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Abstract: The duck industry ranks sixth as one of the fastest-growing major industries for livestock
production in South Korea. However, there are few studies quantitatively predicting the internal
thermal and moisture environment of duck houses. In this study, high-accuracy recurrent neural
network (RNN) models were used to predict the internal air temperature and relative humidity of
mechanically and naturally ventilated duck houses. The models were developed according to the type
of duck houses, seasons, and environmental variables by learning the monitoring data of the internal
and external environments. The optimal sequence length of learning data for the development of
the RNN model was selected as 120 min. As a result of the validation, both air temperature and
relative humidity could be accurately predicted within 1% error. In addition, simplified RNN models
were additionally developed by learning only from the data of external air temperature, relative
humidity, and duck weight, which are relatively easy to acquire at the farms. The accuracy of the
simplified RNN models was similar to the basic model for predicting the internal air temperature
and relative humidity of duck houses in real time. In the future, for the convergence of information
and communications technologies (ICTs) and application of smart farms in duck houses, the RNN
models of duck houses developed in this study can be applied to predict and control the internal
environments of duck houses using the model predictive control (MPC) technique.

Keywords: duck house; environmental monitoring; prediction of internal environments; machine
learning; recurrent neural network

1. Introduction

The livestock industry has continuously grown in South Korea, with the total produc-
tion of livestock reaching about 17 billion USD in 2019, about 40% of the total agricultural
production [1]. In Korea, the duck production has rapidly increased since 2005. Duck
farming was the sixth largest industry in 2017 among the livestock industries in South
Korea with a production of 729 million USD [1].

Information and communications technology (ICT)-based smart farms have been
actively developed and disseminated in accordance with the fourth industrial revolution.
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The Rural Development Administration has promoted the development of smart farms
by dividing them into first, second, and third generations as shown in Table 1 [2]. The
first-generation smart farms aim to improve convenience through remote control of envi-
ronments based on communication technology. The second-generation smart farms aim
to improve productivity through precision management. A representative example of
a second-generation smart farm is a smart farm controlled through decision making by
computers and humans on the basis of big data and artificial intelligence technology. The
third-generation smart farms aim to improve sustainability by realizing high quality and
high productivity through automatic management using robots.

Table 1. Development plan for smart farms in South Korea [2].

Contents 1st Generation 2nd Generation 3rd Generation

Realization period 2020 2025 2030
Main objective To improve convenience To improve productivity To improve sustainability

Main function Remote environmental
control

Precision environmental
control

Automatic management
of all related production

Main technique Communication technique Big data processing,
artificial intelligence

Big data processing, artificial
intelligence, robotics

Decision making Human Human and computer Computer

In South Korea, the agricultural facilities for rearing pigs, chickens, and cows have
reached the level of second-generation smart farms. However, the development speed
of duck houses has been relatively slow, obtaining only first-generation smart farms.
Conventional duck houses converted from plastic greenhouses account for approximately
34% of the total. This percentage is higher than those of other livestock houses such as
pig houses and broiler houses [3]. Although the initial installation cost of conventional
duck houses is low, they are weak to meteorological disasters such as typhoons, as well as
to the outbreak of infectious diseases. In conventional duck houses, it is hard to properly
manage the internal environment because of high temperatures in the summer and low
thermal insulation and infiltration in the winter. Furthermore, conventional duck houses
are inappropriate for the maintenance and application of ICT equipment. Additionally,
only 1.9% of farmers want to use a mechanically ventilated duck house according to a
survey [4], acting as a barrier for duck smart farms.

To manage and control the internal environments of duck houses, field-measured
data have been mainly used. However, the internal environments of duck houses such
as temperature, relative humidity, dust, and concentration of corrosive gas are usually
high. Because the sensors for environmental monitoring of duck houses are directly and
continuously exposed, these poor environments often cause sensor corrosion or malfunc-
tion. Thus, it is hard to continuously accumulate reliable data of the environment inside
duck houses. Predicted internal environments inside duck houses could be applied for
management and control instead of measured data when the environmental sensors are not
working. Recent studies related to numerical model-based control have been conducted
for precise control of the environments inside livestock facilities. Additionally, in order to
upgrade a first-generation smart farm to a second-generation smart farm, it is necessary
to develop a control technology using model prediction according to the application of
artificial intelligence technology. The accurate prediction of the internal environments of
duck houses must be implemented for accurately environmental management and control.

Several studies have been conducted to analyze and predict the internal environments
of livestock houses using numerical models [5–15]. Most previous studies have been
conducted for air temperature in broiler houses and pig houses. Furthermore, there
have been a few studies predicting and analyzing the internal environments of duck
houses. Among them, the building energy simulation (BES) model for analyzing the
internal air temperature and relative humidity of a mechanically ventilated duck house
was developed [11]. The heat stress of ducks and the energy loads of the duck house were
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evaluated using the developed BES model. However, among the previous studies, there
were few studies on naturally ventilated duck houses.

Recently, artificial neural networks (ANNs) have been actively used because of their
ability to accurately predict the dependent variables from independent variables [16,17].
The recurrent neural network (RNN) model, which is a type of ANN model, has been
actively applied to the agricultural field due to the advantage of being suitable for dealing
with time-series data [18–22]. Several studies have also used ANN models to analyze and
predict the weather data [23,24]. However, few studies focused on predicting the internal
environment of livestock houses. The RNN model has the advantage of high accuracy and
improving the model through continuous learning. Therefore, it is expected that the RNN
model can be applied to develop the model for predicting the internal environments of
duck houses in real time.

