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Abstract: This study aimed to understand green finance’s impact on fertilizer use and agricultural
carbon emissions. We selected the macro panel data of 30 provinces (cities) in China from 2000 to
2019. The main research methods are standardized test framework (cross-sectional dependence, unit
root and cointegration test), the latest causal test, impulse response, and variance decomposition
analysis. Examined the long-term equilibrium relationship between green finance, fertilizer use, and
agricultural carbon emissions. The results show: fertilizer consumption and agricultural carbon
emissions have a positive correlation. However, green finance can significantly reduce agricultural
carbon emissions. The causal test confirmed the bidirectional causal relationship between agricultural
carbon emissions and fertilizer use. At the same time, verified one-way causality from green finance
to both of them. Interpret the results of impulse response and variance decomposition analysis:
among the changes in agricultural carbon emissions, chemical fertilizers contributed 2.45%, green
finance contributed 4.34%. In addition, the contribution rate of green finance to chemical fertilizer
changes reached 11.37%. Green finance will make a huge contribution to reducing fertilizer use
and agricultural carbon emissions within a decade. The research conclusions provide an important
scientific basis for China’s provinces (cities) to formulate carbon emission reduction policies. China
has initially formed a policy system and market environment to support the development of green
finance, in 2020, the “dual carbon” goal was formally proposed. In 2021, the national “14th Five-Year
Plan” and the 2035 Vision Goals emphasized the importance of green finance. It plays an important
supporting role in carbon emission reduction goals, and green finance has become an important pillar
of national strategic goals.

Keywords: green finance; chemical fertilizer use; carbon emissions; agricultural production;
carbon neutrality

1. Introduction

With increasing greenhouse gas emissions, global warming has become one of the
greatest threats faced by countries all over the world, which has brought about melting
glaciers, rising sea levels [1], increasing biological morbidity and mortality [2], and increas-
ing frequency of extreme weather including high temperatures and floods [3]. Reducing
carbon emissions is a key step to improve the global climate. On 12 December 2015, the 21st
Conference of the Parties of the United Nations Framework Convention on Climate Change
was held. At the meeting, nearly 200 contracting parties passed the “Paris Agreement”
to actively respond to global climate change after 2020. According to the world energy
statistics in the 70th edition of the Statistical Yearbook published by the British Petroleum
Corporation, in 2020, China is the main carbon emitter in Asia or even the largest carbon
emitter in the world, accounting for 30.7%, far exceeding other countries and regions,
and China’s future carbon emissions will be crucial to global environmental governance.
Therefore, China has also taken active actions, making a solemn commitment to achieve
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the “double carbon” goals of peak carbon dioxide emissions in 2030 and carbon neutrality
in 2060, actively exploring ways to reduce carbon simultaneously.

Notably, rural activity is an important source of carbon emissions [4]. Carbon emis-
sions caused by agricultural production and land use account for a quarter of total human
emissions [5]. As the largest agricultural country, China has the highest percentage of
carbon emissions from agricultural production among all countries in the world. China’s
agricultural carbon emissions increased by 18% between 1990 and 2018, from 600 million
tons to 710 million tons [6], accounting for 11–12% of the world’s agricultural emissions;
in comparison, America only accounted for 6–7% [7]. The relevant research of the World
Food and Agriculture Organization (FAO) shows that 75% of carbon dioxide in traditional
intensive agriculture comes from fertilizers, feeds and fuels, and the use of fertilizers is the
main source of greenhouse gases [8]. Under normal circumstances, in order to increase
crop yields and reduce planting costs, farmers in China use more chemical fertilizers [9].
In the past 40 years, China’s sown area has decreased by 100 million hectares, but grain
production has increased by 343 million tons, an increase of 107%. The increase in grain
output per unit area has also brought about an increase in the use of chemical fertilizers. In
1980, the use of chemical fertilizers was 12.69 million tons and increased to 52.04 million
tons in 2019 [10].

Reducing carbon emissions from agricultural production is an effective path and
aspect to reduce total carbon emissions in the future and has an important impact on
mitigating climate change [11]. Climate change has a negative impact on crops [12]. There-
fore, the adoption of energy-saving and renewable technology is one of the solutions to
mitigate environmental emissions of agriculture [13,14].The production and planting of
green agriculture are required by future agricultural development and will become a trend,
which is conducive to the realization of environmentally green and low carbon [15]. In
view of the urgency of agricultural emission reduction and the high research value and
significance [16], the research on the carbon emission reduction mechanism of agricultural
production has gradually become a hot spot [17,18]. Based on some scholars’ views [19–21]
that there is a phenomenon of pollution before treatment in society, and there is an inverted
U-shaped Kuznets curve relationship between environmental pollution and economic
growth, Balsalobre-Lorente et al. [22] explored the relationship between agricultural activi-
ties, energy consumption, trade opening, mobile use, and economic growth, pointing out
that clean energy can effectively reduce agricultural carbon emissions.

