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Simple Summary: The Asian corn borer can reduce corn production or even lead to no harvest,
causing huge economic losses. Bacillus thuringiensis (Bt) produces insecticidal crystal proteins that
have specific insecticidal effects on Lepidoptera, Coleoptera, Diptera and other pests during the
sporulation process. The use of transgenic Bt crops to replace pesticides to control the Asian corn
borer has become a common trend. However, long-term planting of a single Bt transgenic corn will
inevitably produce resistant strains. This study confirmed that the Asian corn borer can develop
resistance Bt toxin through long-term exposure in the laboratory. In addition, the gene expression
of Cry1F- and Cry1Ie-resistant strains in the transcriptome is different from that of susceptible
strains, and a larger proportion of differentially expressed genes (DEGs) in both resistant strains
were significantly down-regulated, several of these Bt-resistance candidate genes were differentially
expressed in both resistant strains, Most of the glutathione S-transferases in ACB-FR showed an
up-regulation trend, but down-regulated in ACB-IeR. These differentially expressed genes can be
further studied to understand the mechanism of Bt resistance.

Abstract: The evolution of target pest population resistance to Bt toxins is the most relevant threat
to the sustainability of Bt technology, thus it is necessary to clarify insect resistance mechanisms.
Firstly, the resistance level of Asian corn borer was determined by bioassay. After 28 generations
selection in the lab, the Cry1Ie-resistant strain (ACB-IeR) developed more than 862-fold resistance to
Cry1Ie, and the Cry1F-resistant strain (ACB-FR) developed 961-fold resistance to Cry1F. The results
show that long-term exposure to Bt toxins can lead to resistance. Then, we compared the differential
expression genes (DEGs) of ACB-FR and ACB-IeR with susceptible strain (ACB-BtS), and analyzed
GO function and KEGG pathway through transcriptome sequencing. The comparison showed that
in Bt-resistant strains, many genes have a significant down-regulated trend. Several Bt-resistance
candidate genes were differentially expressed in both resistant strains. Furthermore, the DEGs were
verified by RT-qPCR and showed similar trend. These results provide candidate genes for further
research on the Bt resistance mechanism.

Keywords: Ostrinia furnacalis; Bacillus thuringiensis; Cry1F; Cry1Ie; transcriptome; resistance

1. Introduction

Corn (Zea mays L.), as one of the most important food crops, is a high-quality feed crop
and a high-yield cash crop, as well as an industrial raw material [1]. Asian corn borer (ACB),
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Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) is an important boring insect of corn,
which damages mainly in the whorl leaves, stalks and ears. In addition, the wound allows
plant pathogens to invade crops after the Asian corn borer infestation [2]. Therefore, the
Asian corn borer can seriously affect the yield and quality of corn in direct or indirect ways,
leading to a substantial reduction in corn production or causing huge economic damage.
It has become an important factor restricting the healthy and high-quality development
of the corn industry. Previously, chemical pesticides and natural enemies were used to
control pests [3], but these methods have shown limited effects. Pesticides can effectively
and quickly kill the pest, but they have the effects of teratogenicity, carcinogenesis and
mutagenesis [4] and will remain in the agricultural produce; they are not only harmful
to humans and animals, but also affect the quality and safety of the agricultural produce.
Furthermore, the Asian corn borer can develop resistance to pesticides [5]. Additionally,
natural enemies do not produce harmful substances but are not immediately effective.