In this study, RNN models according to the type of duck houses, seasons, and en-
vironmental variables were developed for predicting the internal air temperature and
relative humidity of mechanically and naturally ventilated duck houses. The internal and
external environmental data of the duck houses monitored during field experiments, such
as external air temperature, relative humidity, solar radiation, wind speed, wind direction,
ventilation rate of the mechanically ventilated duck house, and weight of the duck, were
used as learning data for RNN model development. Because ventilation is one of the most
important factors affecting the internal environments of duck houses, the ventilation rates
of the mechanically ventilated duck house were monitored and used as learning data. The
data of wind speed and direction were used as learning data instead of the ventilation rate
of the naturally ventilated duck house because it was hard to quantitatively monitor the nat-
ural ventilation rate during field experiments. The accuracy of the developed RNN models
was evaluated according to the type of duck houses, seasons, and environmental variables.
In addition, the simplified RNN models were developed to improve the applicability of
the RNN model to the field. The simplified RNN models were developed by learning
only from external air temperature and relative humidity data, which are relatively easy to
acquire at the farms. Lastly, the accuracy of the simplified RNN models was compared with
that of the basic model for predicting the internal air temperature and relative humidity of
duck houses in real time.

2. Materials and Methods

RNN models were developed for predicting the internal air temperature and relative
humidity of duck houses following the research flow in Figure 1. First, field experiments
were conducted to monitor the internal and external environments of the mechanically
and naturally ventilated duck houses. The data of the air temperature, relative humidity,
ventilation rate, solar radiation, wind direction, wind speed, etc. were acquired through
field experiments. According to the results of field experiments, descriptive statistics were
applied to analyze the problems of the environmental management of duck houses accord-
ing to seasons. RNN models were developed through the learning of monitoring data, and
the RNN models developed in this study were validated through a comparison with the
data measured during the field experiments. In addition, the optimal sequence length was
selected by comparing the accuracy of the RNN models trained in various conditions of
sequence length. The accuracies of the developed RNN models were evaluated according
to the type of duck houses, seasons, environmental variables, etc. Lastly, simplified RNN
models were developed by learning only the external air temperature and relative humidity
data, which are relatively easy to acquire at the farms.
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Figure 1. Flow chart of the experimental procedure of this study.

2.1. Experimental Duck Houses

A mechanically ventilated duck house and a duck house converted from a plastic
greenhouse were used for developing the RNN model of mechanically and naturally venti-
lated duck houses, respectively (Figure 2). The internal environments of these duck houses
could be directly compared with each other because these duck houses were located at the
same farm (Sinbuk-myeon, Yeongam-gun, Jeollanam-do Province (126◦38′ E, 34◦53′ N)).
Environmental monitoring data from 30 July 2018 to 7 January 2019 (three rearing periods)
were used as the learning data for developing the RNN model of duck houses. The me-
chanically ventilated duck house had a width of 12 m, a length of 45 m, an eave height of
3 m, and a ridge height of 4 m. On the other hand, the naturally ventilated duck house
had a width of 10 m, a length of 70 m, an eave height of 2 m, a ridge height of 3.5 m, and
a height of vent openings of 1.2 m. A total of 1900 and 2460 ducks were reared within
the mechanically and naturally ventilated duck houses, respectively. On the basis of the
number of reared ducks in each duck house, the space allowance was 0.28 m2·animal−1,
which is higher than the standard of 0.246 m2·animal−1 [25]. The ducks were moved to
the experimental duck houses only after the ducklings reached 1–2 weeks old from other
facilities to reduce the environment management costs pertaining to heating, electricity,
etc. After rearing ducks, the duck houses were ventilated to dry the litter for 15 days. The
bedding materials of the duck houses were not replaced but were managed by spraying
chaff following the farmer’s discretion. There were eight slot openings (0.3 m × 0.5 m) in
the sidewalls, two 1.4 m diameter exhaust fans, and two 0.75 m diameter exhaust fans in
the mechanically ventilated duck house. The 1.4 m diameter exhaust fans were operated
via a simple on/off control. The 0.75 m diameter exhaust fans were operated according to
the control level (0–100%). A control level of 100% meant that the 0.75 m diameter exhaust
fan was fully operated. When all four exhaust fans were fully operating, the ventilation
rate of the mechanically ventilated duck house was about 62,300 m3·h−1 (equivalent to
an air change of 34.6 h−1). In winter and during the change of season, a small amount
of external air was allowed into the mechanically ventilated duck house through slot
openings. During summer, the slot openings, the exhaust fans, and open entrance were
used for the ventilation of the mechanically ventilated duck house. Although no cooling
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system was implemented for reducing the high temperature in the naturally ventilated
duck house during summer, the vent openings were fully open to allow the entry of fresh
air. In winter, vent openings were rarely opened to reduce energy costs and manage the
temperature inside the duck houses. Ventilation of the naturally ventilated duck house
was performed only during the daytime in winter. However, a kerosene heater (MS-101,
Samsung Industry Co., Busan, Korea) with a maximum heating capacity of 418,400 kJ·h−1

was used to properly maintain the thermal environment inside the duck houses in winter.
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Figure 2. Experimental duck houses located at Sinbuk-myeon, Yeongam-gun, Jeollanam-do
Province (126◦38′ E, 34◦53′ N). (a) Schematic information of mechanically ventilated duck house;
(b) schematic information of naturally ventilated duck house; (c) inside of mechanically ventilated
duck house; (d) inside of naturally ventilated duck house.