With the increase in measures taken by countries to cope with global climate change,
green finance has gradually attracted attention and become a new research focus of schol-
ars [23]. However, there is no clear and specific definition of the concept of green finance,
and researchers have not reached a consensus on it [24]. Green finance originated in the
1970s. In 1972, the “Human Environment Conference” was convened by the United Nations
in Stockholm, Sweden, and governments around the world jointly discussed environmental
issues for the first time. In 2016, the G20 Green Finance Research Group defined green
finance as “investment and financing activities that can generate environmental benefits to
support sustainable development”. In 2017, the European Commission pointed out green
finance is a concept covering climate finance and sustainable finance in a study on green
finance, but it is extremely difficult to clearly distinguish between green finance and the
latter two. Green finance includes three aspects: funding to support public green policies,
investing in green projects through financing activities, and building a green financial
system [25]. China has actively become the pioneer of green finance and has basically set up
the overall framework of the green financial system, including green bonds, green industry
funds, green credit, and green insurance. Green finance can reduce carbon footprint and
improve environmental quality, which is environmentally friendly [26]. “Green finance”
can effectively support environmentally friendly projects, improve resource utilization
efficiency, guide consumers to establish green consumption concepts, promote sustainable
social development, and respond to climate change [27].
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In the past, the financial sector rarely took the ecological environment and other
factors into account, and people chose to invest in projects that caused environmental
deterioration to make profits [28]. After considering ecological factors, the financial sector
began to pay attention to green sustainable development, make green investment [29],
provide more funds and guarantees for farmers using green credit, insurance, subsidies,
etc., and encourage farmers to adjust their planting structure and methods by economic
benefits, so as to reduce the use of chemical fertilizers. In order to avoid risks, farmers
will significantly increase the application of chemical fertilizers [30], while agricultural
insurance can smooth the production risks, thus significantly reducing the use of chemical
fertilizers [31]. Agricultural subsidies can significantly reduce the use of chemical fertilizers.
Studies have shown that agricultural subsidies increased by 100%, the amount of fertilizer
used will reduce by an average of 3.4% [32]. In addition, Veelen [11] connects green finance
with the social material allocation of the agricultural sector and proposes that low-carbon
agricultural energy can be integrated into investment resources, which provides a new way
to reshape environmental climate change and its governance.

Green finance has gradually become the best financial strategy to reduce carbon
dioxide emissions. Meo and Karim [33] used the QQR method to prove that a negative
correlation exists between green finance and CO2 emissions during a comparative study
of the top ten economies (different pollution levels and market conditions) that support
green finance. Flammer [34] assessed the environmental impact of green investment and
financing projects, and Wang et al. [35] adopted the entropy method, both of which found
that green finance was helpful to reduce carbon emissions. Wang et al. [35] also pointed
out that China’s energy projects funded by green finance are expected to reduce carbon
emissions by 12.6 million tons per year. Moreover, the existing research mainly focuses on
the influence path of green finance as an influencing factor on some variables and the effect
of related policies. Scholars mostly discuss the influence of green finance on high-quality
economic development [27], “two high” (high energy consumption and high pollution)
enterprises’ investment and financing behavior [36] and sustainable development [37].
Existing documents mostly demonstrate the positive effects of green finance on environ-
mental protection from the industrial level [38] and enterprise [36] emission reduction.
Little literature relates to green finance and the agricultural sector, and it seldom discusses
the influence of fertilizer use and green finance as both control policies on agricultural
carbon emissions.

In view of this, this study attempts to test the long-term relationship among green
finance, fertilizer use, and carbon emissions in the agricultural sector by using the provincial
data of China from 2000 to 2019. This study considers provincial data, not national data,
and provides a broader understanding of the relationship among variables. We think that
this research has contributed to the existing literature in the following aspects: Firstly, based
on provincial data, this study estimates the amount of agricultural carbon emissions in each
province (city) and studies the influence of green finance and fertilizer use on agricultural
carbon emissions in various provinces of China. Next, this paper solved the causality test
among chemical fertilizer, green finance, and agricultural carbon emissions and deepened
the understanding of the long-term influence of chemical fertilizer use and green finance
on agricultural carbon emissions. Finally, the article can enrich the theoretical research on
green finance and the use of chemical fertilizers, as well as provide a basis and reference
for the government to formulate carbon emission reduction policies.

2. Materials and Methods
2.1. Data and Index
2.1.1. Total Agricultural Carbon Emission

Chemical fertilizers, agricultural plastic films, pesticides, and agricultural activities
can be regarded as the main sources of agricultural carbon emissions [39]. This study
focuses on agricultural production and planting in a narrow sense. When considering
the factors that may lead to carbon emissions in the process of agricultural production
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activities, we pay more attention to carbon emissions caused by input factors, so we take
chemical fertilizers, pesticides, agricultural plastic films, agricultural diesel oil, agricultural
cultivation, and agricultural irrigation as carbon emission sources to estimate the total
agricultural carbon emission of each province. To quantify the above carbon sources, we
select data such as the pure amount of agricultural chemical fertilizer application, pesticide
consumption, agricultural plastic film consumption, agricultural diesel oil consumption, the
total sown area of agriculture, and the effective irrigated area of agriculture to measure. The
composition of fertilizers is a compound fertilizer, which contains nitrogen, phosphorus,
and potassium. Table 1 shows the data sources of the above variables. The left column is
the name of the main variable, the middle column is the data unit, and the right column is
the data source corresponding to each variable.

Table 1. The data sources.

Variables Unit Data Sources

Pure amount of agricultural chemical
fertilizer application kg

Pesticides consumption kg
Agricultural plastic films consumption kg China Rural Statistical Yearbook

Agricultural diesel oil consumption kg
The total sown area of agriculture hm2

The effective irrigated area of agriculture hm2

Note: They are provincial data from 2000 to 2019.