The gram-positive bacterium Bacillus thuringiensis (Bt) is by far the most economically
successful entomopathogen [6,7]. The insecticidal crystal (Cry) protein, produced during
the sporulation process, has specific insecticidal effects on Lepidoptera, Coleoptera, Diptera
and other pests, but is harmless to humans and other non-target insects [8,9]. The resistance
evolution of pests is the main threat to their long-term use of genetically modified crops
with Bt toxins [10]. Bt transgenic crops are promising for controlling the Asian corn borer,
but people are still worried about the development of resistance [11]. It has been reported
that the resistance of the Asian corn borer to Bt toxins such as Cry1F, Cry1Ie and Cry1Ac
has been observed in laboratory selection [12,13]. Most of the current research suggests
that the change in specific receptor sites on the insect midgut BBMV is the main reason
why the target pests are resistant to Bt toxins [6,14]. Thus, the formation of membrane
pores is the main reason for the cytotoxicity of Cry toxin in insects [15]. Mutations in the
ABC transporter or cadherin-like protein (CAD) [16] are currently identified as potential
resistance mechanisms. Most mutations could influence the proteins, but some of them
can confer resistance with only minor structural changes. It has been reported that spe-
cific binding between Bt and some receptor proteins such as aminopeptidase (APN) [17]
and alkaline phosphatases (ALP) [18] is responsible for the lethal effect of the Bt toxin.
Additionally, V-type ATPase and heat shock 70 kDa proteins have also been shown to be
Bt-binding proteins in the Asian corn borer [8]. However, the research on the mechanism
of Bt resistance of the Asian corn borer is still limited, and the definite mechanism of the
interaction between the Bt toxin and the receptor is still poorly understood.

In recent years, transcriptome sequencing has played an increasingly important role
in the discovery and identification of functional genes [19]. In addition to the study
of differential gene expression, it provides a powerful research tool for studying insect
resistance mechanisms. In previous studies, Zhang et al. [20] analyzed transcripts to
determine that the previously known genes associated with Bt resistance, aminopeptidase
N1 (apn1) and apn3, as well as the ATP-binding cassette transporter group G (abcg) gene
were significantly down-regulated in ACB-AbR and ACB-AcR. Shabbir et al. [21] studied
the transcriptome and proteome of the susceptible Asian corn borer strain and the Cry1Ah-
resistant strain, and identified 7,007 differential expressions genes (DEGs) between ACB-
AhR and ACB-BtS strains and 182 differentially expressed proteins (DEPs). Resistance-
related genes include aminopeptidase N, alkaline phosphatase, ABCC3, cadherin-like
protein and glutathione S-transferase (GSTs). From the perspective of molecular biology,
this study compared the midgut tissues of Cry1F-resistant strain (ACB-FR), Cry1Ie-resistant
strain (ACB-IeR) and susceptible strain (ACB-BtS) at the transcriptome (RNA-seq) level. The
analysis of DEGs was further verified by RT-qPCR. Therefore, by comparing ACB-FR and
ACB-IeR with ACB-BtS simultaneously, we can have a more comprehensive understanding
of the genes related to resistance. This is expected to provide new ideas for delaying the
resistance of Asian corn borer to transgenic corn, and to discovering new genes related to
the Bt resistance These studies are valuable for understanding the systematic difference
between Bt susceptible and resistant strains.
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2. Materials and Methods
2.1. Bioassay and Resistance Ratio

Three O. furnacalis laboratory strains were raised in State Key Laboratory for the Biol-
ogy of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy
of Agricultural Sciences, Beijing, China. Cry1Ie-resistant strains (ACB-IeR) are exposed
to Cry1Ie toxins with a concentration of 16.0 µg/g and Cry1F-resistant strains (ACB-FR)
are exposed to Cry1F toxins with a concentration of 3.0 µg/g to maintain the intensity of
selection, and susceptible strain (ACB-BtS) is kept on an artificial diet without any toxins.
The Cry1F toxin protein used in this experiment was produced by Marianne P. Carey, Case
Western Reserve University, USA. Cry1Ie toxin protein was purchased from ABZYMO
Biosciences, Beijing, China.

The protein-food feeding method was used to determine the toxicological reaction of
each strain to Bt toxin [22]. ACB-BtS was exposed to six concentrations of Cry1Ie toxin (0,
0.2, 0.4, 1, 2, 5 µg/g) and seven concentrations of Cry1F toxin (0, 0.04, 0.08, 0.20, 0.40, 1.00,
2.00 5.00 µg/g); ACB-IeR was exposed to six concentrations of Cry1Ie toxin (0, 40, 80, 200,
400, 1000 µg/g); ACB-FR was exposed to six concentrations of Cry1F toxin (0, 10, 20, 50,
100, 250, 500 µg/g), and the corresponding concentration of artificial feed was distributed
into 48-well plates. A single starvation-treated 24-h-old neonate was put into each hole; a
total of 144 larvae were tested at each concentration. ddH2O replaced the toxins to mix with
an artificial diet that was used as a control. The larvae were reared at 27 ± 1 ◦C, 70–80%
relative humidity (RH) and a photoperiod of 16:8 h (L: D). Investigating the results after
seven days, the number of survivals and total body weight were recorded, and larvae were
considered dead if they had died or weighed less than 0.1 mg. The Probit statistical model
in SPSS 19.0 was used to calculate the lethal concentration of each strain and each toxin that
causes 50% of the individual’s mortality (LC50), as well as the LC50 ratio of the susceptible
strain and the resistant strain when exposed to the same toxin as the resistance ratio (RR).

