

δ2
j

}] (11)

where i = 1, . . . . . . , m, of which m is the dimension of the output, l is the number of neurons
in the hidden layer, and wij is the connection weight of the i output and the j neuron in the
hidden layer.

To build an efficiency model based on the RBF-NN more comprehensively, this paper
uses PR’s idea of 1-order terms and 2-order terms using the motor speed nm and the motor
torque Tm, and it also uses interaction term modeling, which considers the 1-order term,
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the 2-order term, and the interaction term of the motor speed nm and the motor torque Tm
as the characteristic variables of neural network learning and training.

Additionally, to further compare the modeling methods of motor efficiency comprehen-
sively, this paper uses the 5-fold CV method [42]. This paper uses the mean and standard
deviation of the MAPE (mean absolute percentage error) of the 5-fold CV of 100 random
tests as the indices to evaluate the precision of the motor efficiency model.

The following is the calculation formula of the MAPE:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ηm_estimated − ηm_measured
ηm_measured

∣∣∣∣× 100% (12)

where ηm_estimated is the evaluated value based on the motor efficiency model, ηm_measured is
the measured value of motor efficiency, and n is the total number of data of the training set
or the test set.

2.5. A Novel 10-Parameter Modeling Method of Motor Efficiency Using the I-SA for
Parameter Identification

Although BI and the RBF-NN can build the motor efficiency model effectively (see
Section 3.1), the models built with the two methods (have passed the 5-fold CV, see
Section 3.1) have ideal and high precision for both the learning and training samples
and the test samples. However, according to research results in this paper (Section 3.1), the
precision of the motor efficiency models built with BI and RBF-NN depends on the value
range of the learning and training sample data (i.e., the value range of motor speed nm and
motor torque Tm in the learning and training samples). If the set of test data is in the value
range of motor speed nm and motor torque Tm in the learning and training samples, the
two methods can offer the estimated value of motor efficiency with high precision. If the
set of test data is out of the value range of the motor speed nm and the motor torque Tm
in the learning and training samples, BI cannot be implemented due to the limitations of
required conditions. Additionally, the RBF-NN’s extrapolation prediction result is poor.

In addition, BI and the RBF-NN have no directly simple relational expression, so they
are rather complicated and tedious in practical applications.

To sum it up, the two methods are limited in their generalization abilities and are
applicable to the case with a mass of bench test data. Therefore, the two methods are
inapplicable to the technical research and development of real-time adjustment full vehicle
control strategies according to the current efficiency of intelligent vehicle systems.

However, PR has limited precision (see Section 3.1). According to the problems above,
this paper proposes a modeling method of motor efficiency, combining the correlation
coefficient and PR. Using the idea of error compensation for reference and considering
the limited precision of PR, the method uses the enumeration method and correlation
coefficient analysis to determine the variable with the maximum correlation, it introduces
the variable into the PR model as a compensation term, and it finally forms a new model. In
addition, the motor torque Tm’s correlation with efficiency is bigger than that of the motor
speed.. with efficiency, so the 3-order term of the motor torque Tm is introduced into the
new model. The new model’s expression is as follows:

ηm_novel = a0 + a1nm + a2Tm + a3nmTm + a4n2
m + a5T2

m + a6T3
m + a7 f (a8x + a9) (13)

where ηm_novel is the novel 10-parameter model of motor efficiency, a0~a9 are the coefficients
of the order terms of the polynomial, f (x) is the mapping function with x as the independent
variable, and x is the motor speed nm or the motor torque Tm.

The novel model has high nonlinearity. This paper uses the I-SA algorithm and
combines the bench test data for the parameter identification of the novel model of motor
efficiency and then completes the building of the novel model of motor efficiency.

As a result of the sample data involved in this case being large, the optimization
process is nonlinear in the pursuit of high modeling precision. The heuristic intelligent
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optimization algorithm [43–45] is suitable for solving a series of complex engineering
problems accurately. This paper adopts the SA algorithm as the method of parameter
identification. The SA algorithm used in this paper refers to the flow of the I-SA algorithm
that has been proposed and that verified the engineering application effect in previous
studies [46,47]. The applied I-SA algorithm is mainly improved in the following aspects:
(1) termination conditions of algorithm iteration; (2) disturbance function; and (3) the
updating method of decision variables. The specific algorithm flow is shown in Figure 7.
This paper considers the mean of the MAPE of the 5-fold CV as the objective function of
the I-SA algorithm.
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In this paper, the I-SA algorithm is used to complete the parameter identification of
the new model with ten parameters to finally complete the establishment of the motor
efficiency characteristics model. Figure 8 shows the building process of the novel model of
motor efficiency.