We calculate the total agricultural carbon emission of each province (city) by multiply-
ing the carbon source usage and carbon emission coefficient based on the collected data.
The measurement formula adopted in this paper is as follows:

E = ∑ Ei = ∑ Ti•δi

In which E represents total agricultural carbon emission, Ti denotes the amount of
carbon source used. δ expresses the carbon emission coefficient of each carbon source,
i refers to species of carbon sources (i = 1, 2, . . . , 6). The carbon emission calculation method
adopts the emission coefficient method, that is, the carbon emission is equal to the carbon
source consumption multiplied by the corresponding carbon emission coefficient. Each
carbon source emission coefficient and the main reference sources are shown in Table 2. All
GHG emissions in this study are considered to be caused by the input factors of agricultural
production activities. The unit in the second column, the former is the carbon dioxide
emission unit kg, and the latter is the calculation unit of each carbon source.

Table 2. Carbon emission coefficient reference.

Carbon Source Carbon Emission Coefficient Refer to the Main Source

Fertilizer 0.895 6 kg/kg Oak Ridge National Laboratory [40]
Pesticide 4.934 1 kg/kg Oak Ridge National Laboratory

Agricultural plastic films 5.18 kg/kg Institute of Resource, Ecosystem and Environment of
Agriculture, Nanjing Agricultural University

Agricultural diesel oil 0.592 7 kg/kg Intergovernmental Panel on Climate Change IPCC

Agricultural cultivation 3.126 kg/hm2 College of Biological Sciences, China
Agricultural University

Agricultural irrigation 25 kg/hm2 [40,41]

Note: kg/kg means that for each additional kilogram of carbon source used, the increase in carbon emission is the
value corresponding to the carbon emission coefficient, and the unit is kg. Taking fertilizer as an example, for
every additional kilogram of fertilizer use, carbon emissions increase by 0.8956.

Among the above carbon sources, the statistical problem of the concept of the agri-
cultural ploughing process may not involve the use of machinery, or the proportion is
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extremely small, so the double calculation between agricultural diesel oil and agricultural
cultivation is ignored here.

2.1.2. Green Financial Index Construction Method

Table 3 lists the four main indicators of constructing the green financial index in this
paper. In order to measure the development of green finance more comprehensively, the
positive development indicators such as green insurance and green investment are selected
as well as the reverse indicators such as green credit and government support. The data
used come from the China Statistical Yearbook, Statistical Yearbook of each province, China
Insurance Yearbook, and the index is calculated by entropy method.

Table 3. The definition and attribute of the green financial index.

Primary Index Characterization Index Indicator Description Index Attribute

Green credit
The proportion of interest

expenditure of energy-
intensive industries

Interest expenditure of
six high energy
consumption

industries/Industrial
interest expense

−

Green investment
Environmental pollution
control investment as a

proportion of GDP

Investment in
environmental pollution

control/GDP
+

Green insurance Agricultural
insurance depth

Agricultural insurance
income/Total agricultural

output value
+

Government
support

The proportion of
financial environmental
protection expenditure

Financial environmental
protection

expenditure/General
budget expenditure

−

Green credit
The proportion of interest

expenditure of energy-
intensive industries

Interest expenditure of
six high energy
consumption

industries/Industrial
interest expense

−

Green investment
Environmental pollution
control investment as a

proportion of GDP

Investment in
environmental pollution

control/GDP
+

Notes: “+” indicates the positive attribute of the index. “−” indicates the negative attribute of the index. Because
of the missing data, the missing values of some years are replaced by the average values of the data of adjacent
five years.

Green credit refers to a brand-new credit policy which was put forward by the People’s
Bank of China, the Ministry of Environmental Protection, and China Banking Regulatory
Commission on 30 July 2007. The purpose of this new policy is to curb the blind expan-
sion of industries with high energy consumption and high pollution, which will realize
environmental protection control through financial leverage. In this article, the situation of
green credit is reflected by the ratio of interest expenditure of six high energy-consuming
industrial industries to total industrial interest expenditure.

Green investment refers to the practice of investing in companies that are producing
“green” technologies that are beneficial to the environment or recycling other environmen-
tally responsible activities. People who are interested in socially responsible investment
have the opportunity to support companies that implement energy efficiency, build green
buildings, reduce waste generation and use recyclable materials in manufacturing or trans-
portation. The ratio of investment in regional environmental pollution control to GDP can
reflect the importance that local governments attach to green development.
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Green insurance refers to all the ecological risk management activities and fund utiliza-
tion activities that are carried out by applying insurance concepts and means, focusing on
ensuring the service of national ecological security and ecological high-quality development
and serving the government’s ecological governance. Green insurance is the concentrated
embodiment of insurance social management function. Here, the growth of regional green
insurance reflects the protection degree of the green industry with the ratio of agricultural
insurance income to the total agricultural output value.

Government support means that the government supports and guarantees the growth
of green finance through fiscal policies. The 2016 China Green Finance Development Report
released by China Green Finance Summit in 2017 pointed out that although there are no
clear green finance support projects in the national budget, the government funds, general
public budgets, and state-owned capital operating budgets all contain green finance-related
projects, such as environmental protection expenditures, agriculture, forestry and water
expenditures, etc. Here, the ratio of fiscal expenditure on environmental protection to fiscal
general budget expenditure is selected to reflect the government’s support for green finance.