2.2. Midgut Dissection and RNA Extraction

Fourth instar larvae were put on ice to make them comatose, the midgut was dissected
and put into a PBS buffer to remove the food content, then transferred into water to wash it
again, the water absorbed with filter paper and then put into 200 µL Trizol. The midguts of
five individuals were collected as one biological replicate, and three biological replicates
were collected from ACB-BtS, ACB-FR and ACB-IeR strains.

Total RNA was extracted from the midgut of ACB-BtS, ACB-FR and ACB-IeR strains
following the manufacturer’s instructions for Trizol reagent. The quantity and quality
of RNA were evaluated by 1% agarose gel electrophoresis and spectrophotometry on
Nanodrop 2000 (Thermo Scientific, Wilmington, DE, USA). All samples were stored at
–80 ◦C until they were used for first-strand cDNA synthesis.

2.3. Library Preparation for Transcriptome Sequencing

Nine single-ended cDNA libraries were constructed using total RNA samples from the
midgut of ACB-BtS, ACB-FR and ACB-IeR. Total RNA was extracted using Trizol reagent
kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. RNA quality
was assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA)
and checked using RNase-free agarose gel electrophoresis. After total RNA was extracted,
mRNA of each sample was enriched by Oligo (dT) magnetic beads. Then, the enriched
mRNA was fragmented into short fragments using fragmentation buffer and reverse
transcription into cDNA with random primers. Second-strand cDNA was synthesized by
DNA polymerase I, RNase H, dNTP and buffer. Then, the cDNA fragments were purified
with QiaQuick PCR extraction kit (Qiagen, Venlo, The Netherlands), end-repaired, single
A base added, and ligated to Illumina sequencing adapters. The ligation products were
size-selected by agarose gel electrophoresis, PCR amplified and sequenced using Illumina
Novaseq 6000 by Gene Denovo Biotechnology Co., Ltd. (Guangzhou, China).
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2.4. Assembly and Functional Gene Annotation

By filtering raw data, lower-quality reads were filtered. The linker sequence was
removed to obtain high-quality clean data by fastp (version 0.18.0) [23]. After screening
the raw data, the Trinity program was used to assemble high-quality clean data [24]. To
minimize the sequence’s redundancy, the CD-HIT program was used to obtain the longest
transcript contigs [25]. After the library quality has been evaluated to meet the requirements
of bioinformatics analysis, expression level and gene structure analysis can be carried
out. DESeq2 was used to calculate the expression level of candidate genes in different
treatments [26]. BLASTX was used to compare unigene sequences with NCBI protein
databases: set e-value ≤ 10−5, and using the annotation information with the highest
similarity in the comparison as the final comment information. DEGs were calculated as
FPKM (fragments per kilobase pair of exon model per million fragments mapped), which
were used to compare the expression of up-regulated or down-regulated transcripts with
ACB-BtS strain.

2.5. Selection of Differentially Expressed Genes among ACB-BtS, ACB-FR and ACB-IeR

Blast2GO was used to predict the classification of the function of unigenes in different
treatments by EuKaryotic of orthologous groups (KOG) database [27]. KEGG pathway
enrichment was conducted to analysis by the online KEGG Automatic Annotation Server
(KAAS) [28,29]. In order to understand the differential gene, we not only performed
GO function and KEGG pathway enrichment analysis for all the differential genes in
the transcriptome, but also used the false discovery rate (FDR) method to determine the
threshold. The FDR ≤ 0.05 and the absolute value of log2FC ≥ 1 were used as evaluation
criteria to compare the significance level of gene expression between different ACB strains.
In addition, the genes annotated as candidate Bt resistance genes were verified by RT-qPCR
in O. furnacalis midgut.