2.2. Recurrent Neural Network

Recently, machine learning has been actively used in several fields with the devel-
opment of computer performance. Machine learning in the livestock field is also actively
used to analyze animal behavioral pattern [19,20,26–28], to analyze behavior prior to calv-
ing [29–31], to analyze the voice of livestock [32], and to predict dependent variables
according to various environmental variables [18]. Among several machine learning tech-
niques, ANN has been actively used as a method to accurately predict the dependent
variables from independent variables. In this study, the RNN model, which is a type of
ANN, was used to predict the internal air temperature and relative humidity of the duck
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houses using the external air temperature and relative humidity, solar radiation, wind
environment, ventilation rate, and growth data of the duck. The RNN is an artificial neural
network suitable for dealing with time-series data. Using an RNN, iterative learning is
possible through the memory inside the artificial neural network. The memory can store
the information obtained at the previous stage of learning, and it provides a feedback
function that takes into account the information from the previous stage as the input data.
The structure of the RNN features a path for reinserting the output value of the hidden
layer at the previous timepoint (t − 1) as the input value of the hidden layer at the next
timepoint (t). This structure is an artificial neural network structure that repeats the process
in which the result of the current time (t) affects the next time (t + 1). The basic structure of
an RNN model is shown in Figure 3a.
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LSTM was developed to solve the vanishing gradient problem of a general RNN
algorithm [33], whereby the gradient of a timestep far from the current timestep (t) has little
effect on the learning process when learning data for a long time. It is impossible to learn
about long-term dependence using the general RNN model. LSTM remembers the data of a
long previous sequence. The core of the LSTM algorithm is a cell with several gates. LSTM
accepts previous data with an addition operation; hence, the vanishing gradient problem
does not occur. The basic structure of an LSTM model is shown in Figure 3b. Compared
with other time-series models, the LSTM model does not need to specify the nonlinear
functions to be estimated, and it has demonstrated superior performance in a wide range of
sequence modeling applications [33–36]. Additionally, if the number of layers is the same,
LSTM has a more complex structure and has more parameters than gated recurrent units
(GRUs) [37], which are also usually used for predicting some data in real time, resulting in
higher accuracy [38]. The LSTM model has also shown higher accuracy compared with the
GRU model in previous studies [27,39]. In this study, an LSTM model suitable for learning
long-term data was used to predict the internal environments of duck houses.

2.3. Experimental Procedure
2.3.1. Data Collection of Internal and External Environments of Duck Houses

To develop the RNN models for predicting the internal environments of duck houses,
validate them, and then enhance their accuracy, the monitoring data of the external and
internal environments observed during the field experiments were used. Each RNN model
according to seasons was developed using monitoring data during the summer, autumn,
and winter. As shown in Figure 4, 12 and 15 sensors (HTX 75 series, Dotech Inc., Ansan-si,
Gyeonggi-do, Korea) were installed to measure the internal air temperature and relative
humidity of the mechanically and naturally ventilated duck houses, respectively. These
sensors were installed at a height of 1.2 m at regular intervals to prevent breakdown by
birds. When the exhaust fans were operated in the mechanically ventilated duck house,
AC clamp sensors and an electrometer were installed for the monitoring of electric current
flow. The ventilation rates of the mechanically ventilated duck house were converted from
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the monitoring data of the electric current flow in real time. The data of the ventilation
rates, air temperature, and relative humidity inside the duck house were monitored at 1 s
intervals. However, the data averaged over 5 min were used to develop the RNN model.
To observe the weather data, a portable weather station (Watchdog weather station 2900ET,
Aurora, IL, USA) was installed on the roof of the control room in the farm. Weather data
such as the wind environments, solar radiation, air temperature, relative humidity, and
rainfall were measured at 1 s intervals, and data averaged over 5 min were recorded. Ducks
were reared for the same period in the mechanically and naturally ventilated duck houses.
The ducks were reared to about 3.5 kg, and the weights data for the development of the
RNN model were considered as the growth curve of the duck [40].
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2.3.2. Design of RNN Model of Duck House

In this study, the RNN models for predicting the internal temperature and relative
humidity of the duck houses were developed by learning the monitoring data measured
inside and outside of the mechanically and naturally ventilated duck houses. A vanishing
gradient problem may occur when long-term data are used for training data with a general
RNN model. Therefore, in this study, a single-layered LSTM model suitable for learning
long-term data was used. As learning parameters, the learning rate was set to 0.01, and the
tanh function, which is known to generally have high accuracy for the RNN model, was
used as the activation function. The Adam optimizer was applied as the optimizer [41],
and the loss was learned so that the mean square error was minimized [42–44]. For RNN
learning, missing data were linearly interpolated. Detailed information of the dataset for
development of the RNN model such as the monitoring period, the number of total dataset,
training dataset, and test dataset is presented in Table 2. The total dataset according to
summer, autumn, and winter was 12,960, 11,808, and 8640, respectively. Specifically, 70%
of the data measured for each rearing period were used as the learning data for model
development considering the time series, while 30% of the data for each rearing period
were used as data to validate the developed RNN models [21,22,31,45,46].
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Table 2. Date according to growing period during the experimental period.