2.1.3. Descriptive Statistics Analysis

The level value, logarithm value, and first-order differential value descriptive statistics
of total agricultural carbon emission, chemical fertilizer use, and green financial index are
shown in Table 4. The average carbon dioxide emissions reached 969.68, with a range of
2394.39, and the data fluctuated widely. The average amount of chemical fertilizer used
is 175,129, and the regional standard deviation is 1,376,030 tons. The average value of
the green finance index is only 0.141, with a range of 0.751, which shows that the green
financial index fluctuates greatly in different regions.

Table 4. The descriptive statistics of the main variables.

Variable Mean Std. Dev. Min Max

Carbon 969.68 603.784 23.36 2417.75
Fertilizer 175.129 137.603 6.17 716.09

Green 0.141 0.093 0.042 0.793
Lncarbon 6.568 0.934 3.151 7.791

Lnfertilizer 4.746 1.084 1.82 6.574
Lngreen −2.108 0.509 −3.175 −0.232

Dlncarbon −0.004 0.054 −0.269 0.24
Dlnfertilizer 0.01 0.051 −0.296 0.263

Dlngreen 0.055 0.045 −0.208 0.25

2.2. Cross-Sectional Dependence Tests

In the early research [42–44], the panel unit root test and panel stationarity test assumed
that each cross-sectional body is independent, but this assumption was limited in practical
operation [45]. Affected by common shocks, such as macroeconomic shocks, the unit entities
in panel data will be interdependent [46]. Under the condition of cross-section correlation,
the size of the panel test will be seriously distorted, so the cross-section dependence test
is the key problem of the panel test. Breusch and Pagan put forward the Breusch–Pagan
LM test in 1980 to test the cross-section correlation, and Pesaran [47] improved it and put
forward Pesaran CD and standardized La Grange multiplier (LM) tests. Breusch–Pagan
LM test is given by:

LM =
N−1

∑
i=1

N

∑
j=i+1

Tijµ
2
ij → χ2(N(N − 1)/2) (1)

Small samples N and T are suitable for Equation (1), but with the increase in N, the test
will be distorted in size, and the larger the N, the greater the uncertainty of LM statistics.
Finally, the test will be inapplicable in large samples. Pasaran repaired the above problems,
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the cross-section inspection he proposed can be used for large sample N and variable/fixed
time T:

LM =

√
1

N(N − 1)

N−1

∑
i=1

N

∑
j=i+

(Tijµ
2
ij − 1)→ N(0, 1) (2)

CD =
√

2/N(N − 1)
N−1

∑
i=1

N

∑
j=i+1

Tijµ
2
ij → N(0, 1) (3)

In Equation (3), µ2
ij is the correlation coefficient of residual error, its calculation

expression is as follows:

µij = µij =
∑T

t−1 εijε ji(
∑T

t−1 ε2
ij

) 1
2
(

∑T
t−1 ε2

jt

)1/2
(4)

where εij and ε ji are standard errors.

2.3. Unit Root Test
2.3.1. LLC

The LLC [44] test (applicable to common root cases) is a left unilateral test, and the
LLC test principle adopts the ADF test form. The LLC test is based on the following ADF
inspection formula:

∆yit = ρyi t−1 +
ki

∑
j=1

γij∆yi t−j + Z′it∅+ εit, i = 1, 2, ..., N; t = 1, 2, ..., T

However, the standardized proxy variables influenced by the auto-correlation of
∆yit and yit and the deterministic items are used. Specifically, it can be divided into two
steps: (1) estimate the proxy variable. Make the following two regression equations after
determining the number of additional terms k:

∆yit =
ki

∑
j=1

γ̂i j∆yi t−j − Z
′∅̂
it + ε̂it, ∆yi t−1 =

ki

∑
j=1

γ̃i j∆yi t−j + Z′it∅̃+ ε̃it−1

transposition of terms:

ε̃it = ∆yit −
ki

∑
j=1

γ̂i j∆yi t−j − Z
′∅̂
it , ε̃it−1 = ∆yit −

ki

∑
j=1

γ̃ij∆yi t−j − Z′it∅̃

Standardize ε̃it and ε̃it−1:

ε̃∗ij = ε̂it/si , ε̃∗ij = ε̃it−1/si

si (i = 1, 2, . . . , N) refers to the standard deviation of regression residuals of each
individual, so as to obtain the proxy variables ε̂∗ij and ε̃∗ij of ∆yit and ∆yit−1.

(2) Make the following regression with proxy variables ε̂∗ij and ε̃∗ij,

ε̂∗ij = ρε̃∗ij + vit

Furthermore, LLC proves that the following t̃p which is the estimator ρ̂ modified
statistic gradually obeys the standard normal distribution.

t̃ p̂ =
t p̂ −

(
NT̃
)

SN σ̂2s(ρ̂)µ∗
mT̃

σ∗
mT̃

→ N(0, 1)



Agriculture 2022, 12, 313 8 of 18

In which t p̂ and N respectively represent the standard T statistic and interface capacity;

T̃ = T−
(

∑
i

ki/N
)
− 1 (T is individual capacity); SN , σ̂2, S(ρ) respectively represent the

average of the ratio of long-term standard deviation to information standard deviation of
each individual, the variance of the error term vit and the standard error of ρ; what is more,
µmT̃ and σmT̃ are the adjustment items of the mean and standard deviation, respectively.