2.6. Comparative Analysis Method of the Full Vehicle Efficiency Characteristics of Electric Tractors
in Five Working Conditions

This paper applies the motor efficiency model to the comparative analysis of the
work efficiency of multi-power-source electric vehicles of three drive types (i.e., the dual
motor coupling drive, the dual motor rear wheel independent drive, and the four-wheel
independent drive based on hub motor). This paper uses the electric tractor as an example.
See Table 4 for the related parameters of the full vehicle.
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Table 4. Related parameters of electric tractor.

Total Weight/kg Radius of Driving
Wheel/m

Coefficient of Air
Resistance

Windward
Area/m2

Maximum Trailer
Weight/kg

1535 0.64 0.9 3.135 1000

As for the running speed working condition of the electric tractor, this paper uses
scholar Wang’s analysis on the research results of Resch and Renius for reference [48]. The
results show that, in the overall life cycle, the tractor spends 61–68% of its time working in
the speed range of 4–12 km/h.

This paper considers the average full vehicle efficiency of full working ranges in five
working conditions of electric tractors as the evaluation index, and it uses it to compare the
working efficiency of three drive types. The five working conditions are as follows:

(1) The electric tractors have different reserve power (the residual power eliminating
the basic running resistance) and running speeds. The working condition is a general
working condition for analysis, used to analyze the full vehicle working efficiency of
electric tractors with different loads and running speeds.

The calculation formula of the reserve power is as follows:

FRF =
Tout

rd
− Ff − Fw =

Tout

rd
−m1g f − CD Au2

a
21.15

(14)

where FRF is the reserve power (N), Tout is the torque of the system power output to the
driving wheel (Nm), Ff is the rolling resistance (N), Fw is the air resistance (N), m1 is
the overall weight of the electric tractor (kg), f is the rolling resistance coefficient, g is
the acceleration of gravity, CD is the coefficient of air resistance, and A is the windward
area (m2).
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(2) The electric tractor is in the normal road running condition with a constant speed.
In this working condition, the drive system composed of the motor only needs to overcome
the basic running resistance.

(3) The electric tractor is in the transportation working condition with a running speed
of 12 km/h. The calculation formula of the loading force in the current working condition
is as follows:

FTC = (m1 + m2)g f +
CD Au2

a
21.15

(15)

where FTC is the loading force in the transportation working condition (N) and m2 is the
mass of the trailer of the electric tractor (kg).

(4) The electric tractor is in the ploughing working condition with a running speed of
10 km/h. The calculation formula of the loading force in the current working condition is
as follows:

FPC = Ff + Fw + kn1bH (16)

where FPC is the loading force in the ploughing working condition (N), k is the soil-specific
resistance, b is the width of a single plough, n1 is the number of the plough share, and H is
the tillage depth.

(5) The electric tractor is in the rotary tillage working condition with a running speed
of 5 km/h. The calculation formula of the loading force in the current working condition is
as follows:

FRTC = Ff + Fw + k2kλBnh (17)

where FRTC is the loading force in the rotary tillage working condition (N), k2 is the rotary
tillage resistance calculation coefficient, kλ is the soil-specific resistance of the rotary tillage,
Bn is the tillage width, and h is the tillage depth.

Specifically, the multi-power-source purely electric tractors of three drive types include
the 4 wheel independent drive electric tractor composed of four 5 kW motors, the rear
wheel independent drive electric tractor composed of two 8 kW motors, and the coupling
drive electric tractor composed of two 8 kW motors.

3. Results and Discussion
3.1. Modeling Results of Motor Efficiency Based on PR, BI, and the RBF-NN and Analysis

This paper uses the 5 kW motor of the electric tractor in Section 2.3 as an example, and
there are a total of 510 measured data samples of the bench.

This paper uses the 5-fold CV method of 100 random tests. Figures 9 and 10, and
Table 5 show the modeling results of the motor efficiency based on PR, BI, and the RBF-NN.
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Figure 10. Comparison of results of 100 5-fold CV tests. (a) Polynomial Regression; (b) Bilinear
Interpolation method; (c) Radial Basis Kernel Function Neural Network.

Table 5. Results of 5-fold CV of 100 random tests of four methods.

PR BI RBF-NN Novel Method Proposed

Mean (%) 14.51 1.29 2.84 2.45

Standard Deviation (%) 0.11 0.08 0.14 0.12

According to Figures 9 and 10 and Table 5, BI has the highest modeling precision
followed by the RBF-NN, whereas PR has a certain difference compared with the other
two methods. The results of the 5-fold CV of 100 random tests (of which the standard
deviation is generally small) show that the three modeling methods of motor efficiency all
have high reliability.