Monitoring Period Seasons Growing
Days

Starting Date of
Monitoring Date of Shipment Total Dataset Training

Dataset
Test

Dataset

1st growing period Summer 45 days 6 August 2018 12 September 2018 12,960 9072 3888
2nd growing period Autumn 41 days 11 October 2018 13 November 2018 11,808 8266 3542
3rd growing period Winter 30 days 9 December 2018 7 January 2019 8640 6048 2592

External weather conditions such as air temperature, relative humidity, and solar
radiation are the factors affecting the internal air temperature and relative humidity of
duck houses. Furthermore, ventilation is one of the main factors with the greatest influence
on the internal environment of duck houses. Because the sensible heat and latent heat
of ducks change with their growth, it is necessary to consider the weight of the ducks
when developing the RNN models. Therefore, the data of external air temperature, relative
humidity, and solar radiation, as well as ventilation rate and weight of the duck, were
used as training data in order to develop the RNN model for predicting the internal air
temperature and relative humidity of the mechanically ventilated duck house. Although
it is hard to quantitatively monitor the ventilation rates of the naturally ventilated duck
house, the external wind speed and wind direction are the main factors for natural ven-
tilation. Therefore, when the RNN models of the naturally ventilated duck house were
developed, the wind speed and wind direction data were used as training data instead of
the ventilation rate.

Because the ranges of learning variables are different, the ranges of data according
to several variables should be unified from 0 to 1. If the data range is not unified, the
model diverges during the training process. For successful learning, all training data were
normalized in the range of 0 to 1 using the min–max scaler in Equation (1).

xscaled =
x− xmin

(xmax − xmin) + 10−7 , (1)

where x is the learning data, xscaled is the scaled learning data, xmax is the maximum value of
a variable, xmin is the minimum value of a variable, and 10−7 is a noise term for preventing
zero division.

2.3.3. Validation of RNN Model

The developed RNN model of the duck houses was validated by comparing the
predicted data of the air temperature and relative humidity using the RNN model with
the measured data of the air temperature and relative humidity data during the field
experiments. Thirty percent of the total data for each rearing period were used to validate
the developed RNN models. In general, the accuracy of the RNN model increases as the
sequence length increases, and there is a threshold value of sequence length for which the
accuracy of the RNN model no longer improves. A longer sequence length necessitates
a longer learning time for the development of the RNN model. Therefore, the optimal
sequence length was selected by comparing the accuracy of the RNN model developed
according to sequence lengths of 5, 10, 30, 60, 120, and 240 min. Additionally, the accuracy
and characteristics of the RNN model for the mechanically ventilated duck house were
compared with those of the BES model developed in a previous study [11]. Statistical
indices such as coefficient of determination (R2), root-mean-square error (RMSE), and
mean absolute percentage error (MAPE) were calculated to validate the RNN models by
comparing the predicted data obtained using the developed RNN model with the data
measured during the field experiments using Equations (2)–(4), respectively. R2 and RMSE,
which are generally used have a no-constant criterion for comparing the predicted and
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measured data. Therefore, MAPE was additionally used as a measure for evaluating the
predicted accuracy of the developed RNN models.

R2 =

 ∑n
i=1
(

Ri − Ri
)(

Ci − Ci
)√

∑n
i=1
(

Ri − Ri
)2 ×∑n

i=1
(
Ci − Ci

)2

2

, (2)

RMSE =

√
∑n

i=1(Ri − Ci)
2

n
, (3)

MAPE =
100
n

n

∑
i=1

∣∣∣∣Ri − Ci
Ri

∣∣∣∣, (4)

where R2 is the coefficient of determination, RMSE is the root-mean-square error (◦C, %),
MAPE is the mean absolute percentage error (%), n is the total data according to time, Ri is
the measured data at a specific time, Ri is the average of the measured data at a specific
time, Ci is the predicted data at a specific time, and Ci is the average of the predicted data
at a specific time.

2.3.4. Comparison of Accuracy of RNN Models

Analysis conditions for the developed RNN model were a total of 48 cases as shown in
Table 3. The data of external air temperature, relative humidity, solar radiation, ventilation
rate, and weight of the duck were used as training data in order to develop the RNN model
of the mechanically ventilated duck house for estimating the internal air temperature and
relative humidity. The data of external air temperature, relative humidity, solar radiation,
wind speed, wind direction, and weight of the duck were used as training data in order to
develop the RNN model of the naturally ventilated duck house for estimating the internal
air temperature and relative humidity.

Table 3. Experimental conditions of learning data for developing RNN model.

Conditions Conditions Number of Cases

Learning data
(Independent

variables)

Mechanically
ventilated duck house

Basic model

(1) External air temperature,
external relative humidity, solar

radiation, ventilation rates of
duck house, and duck weight 4

Simplified model
(2) External air temperature,

external relative humidity, and
duck weight

Naturally ventilated
duck house

Basic model

(3) External air temperature,
external relative humidity, solar

radiation, wind speed, wind
direction, and duck weight

Simplified model
(4) External air temperature,

external relative humidity, and
duck weight

Dependent variable Internal air temperature and internal relative humidity 2

Seasons
Summer (30 July 2018–12 September 2018),

autumn (4 October 2018–13 November 2018), and
winter (26 November 2018–7 January 2019)

3

Order of sequence Sequential order and reverse order 2

Total - 48

Considering the applicability of the RNN models to the field, simplified RNN models
were additionally developed by learning only the data of the external air temperature,
relative humidity, and duck weight, which are relatively easy to acquire at duck farms. It
was generally difficult to quantitatively monitor the ventilation rate of duck houses at duck
farms. Because most farms do not install their own weather stations, it is difficult to observe
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the external wind environment and radiation in real time. However, it is relatively easy
to obtain the data of external air temperature and relative humidity from simple sensor
installation and through the Meteorological Agency. The duck weight is an important factor
affecting the internal environment of duck houses. These data could be calculated from
growing days. The accuracy of simplified RNN models was then compared and analyzed.