2.3.2. ADF

In the Choi [43] test (Fisher-ADF) (used in different root cases), a combined pi test
statistic is proposed. The test method is based on the Fisher principle. First, the ADF test
is performed on each individual, and ADF-Fisher statistics are constructed by the sum of
probability pi corresponding to ADF statistics. Under the original hypothesis, assuming
that H0 is the root of existence unit:

ADF− Fisher = −2
N

∑
i=1

log(pi)→ χ2(2N)

2.3.3. PP

Phillips and Perron used σ2 and σ2
s [48,49], which is the estimated value of makes

nonparametric correction to the T statistic of the ADF test, and the corrected statistic is
as follows:

Z(τ) = τ
(

σ̂2/σ̂2
Sl

)
− (1/2)

(
σ̂2

Sl − σ̂2
)

T

√√√√σ̂2
Sl

T

∑
t=2

(xt−1 − xT−1)
2

In which σ̂2 is the unconditional variance sample estimator of σ2, that is:

σ̂2 = T−1
T

∑
t=1

ε̂2
t

Assume {εt} that the delay order of significant autocorrelation can be estimated to be
1, which σ̂2

Sl is the estimated value of conditional variance sample σ̂2
S :

σ̂2
Sl = T−1

l

∑
t=1

ε̂2
t + 2T−1

t

∑
j=1

∅j(l)
T

∑
t=j+1

ε̂t ε̂t−j

In the formula, ∅j(l) = 1− 1
l−1 , this weight is guaranteed σ̂2

Sl tobe positive.

xT−1 =
1

T − 1

T−1

∑
t=1

xt

2.4. Panel Cointegration Test

We use the residual-based ADF test (Kao test) to correct panel cointegration test. For
panel regression model:

yit = xitβ + zitγ + eit

Among them, eit is a non-cointegration I (1) process. Kao [50] used the DF and ADF
unit root test to test the zero hypothesis without cointegration. For the ADF test, Kao pro-
posed the following equation for regression:

êit = ρêi,t−1 +
p

∑
j=1

θj∆êi,t−j + vitp
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At the same time, ADF statistics without cointegration null hypothesis are constructed:

ADF =
tADF +

√
6Nσ̂v
2σ̂0v√

σ̂2
0v

2σ̂2
v
+ 3σ̂2

v
10σ̂2

0v

Among them, σ̂σ2
v = ∑

yy
−∑

yx

−1
∑
xx

, σ̂2
0v = Ω̂yy − Ω̂yxΩ̂−1

xx .

2.5. Causality Test

After the cointegration test, we pay attention to the causality among agricultural
carbon emission, green finance, and chemical fertilizer use. Granger [51] pioneered the
method of analyzing the causality of time series data. On the basis of the above, Dumi-
trescu-Hurlin [52] expanded it, and provided a method of testing the causality of panel
data which can judge the causality through the impact of the past value of X on the present
value of Y. The regression model is as follows:

yi,t = αi +
K

∑
k=1

γikyi,t−k +
K

∑
k=1

βikxi,t−k + εi,t

In which, i = 1, 2, . . . , N; t = 1, 2, . . . , T; xi,t and yi,t is the observed value of two
stationary series at individual i and time t; ai is the individual fixation effect. The regression
coefficient of each section element in this equation is variable. The equation assumes that
the panel must be stationary and the lag order k of all individuals is the same.

2.6. FMOLS and DOLS

OLS regression can obtain the super-uniform estimator of cointegration parame-
ters [53]. However, because the OLS estimator neglects short-term dynamics, it may lead to
a large, limited sample deviation [54] and the asymptotic distribution is usually nonstan-
dard, and it will be affected by noise parameters, which will lead to the ineffectiveness of
common inspection procedures and make statistical inference difficult. Therefore, Phillips
and Hansen [55] put forward the nonparametric correction of the OLS estimator, the so-
called FMOLS estimator, and the DOLS estimator also has the above correction effect.
Estimates from either or DOLS are asymptotically equivalent [56,57].

It is worth mentioning that FMOLS and DOLS are both group average estimation
methods between dimensions. They can solve the problems of sequence correlation and
endogenous explanatory variables in the study of long-term relationships.

For panels with i = 1, 2, . . . , N regions at time t = 1, 2, . . . , M, consider the following
cointegration system:

Yit = αit + βXit + εit
Xit = Xit−1 + εit

Zit = (Yit, Xit)
′~I(1) and ωit = (εit, µit)

′~I(0) with a long run covariance matrix
Ωi = LiL′i, Li is the lower triangular decomposition of Ωi which can also be decomposed
as Ωi = Ω0 + Γi + Γ′i, Ω0 and Γi are the contemporaneous covariance and a weighted sum
of autocovariances, respectively.

The panel FMOLS estimator for the coefficient β is given by:

β∗NT = N−1
N
∑

i=1
(

T
∑

i=1

(
Xit − Xi

)2
)
−1

(
T
∑

i=1

(
Xit − Xi

)
Y∗it − Tτ̂i

Y∗it =
(
Yit −Yi

)
− L̂21i

L̂22i
∆Xit, τ̂i ≡ Γ̂21i + Ω̂0

21i −
L̂21i
L̂22i

(
Γ̂22i + Ω̂0

22i

)
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The DOLS is written as follows:

Yit = αi + βiXit +
jl

∑
j=−ji

θij∆Xit−j + ε∗it

where the estimated coefficient β is given by:

β∗dols = N−1
N

∑
i=1

(
T

∑
t=1

ZitZi
it)
−1

(
T

∑
t=1

ZitY∗it

)

where Zit =
(
Xit − Xi, ∆Xit−j, ..., ∆Xit+k

)
is 2(K + 1) vector of regressors.