However, according to the research process in this paper, when using BI, there are
invalid data points of motor efficiency generated in the test data set as a result of BI, which is
limited by required calculation conditions, not being able to predict the working conditions
out of the range of the learning and training set. This paper adds together the number of
invalid data points in the 100 5-fold CV tests, and the results are shown in Figure 11.
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According to Figure 11, when using BI, if the number of measured data samples
of motor efficiency is insufficient, there is an interpolation invalidation phenomenon.
According to the results of the 100 5-fold CV tests, each model can generate about 24 invalid
data points on average. Additionally, if the number of measured data samples of motor
efficiency is insufficient, the estimation precision of BI for the nonlinear change section can
decrease significantly.

According to Figures 9 and 10, and Table 5, although using the RBF-NN can estimate
motor efficiency with high precision, the estimation precision for the change sections of
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the motor speed nm and the motor torque Tm out of the change range of the learning and
training set decreases significantly.

To sum it up, BI and the RBF-NN depend on learning and training samples greatly.
When the change ranges of the motor speed nm and the motor torque Tm in the learning
and training samples cover the whole domain of definition, BI and the RBF-NN have high
motor efficiency estimation and modeling precision. Therefore, for the modeling of motor
efficiency, BI and the RBF-NN have weak generalization abilities. In addition, neither BI
nor the RBF-NN has a directly easy relational expression, causing complicated and tedious
applications in practice (compared with PR). In addition, the requirement of many learning
and training data for effective modeling also causes the two methods to be inapplicable
to the research and development of adaptively adjusting motor efficiency MAP charts for
real-time correcting control strategies of intelligent vehicle systems.

The advantages and disadvantages of the three modeling methods are summarized in
Table 6.

Table 6. Comparison of advantages and disadvantages of three modeling methods.

Methods Advantages Disadvantages

Polynomial regression

Small standard deviation, high
reliability of the model; fewer model
parameters and less dependence on
the number of data; clear and simple

mathematical expression;
convenient application

Relatively low precision; limited
estimation ability

Bilinear interpolation

Small standard deviation, high
reliability of the model; high precision

(highest precision among
three methods)

A certain number of invalid data
points can be generated; highly
dependent on the learning and

training samples; no direct and simple
mathematical model; inconvenient

practical application

Radial Basis Kernel
Function Neural Network

Small standard deviation, high
reliability of the model; relatively

high precision

Error larger than bilinear
interpolation; highly dependent on

the learning and training samples; no
direct and simple mathematical model;

inconvenient practical application

3.2. Modeling Results of Motor Efficiency Based on the Novel Method Proposed and Analysis

According to Section 3.1, the results of modeling purely using PR have certain defi-
ciencies with limited precision. Considering the process of the novel method proposed
in Section 2.5, this paper chooses some new variables formed through the mapping trans-
formation of the motor speed nm and the motor torque Tm and then selects the variable
with the maximum correlation coefficient through a correlation analysis. Table 7 shows the
research results.

Table 7. Correlation coefficients of measured motor efficiency with multiple variables.

Variable ln(nm) ln(Tm) sin(nm) sin(Tm) cos(nm) cos(Tm) tan(nm) tan(Tm) eTm

Correlation Coefficient −0.184 0.836 0.027 −0.096 −0.049 0.087 0.028 0.008 0.019

Therefore, the research chooses ln(Tm), the variable with the maximum correlation,
and introduces it into formula (13) and then forms the 10-parameter model for the efficiency
of the motor used. The following is the model’s expression:

ηm_novel = a0 + a1nm + a2Tm + a3nmTm + a4n2
m + a5T2

m + a6T3
m + a7 ln(a8Tm + a9) (18)

Use the I-SA algorithm for parameter identification of the 10-parameter motor effi-
ciency model. Figure 12 and Table 5 show the results of the 5-fold CV of 100 random tests.
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Figure 12. Results of 100 5-fold CV tests of novel method proposed. Note: MAPE is mean absolute
percentage error.

According to Figure 12 and Table 5, the novel method proposed has high precision
in motor efficiency modeling. The modeling result of the novel method improves greatly
on the basis of PR. Additionally, the 5-fold CV results of 100 random tests (with a small
standard deviation) show that the novel method has high reliability.

This paper uses the I-SA algorithm for the parameter identification of the novel model
of a 5 kW motor and a 8 kW motor. Figure 13 shows iterative evolution curves.
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Figure 13. Iterative evolution curves of parameter identification of two motor efficiency models.
(a) 8 kW motor; (b) 5 kW motor.