Additionally, the accuracy of RNN models can be improved when time-series data are
trained in reverse order according to previous studies [11,47–49]. Therefore, in this study,
the RNN models were developed by learning time-series data in reverse to improve their
accuracy, and the accuracy of these RNN models was then compared.

3. Results and Discussion
3.1. Analysis of Internal Environment of Experimental Duck Houses

To develop RNN models for predicting internal air temperature and relative humidity
and to validate the RNN models, air temperature and relative humidity sensors were
installed to monitor the internal air temperature and relative humidity of the duck houses.
The box plots shown in Figure 5 describe the measured distributions of the air temperature
and relative humidity data of the experimental duck house in different seasons. Descriptive
statistical analysis was conducted to analyze the characteristics of the internal air tempera-
ture and relative humidity data according to seasons. Descriptive statistics of the internal
air temperature and relative humidity of the mechanically and naturally ventilated duck
houses during the monitoring periods are presented in Table 4.
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Table 4. Date information according to growing period during experimental period.

Air temperature according to
seasons

Average
air remperature (◦C)

Standard
deviation (◦C)

Lowest air
temperature (◦C)

Highest air
temperature (◦C)

Summer
MV 27.4 2.9 19.0 35.2
NV 29.3 4.7 16.0 46.1

Outside 26.6 4.7 13.2 39.1

Autumn
MV 18.4 4.1 9.7 36.5
NV 16.5 4.6 6.7 36.2

Outside 12.5 4.9 1.2 27.1

Winter
MV 12.3 2.6 3.7 19.4
NV 10.9 4.3 2.0 22.5

Outside 2.9 5.9 −10.7 19.6

Relative humidity according to
seasons

Average relative
humidity (%)

Standard
deviation (%)

Lowest relative
humidity (%)

Highest relative
humidity (%)

Summer
MV 84.0 8.5 53.4 95.8
NV 78.4 14.7 32.7 97.7

Outside 80.5 14.2 40.7 100.0

Autumn
MV 83.8 11.4 46.8 98.0
NV 83.8 19.2 29.6 100.0

Outside 81.2 17.9 28.7 100.0

Winter
MV 95.0 5.7 60.3 100.0
NV 95.2 8.7 62.9 100.0

Outside 75.2 17.1 18.4 100.0

Considering that the threshold temperature of high-temperature stress is 26.7 ◦C [25],
ducks suffered high-temperature stress in the summer because the average air temperatures
inside the mechanically and naturally ventilated duck houses were 27.4 and 29.3 ◦C,
respectively. Even though the highest outside air temperature was 39.1 ◦C in summer, the
highest air temperature of the mechanically and naturally ventilated duck house was as
high as 35.2 ◦C and 46.1 ◦C. In summer, the air temperature inside the naturally ventilated
duck house was higher than the air temperature inside the mechanically ventilated duck
house. The naturally ventilated duck house was vulnerable to high-temperature stress in
the summer.

In winter, the differences in air temperature between the inside and outside of the
duck houses were relatively large because of the use of heaters and the minimal ventilation.
In particular, the average air temperature inside the naturally ventilated duck house with
relatively low thermal insulation was lower than that inside the mechanically ventilated
duck house. Furthermore, the deviation between the lowest and highest air temperatures
of the naturally ventilated duck was larger than that of the mechanically ventilated duck
house. The exhaust fans were minimally operated to control the internal temperature
environments and to reduce the energy costs of the mechanically ventilated duck house.
The vent openings of the naturally ventilated duck house were minimally open. This is
why the average relative humidity of the mechanically and naturally ventilated duck house
was measured as 95.0% and 95.2%, respectively. In addition to the low temperature in
winter, the high relative humidity could affect the disease management and productivity of
ducks. The standard deviation of the air temperature during autumn was larger than that
in summer and winter because the daily difference in the air temperature between day and
night was high. Therefore, environmental control inside the duck houses was necessary
although the average air temperature and relative humidity inside the duck house during
autumn were more suitable.

The deviations of environments inside the naturally ventilated duck house were larger
than those inside the mechanically ventilated duck house in all seasons. The deviation
of the relative humidity inside the naturally ventilated duck house was measured to be
relatively large because the vent openings were continuously open for natural ventilation
in the summer and autumn. On the other hand, in the winter season, the deviation of the
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relative humidity inside the natural ventilated duck house was smaller than that in the
summer and autumn because vent openings were rarely open.

Through the analysis of monitoring data, it was found that there were problems with
the environmental management inside the duck houses according to seasons. In particular,
the internal environments of the naturally ventilated duck house were worse than those of
the mechanically ventilated duck house. Therefore, it was necessary to properly manage
the internal environments of the duck houses. It was also essential to accurately predict the
internal environments of the duck house for optimal management. Furthermore, differences
in characteristics of the internal environments of the duck houses were distinct in each
season. When monitoring data were trained without distinction of seasons, it was expected
that seasonal differences would act as a factor reducing the accuracy of the RNN models.
Therefore, when training the RNN models, the monitoring data were classified each season.