2.6. RT-qPCR Analysis

The genes associated with Bt resistance were screened out from the transcriptome and
summarized pathway annotation candidate genes in the KEGG pathway with p-value < 0.05,
and the part of the screened resistance-related genes that was duplicated with genes in-
volved in the KEGG pathway was deleted, then RT-qPCR was used to verify these genes.
Total RNA was prepared from the midgut of ACB-FR, ACB-IeR and ACB-BtS strains with
three biological replicates. The TransScript One-Step gDNA Removal and cDNA Synthesis
SuperMix (TransGen Biotech, China) was used to synthesize cDNAs. The primers used for
RT-qPCR were designed with Primer 3PLUS (Supplementary Materials: Table S1).

Reactions were set up in triplicate using 20 µL reaction volumes containing 10 µL of
2× PerfectStart Green qPCR SuperMix (TransGen Biotech, China), 0.8 µL of PCR forward
primer (10 µM), 0.8 µL of PCR reverse primer (10 µM), 0.4 µL of passive reference dye
(50×), 1.0 µL of cDNA as template and 7.0 µL sterilized ultra-pure grade water. The ABI
7500 fast real-time PCR system was used for amplification at 95 ◦C (30 s), followed by
40 cycles at 95 ◦C (10 s) and 60 ◦C (20 s). Then, melting curve analysis was conducted to
evaluate the specificity of amplification. Before RT-qPCR, the amplification efficiency of all
the primers was verified. The actin gene of ACB was used to normalize the RT-qPCR data.
Relative expression levels for target genes in different strains were calculated via the 2−∆∆CT

method [30]. The expression difference among ACB-FR, ACB-IeR and ACB-BtS strains was
analyzed by one-way analyses of variance (ANOVAs) statistical method. Differences in the
three strains were compared using Turkey test.

3. Results
3.1. Insect Resistance Levels

After 28 generations of selection in the lab, ACB-IeR had developed more than 862-fold
resistance to Cry1Ie (Table 1). Analogously, ACB-FR had developed 961-fold resistance to
Cry1F (Table 1).
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Table 1. The larvae lethal concentration (LC) and resistance ratio (RR) of ACB-IeR and ACB-FR
strains compared with the susceptible ACB-BtS strains on Cry1Ie and Cry1F toxins.

Bt Toxin Insect Strain LC50 (95% CI) 1 µg/g Resistance Ratio

Cry1F ACB-BtS 0.52 (0.36–0.70) /
ACB-FR >500.00 >961.00

Cry1Ie ACB-BtS 1.16 (0.84–1.66) /
ACB-IeR >1000.00 >862.07

1 95% confidence interval.

3.2. RNA-Seq and Sequence Assembly

Quality control of data was obtained from transcriptome sequencing, and the RNA
sequencing results of ACB-FR, ACB-IeR and ACB-BtS ranged from 39,687,801 to 50,484,709
(Table 2). The clean sequence of each library ranges from 39,127,741 to 49,893,262 reads. In
addition, the GC content ranges from 48.99% to 49.95%. The total number of reads that
can be mapped to the genome ranges from 31,285,151 to 41,890,268 and the proportion
of effective reads was from 79.96% to 85.34%. The raw reads of ACB-BtS, ACB-FR and
ACB-IeR strain were submitted to the SRA database with accession number SRR16556445,
SRR16571663 and SRR16572026.

Table 2. Summary of average reads in transcriptomes of ACB-FR, ACB-IeR and susceptible (ACB-
BtS) strains.