2.7. Variance Decomposition and Impulse Response Approach

We adopted variance decomposition and impulse response methods to obtain the
relative importance of the dependent variables of different factors and examine the response
of each endogenous variable to the changes of itself and all other endogenous variables. This
kind of shock can also be described by the model structure. In the impulse response function
(which is based on stable VAR model), the change of variable means that an endogenous
variable is disturbed or impacted (called “impulse”), that is, its error changes. The response
of variable refers to the influence of error change on itself and other endogenous variables.
By observing the image of the impulse response function, we can more effectively reflect
the time lag and intensity change of the transmission effect of each influencing dependent
variable on the fluctuation of the dependent variable. As proposed by Lanne [58], the VAR
model can be written in the following style:

yt =
p

∑
j=0

φiyt−i + εt

where εt is the independent identically distributed (iid) error term with 0 mean and 0
covariance matrix as well as φi is a simple impulse response function. φi can be changed
into an infinite vector moving average according to the following formula [59]:

φi =


Ik, i = 0

i
∑

j=1
φt−j Aj, i = 1, 2, ..

Ik and Aj are the unit elements of the companion matrix and the coefficient matrix of
the transformed VAR into infinity VMA form, respectively.

In the initial formula, assuming weak stationarity, yt obtains an infinite moving
average representation:

yt =
∞

∑
j=0

Ajεt−j

In this paper, the lag interval selected is 14.

3. Results
3.1. Cross-Sectional Dependence and Unit Root Tests Results

In Table 5, the cross-sectional dependency test results show that the original assump-
tion that there is no dependency between regions is rejected at the significance level of
1%, which means that cross-regional dependency exists. We selected three test methods
(LLC, ADF, and PP) to guarantee the correctness of the unit root test, Table 6 reflects the test
results. The results obtained by the three test methods are consistent. At a 1% significance
level, only lngreen can reject the original hypothesis of unit root, and the level values of
other variables cannot reject the original hypothesis. However, all variables can reject the
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original hypothesis at a 1% significance level after the first-order difference. This indicates
that there may be a false regression, so the next step is to adopt the cointegration test.
Therefore, Kao’s residual panel cointegration test (ADF) is used to test whether there is a
long-term cointegration relationship between variables and correct the error model.

Table 5. Cross-sectional dependence test results.

Test Statistic Prob.

Breusch–Pagan LM 2370.873 0.0000 ***
Pesaran scaled LM 65.63224 0.0000 ***

Pesaran CD 30.14657 0.0000 ***
Notes: *** Significant at 1% level.

Table 6. Panel unit root tests results.

Variables Level First-Difference

None Intercept
and Trend None Intercept and

Trend

LLC test
Lncarbon 0.3258 0.9982 0.0000 *** 0.0000 ***

Lnfertilizer 0.0003 *** 1.0000 0.0000 *** 0.0000 ***
Lngreen 0.0000 *** 0.0000 *** 0.0001 *** 0.0000 ***

ADF-Fisher chi-square test:
Lncarbon 0.3596 0.8194 0.0000 *** 0.0000 ***

Lnfertilizer 0.1385 1.0000 0.0000 *** 0.0000 ***
Lngreen 0.0000 *** 0.0000 *** 0.0033 *** 0.0000 ***

PP-Fisher chi-square test
Lncarbon 0.3823 0.9558 0.0000 *** 0.0000 ***

Lnfertilizer 0.7219 1.0000 0.0000 *** 0.0000 ***
Lngreen 0.0000 *** 0.0025 *** 0.0000 *** 0.0000 ***

Notes: *** Significant at 1% level.

3.2. Panel Cointegration Test Results

According to Kao’s residual panel cointegration test (ADF), the result is reflected in
Table 7. The results show that the p-value is 0.0069, which is far less than 0.01, so we can
reject the original hypothesis that there is no cointegration relationship at the significance
level of 1%, which means that the cointegration relationship exists. After the co-integration
test is passed, we can examine the causality among agricultural carbon emissions, fertilizer
use, and green finance through the Granger causality test, which is helpful for us to study
the influence of fertilizer use and green finance on agricultural carbon emissions.

Table 7. Kao panel cointegration test results.

Null Hypothesis t-Statistics Probability

ADF No co-integration −2.4601 0.0069 ***
Notes: *** Significant at 1% level.

3.3. Results of DOLS and FMOLS

Table 8 gives the estimation results of dynamic OLS and FMOLS. In the long run,
chemical fertilizer consumption in various regions has a positive impact on carbon emis-
sions. In contrast, green finance has a significant negative effect on agricultural carbon
emission, and all parameters reject the original assumption that the parameter is equal
to 0 at the significance level of 5%. Our findings are similar to the research conclusion
of Flammer [34] and Wang et al. [35], who both found that with the support of green
investment and financing projects, carbon emissions have decreased. This paper focuses
on agricultural carbon emissions, showing that green orientation also plays a significant
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role in agricultural investment and financing, which can significantly reduce agricultural
carbon emissions.

Table 8. Benchmark results.

Variables Coefficient SE t-Statistic Prob.

DOLS (1)
LNFERTILIZER 0.4890 0.0331 14.7671 0.0000 ***

LNGREEN −0.1448 0.0166 −8.7152 0.0000 ***
FMOLS (2)

LNFERTILIZER 0.3682 0.0431 8.5526 0.0000 ***
LNGREEN −0.0560 0.0258 −2.1677 0.0311 **

Notes: ** Significant at 5% level. *** Significant at 1% level.