3.2. Validation of Duck House RNN Model

The developed RNN model of the duck houses was validated by comparing the pre-
dicted data of the air temperature and relative humidity using the RNN model with the data
of the air temperature and relative humidity data measured during the field experiments.
For developing the RNN model, the accuracy according to several sequence lengths was
compared to determine the sequence length of the training data. The air temperature and
relative humidity predicted by the developed RNN model and measured during the field
experiments are shown in Figure 6 as a representative case. To quantitatively compare
the accuracy of the RNN models, the statistical indices of R2, RMSE, and MAPE were
calculated, and the results are shown in Table 5.
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Figure 6. Test data measured during field experiment and predicted by RNN model according
to sequence lengths (mechanically ventilated duck house, summer). (a) Air temperature inside
the mechanically ventilated duck house; (b) relative humidity inside the mechanically ventilated
duck house.

When the sequence length was 90 min, the R2, RMSE, and MAPE values for the internal
air temperature data predicted by the RNN models and measured at the field experiments
were 0.98, 0.35 ◦C, and 0.85%, respectively. When the sequence length was 120 min, the
R2, RMSE, and MAPE values for the air temperature data predicted by the RNN model
and measured at the field experiments were 0.99, 0.23 ◦C, and 0.45%, respectively. The
sequence length should be at least 90 min to ensure that the deviation between internal air
temperature data predicted by the RNN model and measured during field experiments
was within 1%. On the other hand, when the sequence length was 120 min, the R2, RMSE,
and MAPE values for the internal relative humidity data predicted by the RNN models and
measured at the field experiments were 0.98, 1.11 ◦C, and 0.79%, respectively. The sequence
length should be at least 120 min to ensure that the deviation between internal relative
humidity data predicted by the RNN model and measured during field experiments was
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within 1%. When the sequence length was 120 min, both air temperature and relative
humidity data could be predicted by the RNN model within 1% error compared to the
measured data. When the sequence length was 150 and 180 min, the accuracy of the RNN
model was not significantly improved compared to other sequence lengths, but it took a
long time to develop the RNN model. Therefore, the optimal sequence length was selected
at 120 min, and it was applied to the development of RNN models. The accuracy of the
RNN model for both air temperature and relative humidity was high. It was deemed
suitable to use the RNN model to predict the internal temperature and humidity of the
duck houses from the external air temperature, relative humidity, solar radiation, wind
speed, wind direction, ventilation rate, and weight of the duck.

Table 5. Validation of RNN model according to sequence lengths (mechanically ventilated duck
house, summer).

Internal air
temperature

Sequence length for LSTM model BES model [11]30 min 60 min 90 min 120 min 150 min 180 min

R2 0.96 0.96 0.98 0.99 0.99 0.99 0.95
RMSE (◦C) 0.61 0.51 0.35 0.23 0.25 0.22 0.70
MAPE (%) 1.50 1.22 0.85 0.45 0.47 0.44 1.71

Internal relative
humidity

Sequence length for LSTM model BES model [11]30 min 60 min 90 min 120 min 150 min 180 min

R2 0.91 0.95 0.96 0.98 0.98 0.98 0.92
RMSE (◦C) 3.16 2.35 1.62 1.11 1.08 1.09 4.61
MAPE (%) 3.12 2.16 1.57 0.79 0.78 0.79 4.33

Additionally, the RNN model was able to predict more accurately compared with
the BES model developed in the previous study [11]. Since the BES model in the previous
study and RNN model in this study were developed on the basis of the same measurement
data, these two models could be directly compared. The BES model was developed using
the equilibrium equation of physical factors, and it was possible to apply it in changing
conditions. For example, the BES model could be applied to predict the air temperature
and relative humidity of duck houses which were different from the size of the developed
duck house model. Although the accuracy of the RNN model was high for the condition of
the trained data, the accuracy of the RNN model was uncertain for untrained new data. For
example, the accuracy of the RNN model was low when the RNN model was applied to
predict the air temperature and relative humidity of duck houses which were different from
the size of the developed duck house model. However, the RNN models were expected to
be highly applicable to the field because the RNN models could be continuously improved
by learning the monitoring data in the future.

3.3. Analysis of Accuracy of RNN Model according to Seasons and Applicability of Simplified
RNN Model

Ventilation operation, evaporation of litters, condensation at the wall, etc. were
different according to seasons. However, the RNN models were developed by dividing the
training data according to seasons because it was difficult to quantitatively monitor the data
as these factors constantly changed. The accuracy of the RNN models trained in sequential
order is shown in Tables 6 and 7. The accuracy of the RNN models trained in reverse
order is shown in Tables 8 and 9. It is generally difficult to quantitatively monitor solar
radiation, ventilation rates, and wind environments (wind speed, wind direction) because
a weather station is generally not installed at duck farms. Considering the applicability
of the RNN models to the field, the simplified RNN models were developed by learning
only the data of the external air temperature, external relative humidity, and duck weight,
which are relatively easy to acquire at duck farms. The accuracy of simplified RNN models
was analyzed according to the type of duck house and seasons.



Agriculture 2022, 12, 318 14 of 19

Table 6. Accuracy of RNN model of mechanically ventilated duck house according to seasons and
variables (sequential order).