Samples Raw Reads Clean Reads Q20 (%) Q30 (%) GC (%) Total Mapped

ACB-BtS 39,687,801 39,127,741 97.63 93.31 48.99 31,285,151 (79.96%)
ACB-FR 47,222,879 46,637,357 97.89 93.90 49.72 39,798,320 (85.34%)
ACB-IeR 50,484,709 49,893,262 98.06 94.30 49.95 41,890,268 (83.96%)

3.3. Differentially Expressed Genes between Cry1F and Cry1Ie-Resistant Strains Compared with
Susceptible Strains of O. furnacalis

Differentially expression genes (DEGs) were screened with FDR ≤ 0.05 and log2FC
absolute value > 1 as a significantly different gene (Supplementary Materials: Table S5).
The results showed that a total of 283 down-regulated and 172 up-regulated genes were
differentially expressed (Figure 1A) in ACB-FR compared with ACB-BtS strains. More-
over, a total of 229 down-regulated and 133 up-regulated genes were selected in ACB-IeR
compared with ACB-BtS strains (Figure 1B). This comparison showed that a larger pro-
portion of genes were significantly down-regulated in the Bt-resistant strain. Based on
former reports and DEGs in the transcriptome analysis, some well-known Bt receptors
such as cadherin, ABC transporter, ALP and APN were screened out and listed in Sup-
plementary Table S2. Other genes include UDP-glucuronosyltransferase gene, trypsin,
heat shock protein (HSP) 68-like gene, glutathione S-transferase 1-like gene (GSTs), etc.
Several of these Bt-resistance candidate genes were differentially regulated in both of the
resistant strains. Most of the heat shock proteins (Supplementary Materials: Table S6)
were down-regulated in ACB-FR compared with ACB-BtS strains, but it was expressed
higher in ACB-IeR. UDP-glucuronosyltransferase (Supplementary Materials: Table S7) and
trypsin, especially alkaline C-like (Supplementary Materials: Table S8), were up-regulated
in ACB-IeR and ACB-FR compared with ACB-BtS strains. The differential expression of
GSTs in Cry1F- and Cry1Ie-resistant strains was shown in Table S9. From the list, five GSTs
were up-regulated in ACB-FR and ACB-IeR, only ncbi_114360773 significantly up-regulated
with log2FC value of 2.75 in ACB-FR strain and MSTRG.22972 up-regulated with log2FC
value of 1.91 in the ACB-IeR strain. Three GSTs were down-regulated in ACB-FR and
ACB-IeR strains, but only ncbi_114365341 was significantly down-regulated in ACB-IeR
strains with log2FC value −1.66.
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Figure 1. Volcano plots of differentially expressed genes (DEG). (A) Cry1F-resistant vs. susceptible O.
furnacalis. (B) Cry1Ie-resistant vs. susceptible O. furnacalis. The scattered dots in the figure indicate
each gene: red indicates that the gene is up-regulated, blue indicates that the gene is down-regulated
and gray genes indicate no differential expression.

3.4. Gene Ontology and Pathway Enrichment

In order to enrich the identified differential genes into specific functional categories
and explore the biological significance behind transcriptomics data, ACB-FR or ACB-IeR
was compared with ACB-BtS unigene for GO analysis, according to the Biological Process,
Cellular Component and Molecular Function for classification and annotation. The three
classification categories were subdivided into forty-five secondary GO-terms (Figure 2).

In terms of Biological Process, unigenes were allocated to 22 aspects such as cellular
process, single-organism process and metabolic process. Concerning cellular components,
the cell part and cell and organelle represent most of the genes. In the Molecular Function
category, catalytic activity and binding were the most abundant. ACB-FR and ACB-IeR,
compared with ACB-BtS, have the largest number of genes annotated in the secondary
classification of catalytic activity, single-organism process and cellular process. Comparing
ACB-FR with ACB-BtS (Figure 2A), in the case of catalytic activity, 100 DEGs were linked,
and there are 58 DEGs down-regulated and 42 DEGs up-regulated in ACB-FR. There are 91
related DEGs in the single-organism process, of which 64 DEGs were down-regulated and
27 DEGs were up-regulated. In the cellular process, there are 90 related DEGs; 68 DEGs were
down-regulated in ACB-FR, and 22 DEGs were up-regulated (Supplementary Materials:
Table S3). Comparing ACB-IeR with ACB-BtS (Figure 2B), in the case of catalytic activity,
there are 78 related DEGs, including 39 down-regulated DEGs and 39 up-regulated DEGs
in ACB-FR strains. In the single-organism process, there are 67 related DEGs; 43 DEGs were
down-regulated and 24 DEGs were up-regulated, and 58 DEGs were related to the cellular
process; 35 DEGs were down-regulated and 23 DEGs were up-regulated (Supplementary
Materials: Table S3).