Figure 13 shows that the I-SA algorithm has a good application result for the param-
eter identification of the motor efficiency mode. The algorithm has a smaller number of
iterations (declining to the ideal precision after about 60 iterations). In the implementing
process of the algorithm, the value of an objective function is always declining, indicating
that the I-SA avoids the problem of prematurity effectively.

Figure 14 shows the motor efficiency models in full working conditions.
Figure 14 shows that the motor efficiency models built with the novel method have

ideal estimation results in the full working conditions of the motor speed nm and the motor
torque Tm. The MAPE of the 8 kW motor efficiency model’s estimated value and all the test
data is 4.768%, and the MAPE of the 5 kW motor efficiency model’s estimated value and all
the test data is 2.539%.
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Figure 14. Efficiency models of two motors in full working conditions. (a) 8 kW motor; (b) 5 kW motor.

3.3. Comparison Results of Full Vehicle Efficiency Characteristics of Electric Tractors in Five
Working Conditions and Analysis

Figure 15 shows the full vehicle working efficiency results of electric tractors of three
different drive systems with different loads (showed as different reserve power) and
running speeds (shown in the form of statistical histogram for the convenience of evaluation
and analysis).
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Figure 15. Estimation results of the full vehicle working efficiency of electric tractors with different
drive systems. (a) 4 wheel independent drive system; (b) Rear wheel independent drive system;
(c) Dual motor coupling drive system.

From Figure 15 we can see that the 4 wheel independent drive electric tractor’s
full vehicle efficiency shows the skewed distribution of which an efficiency lower than
70% accounts for 26.14%. The rear wheel independent drive electric tractor’s efficiency
distribution is nearly symmetric around the axis of 72%. The dual motor coupling drive
electric tractor shows the slightly skewed distribution, but its distribution characteristic is
opposite to that of the 4 wheel independent drive electric tractor, of which an efficiency
higher than 75% accounts for 32.97%. Considering the range of the full working conditions
selected, the dual motor coupling drive tractor shows better work efficiency as a whole.

Figure 16 shows the results of the normal road constant-speed running, transportation,
ploughing, and rotary tillage working conditions. Table 8 gives the mean of the full vehicle
efficiency of the electric tractors of three drive systems.

According to Figure 16 and Table 8, the dual motor coupling drive mode shows a
relatively good full vehicle efficiency in most working conditions and has the highest
average working efficiency with different loads and speeds. However, for the ploughing
condition and the rotary tillage condition, the dual motor coupling drive electric tractor
shows better efficiency characteristics. In the ploughing and rotary tillage conditions, the
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performance of the efficiency characteristics of the three types of drives are not invariable,
and each has its optimal working range.
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Figure 16. Estimation results of full vehicle efficiency of tractor in four working conditions.
(a) Working condition of constant-speed running; (b) Working condition of transportation; (c) Work-
ing condition of ploughing; (d) Working condition of rotary tillage.

Table 8. Estimation results of mean of full vehicle efficiency of three drive systems for electric tractors.

Type of Drive
Mean of Electric Tractor Efficiency/%

Different Loads and Speeds Constant-Speed Running Transportation Ploughing Rotary Tillage

4 wheel independent 71.90 57.41 59.05 69.82 72.06
Rear wheel independent 73.26 71.86 69.65 72.96 72.86

Dual motor coupling 74.43 68.83 65.05 74.62 73.37

4. Conclusions

Compared with the three modeling methods (PR, BI, and RBF-NN), the proposed
method in this paper not only has high model estimation precision (the mean of the MAPE
of the 5-fold-CV of 100 random tests is 2.45 %, and the MAPE of all 853 measured data is
3.65 %) but also has high modeling reliability (the standard deviation of the MAPE of the
5-fold-CV of 100 random tests is 0.12 %). The structure of the new model proposed in this
paper is relatively simple. Combined with a heuristic intelligent optimization algorithm,
the model can be established only by identifying 10 unknown parameters. This is less
dependent on the number of the test data. For the two motors used in this paper, the
efficiency characteristics are highly correlated with the variables ln(Tm).
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According to the various working conditions used in this study, this type of elec-
tric tractor equipped with a dual motor coupling drive system has the overall optimal
economic performance (the highest full vehicle efficiency). From the analysis results of
ploughing and rotary tillage conditions, the design of the electric tractor drive system
should have the ability to switch between multiple driving modes (four wheel drive, rear
wheel drive and coupling drive) to maximize the efficiency of the tractor under different
working conditions.
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