Summer

Basic model Simplified model

Internal
air Temperature

Internal
relative Humidity

Internal
air Temperature

Internal
relative Humidity

R2 0.995 0.989 0.995 0.990
RMSE (◦C, %) 0.182 0.947 0.178 0.867

MAPE (%) 0.424 0.652 0.461 0.618

Autumn

Basic model Simplified model

Internal
air temperature

Internal
relative humidity

Internal
air temperature

Internal
relative humidity

R2 0.997 0.993 0.998 0.990
RMSE (◦C, %) 0.299 0.453 0.150 0.550

MAPE (%) 1.315 0.337 0.679 0.361

Winter

Basic model Simplified model

Internal
air temperature

Internal
relative humidity

Internal
air temperature

Internal
relative humidity

R2 0.993 0.995 0.997 0.995
RMSE (◦C, %) 0.173 0.358 0.095 0.277

MAPE (%) 0.986 0.296 0.505 0.193

Table 7. Accuracy of RNN model of naturally ventilated duck house according to seasons and
variables (sequential order).

Summer

Basic model Simplified model

Internal
air Temperature

Internal
relative Humidity

Internal
air Temperature

Internal
relative Humidity

R2 0.981 0.986 0.978 0.983
RMSE (◦C, %) 0.939 1.976 0.680 1.931

MAPE (%) 2.854 1.988 1.551 1.877

Autumn

Basic model Simplified model

Internal
air temperature

Internal
relative humidity

Internal
air temperature

Internal
relative humidity

R2 0.995 0.997 0.994 0.996
RMSE (◦C, %) 0.263 1.200 0.260 1.003

MAPE (%) 1.295 1.060 1.140 0.838

Winter

Basic model Simplified model

Internal
air temperature

Internal
relative humidity

Internal
air temperature

Internal
relative humidity

R2 0.993 0.995 0.997 0.976
RMSE (◦C, %) 0.306 0.619 0.209 1.492

MAPE (%) 2.710 0.402 2.114 0.803

In this study, comparing the accuracy of the RNN models trained in sequential and
reverse order for learning data showed no significant difference in accuracy. Therefore,
the RNN models trained in reverse order, which are known to have higher accuracy, were
analyzed as the representative cases following the results of previous studies [47–49].

The RNN model of the mechanically ventilated duck house in summer predicted
the air temperature and relative humidity with errors of 0.412% and 0.731%, respectively.
In autumn, the RNN model of the mechanically ventilated duck house predicted the air
temperature and relative humidity with errors of 0.526% and 0.401%, respectively. In winter,
the RNN model of the mechanically ventilated duck house predicted the air temperature
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and relative humidity with errors of 2.317% and 0.332%, respectively. The RNN model
of the mechanically ventilated duck house was able to accurately predict the internal air
temperature and relative humidity with an accuracy of 0.401–0.731% in all seasons. Since
the internal environments of the mechanically ventilated duck houses were controlled
through the operation of exhaust fans, there were few abnormal situations in the duck
house. For this reason, the accuracy of the RNN model of the mechanically ventilated duck
house was high.

Table 8. Accuracy of RNN model of mechanically ventilated duck house according to seasons and
variables (reverse order).

Summer

Basic model Simplified model

Internal
air Temperature

Internal
relative Humidity

Internal
air Temperature

Internal
relative Humidity

R2 0.988 0.980 0.987 0.981
RMSE (◦C, %) 0.221 1.065 0.224 1.070

MAPE (%) 0.412 0.731 0.390 0.761

Autumn

Basic model Simplified model

Internal
air temperature

Internal
relative humidity

Internal
air temperature

Internal
relative humidity

R2 0.998 0.998 0.999 0.998
RMSE (◦C, %) 0.137 0.499 0.121 0.482

MAPE (%) 0.526 0.401 0.643 0.406

Winter

Basic model Simplified model

Internal
air temperature

Internal
relative humidity

Internal
air temperature

Internal
relative humidity

R2 0.983 0.991 0.985 0.991
RMSE (◦C, %) 0.487 0.647 0.403 0.728

MAPE (%) 2.317 0.332 1.654 0.463

Table 9. Accuracy of RNN model of naturally ventilated duck house according to seasons and
variables (reverse order).

Summer

Basic model Simplified model

Internal
air Temperature

Internal
relative Humidity

Internal
air Temperature

Internal
relative Humidity

R2 0.994 0.996 0.995 0.995
RMSE (◦C, %) 0.414 1.103 0.390 1.313

MAPE (%) 0.813 1.254 0.891 1.512

Autumn

Basic model Simplified model

Internal
air temperature

Internal
relative humidity

Internal
air temperature

Internal
relative humidity

R2 0.996 0.998 0.997 0.996
RMSE (◦C, %) 0.385 0.914 0.352 1.496

MAPE (%) 1.891 1.048 1.701 1.819

Winter

Basic model Simplified model

Internal
air temperature

Internal
relative humidity

Internal
air temperature

Internal
relative humidity

R2 0.997 0.984 0.997 0.989
RMSE (◦C, %) 0.229 0.866 0.239 0.744

MAPE (%) 1.187 0.490 1.285 0.550

The RNN model of the naturally ventilated duck house in summer predicted the
air temperature and relative humidity with errors of 0.813% and 1.254%, respectively.



Agriculture 2022, 12, 318 16 of 19

In autumn, the RNN model of the naturally ventilated duck house predicted the air
temperature and relative humidity with errors of 1.891% and 1.048%, respectively. In
winter, the RNN model of the naturally ventilated duck house predicted the air temperature
and relative humidity with errors of 1.187% and 0.490%, respectively. The RNN model
of the mechanically ventilated duck house was able to accurately predict the internal air
temperature and relative humidity with an accuracy of 0.490–1.891% in all seasons.