Specifically, under the DOLS method, the use of chemical fertilizers increases by 1%,
the agricultural carbon emission increase by about 0.49%, while the green financial index
increases by 1%, and the agricultural carbon emission decrease by about 0.14%. Under the
FMOLS method, the agricultural carbon emissions increase by about 0.37% for every 1%
increase in fertilizer usage and decrease by about 0.06% for every 1% increase in the green
financial index. From the level of parameter significance, the fitting effect of DOLS is better.

3.4. Causality Test Results

The paired causality test results among agricultural carbon emission, chemical fertil-
izer use, and green finance are shown in Table 9. Meo and Karim [33] pointed out that
different countries supporting green finance show bi-directional causations or one-way
directional causation between green finance and carbon dioxide due to different environ-
mental pollution levels and market conditions. However, we found one-way causality
between green finance and agricultural carbon emissions. This shows that there is great
potential for developing green finance in our country, which can significantly reduce agri-
cultural carbon emissions. Moreover, we notice one-way causality between green finance
and fertilizer use and two-way causality between fertilizer use and carbon emissions.

Table 9. Pairwise Granger causality tests.

Null Hypothesis Obs F-Statistic Prob.

LNCARBON does not Granger Cause
LNGREEN 510 0.6198 0.5384

LNGREEN does not Granger Cause
LNCARBON 34.5480 0.0000 ***

LNFERTILIZER does not Granger Cause
LNGREEN 510 1.9076 0.1495

LNGREEN does not Granger Cause
LNFERTILIZER 56.3713 0.0000 ***

LNFERTILIZER does not Granger Cause
LNCARBON 540 26.4542 0.0000 ***

LNCARBON does not Granger Cause LNFERTILIZER 4.9600 0.0073 ***
Notes: *** Significant at 1% level.

All the parameter test results rejected the original hypothesis of no causality at the
significance level of 1%, which means that the implementation of green finance policy can
reduce fertilizer consumption and carbon emissions, which are the reasons for the mutual
reduction in fertilizer use and carbon emissions.

3.5. VAR Diagnostic Test

In this study, the VAR model of green finance, chemical fertilizer use, and agricultural
carbon emission is constructed, and the optimal index is obtained when the lag period is
14. The results of the causality test show that there are bi-directional or one-way directional
causations among them. On the basis that all three variables are endogenous variables,
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we test the stationarity of the VAR model, and obtain the ideal results (see Figure 1). By
observing the inverse roots of the AR characteristic polynomial, we can draw the conclusion
that the VAR model has good stability, for all the dots are within the circle. The results of
variance decomposition and the impulse response which are based on this VAR model will
be given in 4.6.
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3.6. Variance Decomposition and Impulse Response Analysis Results

We use the variance decomposition and impulse response analysis method proposed
by Lanne [58] to obtain the influence degree of chemical fertilizer and green finance on
carbon emissions from the agricultural sector of 30 provinces (cities) in China. Table 10 and
Figure 2 show the variance decomposition and impulse response analysis results of the
14-year forecast period, respectively. The results show that, in the fourteenth forecast period,
80.11% of agricultural carbon dioxide changes can be explained by the impact of agricultural
carbon dioxide itself, while chemical fertilizer and green finance contribute 7.78% and
12.11%, respectively, and the contribution of green finance will gradually exceed that of
chemical fertilizer, which indicates that the impact of green finance on carbon emissions
will be greater and greater. We are concerned that the contribution rate of green finance to
chemical fertilizers in the 14-year forecast period reaches 20.46% simultaneously, which
means that chemical fertilizer use and green finance will continue to significantly affect
the changes in agricultural carbon emissions in the next decade, and the implementation
of green finance policy will also continue to affect the use of chemical fertilizers, which is
consistent with our causality test results.

Namahoro et al. [60] used the impulse response function to estimate the influence of
economic growth, renewable energy, and energy intensity on carbon emissions in different
regions and different income levels. They found that the impact of economic growth and
energy intensity on carbon dioxide emissions is increasing. In addition, renewable energy
has considerable potential to reduce CO2 emissions. In our research results (Figure 2),
we are concerned that after a shock of the new interest rate which gives green finance a
standard deviation, the agricultural carbon emissions did not respond in the first period,
and gradually declined from the second period. As far as the overall response is concerned,
it shows a significant long-term downward trend, and it continues to decline for a long
time. This shows that the shock of green finance has a significant long-term negative
effect on agricultural carbon emissions; that is, green finance also has great potential to
reduce carbon emissions. Moreover, given a shock of chemical fertilizer, agricultural carbon
emissions did not respond in the first period, slowly increased from the second period,
and showed a stable positive effect after the fourth period. In addition, chemical fertilizers
did not respond to the shock of green finance in the first phase. Like agricultural carbon
emissions, the impulsive response has been declining since the second phase, showing a
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long-term downward trend. This shows that the shock of green finance also has a long-term
significant negative effect on chemical fertilizers and green finance has a significant positive
effect on reducing chemical fertilizer consumption.

Table 10. The impulse response and variance decomposition results.

Period S.E. LNCARBON LNFERTILIZER LNGREEN

Variance Decomposition of LNCARBON:
1 0.0453 100.0000 0.0000 0.0000
2 0.0712 98.4829 1.4334 0.0836
3 0.0916 97.0158 2.6695 0.3147
4 0.1085 95.7503 3.5618 0.6880
5 0.1229 94.5617 4.2379 1.2004
6 0.1357 93.3585 4.7885 1.8530
7 0.1472 92.0885 5.2641 2.6475
8 0.1577 90.7227 5.6922 3.5851
9 0.1675 89.2460 6.0881 4.6660
10 0.1767 87.6513 6.4602 5.8885
11 0.1855 85.9370 6.8132 7.2497
12 0.1939 84.1051 7.1498 8.7451
13 0.2021 82.1604 7.4711 10.3686
14 0.2102 80.1100 7.7774 12.1126

Variance Decomposition of LNFERTILIZER:
1 0.0414 8.9496 91.0504 0.0000
2 0.0676 10.6340 89.0487 0.3174
3 0.0890 10.8311 88.2015 0.9674
4 0.1074 10.4105 87.7005 1.8891
5 0.1238 9.7244 87.2207 3.0549
6 0.1389 8.9302 86.6269 4.4429
7 0.1533 8.1060 85.8641 6.0299
8 0.1672 7.2946 84.9152 7.7902
9 0.1808 6.5215 83.7821 9.6964
10 0.1942 5.8024 82.4770 11.7206
11 0.2077 5.1472 81.0179 13.8350
12 0.2213 4.5615 79.4256 16.0129
13 0.2350 4.0482 77.7222 18.2295
14 0.2490 3.6081 75.9298 20.4621

Variance Decomposition of LNGREEN:
1 0.0439 0.0007 0.0078 99.9915
2 0.0697 0.0026 0.0126 99.9849
3 0.0898 0.0121 0.0230 99.9649
4 0.1065 0.0296 0.0311 99.9393
5 0.1210 0.0545 0.0372 99.9083
6 0.1341 0.0860 0.0420 99.8719
7 0.1460 0.1238 0.0462 99.8300
8 0.1571 0.1676 0.0500 99.7824
9 0.1675 0.2171 0.0535 99.7293
10 0.1773 0.2721 0.0571 99.6708
11 0.1866 0.3323 0.0606 99.6071
12 0.1955 0.3974 0.0643 99.5383
13 0.2040 0.4674 0.0680 99.4646
14 0.2121 0.5418 0.0720 99.3862
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Furthermore, the shock of agricultural carbon emissions on chemical fertilizers shows
a long-term stable positive effect. The shock of agricultural carbon emissions on green
finance fluctuates greatly in the short term, even shows a weak negative response, and
shows a weak positive response in the long term. As far as the overall response is concerned,
the impact of agricultural carbon emissions on green finance is very weak. Similarly, the
shock of chemical fertilizers has a long-term positive effect on green finance, but overall, its
impact is very weak.

Based on abundant empirical methods, the results are remarkable. Although the data
only ends in 2019, the data over the last two years have not been reflected, but the research
conclusion is reliable.

4. Conclusions

Through the panel data analysis of 30 provinces (cities) in China for 20 years (2000–2019),
this study examined the role of green finance and fertilizer usage as determinants of agri-
cultural carbon emissions. In this study, the cross-sectional correlation and data stationarity
of variables were first checked by the Pesaran [47] test and unit root test, and then the
Kao [50] test was used to test the long-term co-integration relationship between the three
variables. The long-term co-integration relationship between green finance, fertilizer use,
and agricultural carbon emissions was shown in the empirical results. In the case of the
long-term cointegration relationship, the causality test confirmed a bidirectional causal
relationship between agricultural carbon emission and chemical fertilizer use. In contrast, a
one-way causal relationship that runs from green finance to CO2 and from green finance to
chemical fertilizer was strictly verified simultaneously. In addition, in the variance decom-
position and impulse response based on the VAR model, it was found that green finance has
established a positive relationship with agricultural carbon emissions. Moreover, as far as
China is concerned, fertilizer consumption is positively correlated with agricultural carbon
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emissions. In contrast, the impact of green finance and agricultural carbon emissions is
negative, and the development of the former will reduce the latter.

In light of the above research results, we put forward the following policy suggestions:
Firstly, local governments should implement the concept of sustainable development,
promote the wide application of green finance in the agricultural sector, broaden the
ways of green agricultural production investment, to achieve low-carbon agricultural
development. Secondly, strengthen the government’s top-level design, improve agricultural
production efficiency through technological innovation and innovation, promote organic
fertilizers to replace chemical fertilizers, and carry out agricultural “fertilizer loss” action to
achieve a negative increase in chemical fertilizer use. Thirdly, strengthen the supervision
of carbon emissions in agricultural fields. Local governments can restrict farmers’ input
of agricultural factors by improving the carbon tax system. Furthermore, setting up a
reward and punishment system is an effective way to encourage farmers to carry out green
production. Finally, strengthening extensive cooperation with the international community,
learning from the advanced experience of other countries, introducing advanced energy-
saving and emission-reduction technologies and tools will help China achieve its goal of
carbon neutrality at an early date.

The research of this paper has made innovations on the basis of predecessors, focusing
on the important problem existing in agricultural production—carbon emission, but there
are also some limitations: the transmission of “green finance—reducing fertilizer use—
agricultural carbon emission reduction” process research is not systematic enough; in
addition, The economic development levels of different provinces and cities in China
are different, and there are differences in agricultural production. The impact of green
finance on different regions is also different. The differences in the impact of green finance
on agricultural carbon emissions in different regions have not been fully studied in the
article. It is suggested that future research can focus on the multi-level, wide-coverage,
and sustainable green carbon reduction road, refine the policy requirements for energy
conservation and emission reduction, and implement differentiated management according
to local conditions.
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