The average MAPE calculated using the data of air temperature and relative humid-
ity, which were predicted the RNN models of the mechanically ventilated duck house,
was 0.99% and 0.51%, respectively. The average MAPE calculated using the data of air
temperature and relative humidity, which were predicted the RNN models of the natu-
rally ventilated duck house, was 1.29% and 1.11%, respectively. The accuracy of the RNN
model of the naturally ventilated duck house was lower than that of the mechanically
ventilated duck house. Because the internal environments of the naturally ventilated duck
houses were operated through natural ventilation, there were several uncertainties such as
nonuniformity of the internal environments.

As a result of comparing the accuracy of the RNN model trained in reverse order
according to seasons, the RNN models of both the mechanically and the naturally ventilated
duck houses predicted the internal air temperature and relative humidity with errors of
less than 1% in the summer. In summer, the accuracy of the RNN models was the highest
compared with other seasons. In summer, the exhaust fans were maximally operated in
the mechanically ventilated duck house, and the vent openings of the naturally ventilated
duck house were maximally open. Because the internal air temperature and relative
humidity of the duck houses were similar to the external air temperature and relative
humidity, the internal air temperature and relative humidity could be accurately predicted
through learning the external air temperature and relative humidity data. In the case of the
naturally ventilated duck house, which is sensitively affected by the external environment,
the accuracy of the RNN models was lower than for other seasons in the autumn when the
external air temperature and relative humidity environment changed significantly. In the
case of the mechanically ventilated duck house, the accuracy of the RNN model in winter
was lower than that in other seasons.

In the case of the simplified RNN model for applicability to the field, the accuracy of
the simplified RNN models for both the mechanically and the naturally ventilated duck
houses was similar to the accuracy of the basic RNN models. This is because the time factor
included the changes over time of solar radiation, ventilation rate, ventilation configuration,
etc. Therefore, the internal air temperature and relative humidity of the duck houses could
be predicted by obtaining the data of external air temperature and relative humidity from
installed sensors and the Meteorological Agency. In addition, the internal environments of
duck houses could be more appropriately managed using these simplified RNN models.

However, the simplified RNN models could not consider the changes in solar radiation,
ventilation, wind environment, etc. in the future, because the data of solar radiation,
ventilation, and wind environment, which are the major factors affecting the internal air
temperature and relative humidity of the duck houses, were not considered when learning
these data for the development of the simplified RNN models. On the contrary, the basic
RNN models would be more accurate than the simplified RNN models for the changes
in solar radiation, ventilation, and wind environments in the future because these were
considered during learning for the development of the basic RNN models.

4. Conclusions

RNN models were developed for predicting the internal air temperature and relative
humidity of duck houses in this study according to the type of duck house, seasons, and
environmental variables. The environmental data inside and outside the duck houses were
monitored to analyze the seasonal problems of the experimental duck houses, to develop
RNN models for predicting the internal environments of duck houses, and to validate the
developed RNN models. The data of the air temperature, relative humidity, solar radiation,



Agriculture 2022, 12, 318 17 of 19

wind direction, wind speed, ventilation rate of the mechanically ventilated duck house, etc.
were acquired through field experiments.

Descriptive statistical analysis was conducted to analyze the characteristics of the
internal air temperature and relative humidity data according to seasons. Ducks suffered
high-temperature stress because the average air temperatures inside the mechanically and
naturally ventilated duck houses during summer were 27.4 and 29.3 ◦C, respectively. The
naturally ventilated duck house was particularly vulnerable to high-temperature stress in
the summer. The standard deviation of the air temperature and relative humidity during
autumn was large because the daily difference in the air temperature between day and
night was high. The high relative humidity of the mechanically and naturally ventilated
duck houses in winter could affect the disease management and productivity of ducks.
Therefore, it is necessary to properly manage the internal environments of the duck houses.
It is also essential to accurately predict the internal environments of the duck house for
optimal management.

The developed RNN model of the duck houses was validated by comparing the pre-
dicted results for the air temperature and relative humidity obtained using the RNN model
with the air temperature and relative humidity data measured during the field experiments.
The optimal sequence length was selected as 120 min. As a result of the validation, both air
temperature and relative humidity data by the RNN model could be predicted within 1%
error compared to the measured data. The RNN model of the mechanically ventilated duck
house was able to accurately predict the internal air temperature and relative humidity with
an accuracy of 0.401–0.731% in all seasons. The RNN model of the naturally ventilated duck
house was able to accurately predict the internal air temperature and relative humidity
with an accuracy of 0.490–1.891% in all seasons. In the case of the simplified RNN model
for applicability to the field, accuracies of the RNN models were similar to the accuracies of
the basic RNN models. Therefore, the internal air temperature and relative humidity of
the duck houses could be predicted by obtaining the data of external air temperature and
relative humidity from sensor installation and the Meteorological Agency. In addition, the
internal environments of duck houses could be more appropriately managed using these
RNN models.

The RNN models developed in this study have the advantage that they can be contin-
uously improved by learning monitoring data in the future. The simplified RNN models
with high accuracy are expected to be highly applicable to the field. They can be applied
to control the internal environment of livestock farms and identify the occurrence of high-
temperature stress for livestock. Furthermore, predicting the internal environments of
livestock houses is important because the poor internal environment of livestock houses
cause sensor corrosion or malfunction. In the future, for the convergence of ICTs and
application of smart farms in duck houses, the RNN models of duck houses developed in
this study can be applied to predict and control the internal environments of duck houses
using the model predictive control (MPC) technique.
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