A total of 130 candidate genes with pathway annotation were allocated to reference
pathways in KEGG when ACB-FR was compared with ACB-BtS. In the result, 15 pathways
with p ≤ 0.05 (Supplementary Materials: Table S4) were enriched, including “Longevity
regulating pathway-multiple species” and “Protein processing in endoplasmic reticulum”,
which had the lowest p-value. The top 20 most-enriched pathways were shown in Figure 3A.
However, comparing ACB-IeR with ACB-BtS, 94 candidate genes with pathway annotations
were assigned to the reference pathways in KEGG, and 18 pathways were enriched with
p ≤ 0.05 (Supplementary Materials: Table S4), including those with the lowest p-value
“Pancreatic secretion” and “Protein digestion and absorption”. The top 20 most-enriched
pathways were shown in Figure 3B.
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Figure 2. Gene ontology (GO) classification of the differentially expression genes in different ACB
strains. (A) ACB-FR vs. ACB-BtS; (B) ACB-IeR vs. ACB-BtS. The abscissa is the second level GO
term, the ordinate is the number of genes in the term, red column indicates up-regulation, and green
column indicates down-regulation.
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3.5. RT-qPCR Verification of Differentially Expressed Genes

According to the fold change of RT-qPCR analysis, the results support differential
expression at the gene level. Compared with susceptible strains, some differentially ex-
pressed genes have the same trend in resistant strains, but several of these Bt-resistance
candidate genes were differentially regulated in both resistant strains. Additionally, the ex-
pression levels of glutathione S-transferase 1-like, UDP-glucuronosyltransferase 2B14-like
and ABCG1 were all up-regulated in both resistant strains (Figure 4). However, membrane-
bound alkaline phosphatase-like (MBALP), heat shock protein 68-like and ABCA1 were
down-regulated in both resistant strains (Figure 4). Moreover, pancreatic triacylglycerol
lipase-like (PNLIP) was up-regulated in ACB-IeR and down-regulated in ACB-FR.
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4. Discussion

The evolution of resistance of target pest populations to Bt toxins is the most relevant
threat to the sustainability of Bt technology in the future [7], and clarifying insect resistance
mechanisms will help improve Bt technology [31]. In the present study, the ACB-IeR
strain has a higher estimated Cry1Ie resistance ratio, more than 862-fold increase compared
to ACB-BtS, after 28 generations of selection (Table 1). In another study, the ACB-IeR
strain also had more than 850-fold resistance to Cry1Ie, and Cry1F-resistant strains have
not shown cross-resistance to Cry1Ie [32]. When the target pest is resistant to one Bt
toxin, it will produce cross-resistance to other Bt toxins with the same or similar action
sites and binding receptors, while it has no or low cross-resistance to Bt toxins with
different types of action sites [33,34]. As previously reported, the high cross-resistance
of European corn borer Cry1Ab-resistant strains to Cry1Ac is due to a common binding
site [35,36]. In addition, Cry1F-resistant European corn borer does not have cross-resistance
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with Cry1Ab and Cry9C, because Cry1F has no common binding site with Cry1Ab and
Cry9C [34,35]. To understand the mechanism of Bt resistance, it is necessary to study the
binding sites of Bt toxins in O. furnacalis. This has guiding significance for the development
and utilization of bivalent transgenic insect-resistant maize and different transgenic insect-
resistant maize rotations.

Furthermore, a comparative analysis of transcriptome data shows that more genes in
ACB-FR and ACB-IeR strains are down-regulated compared to susceptible strains (Figure 1).
In the current study, the transcriptome analysis revealed 62–63% of genes were down-
regulated in the Bt-resistant strains compared to the susceptible strain. Similarly, an
analysis of chlorantraniliprole-susceptible and -resistant strains of Plutella xylostella revealed
similar global gene down-regulation, where including many receptors and transporters [37].
Conversely, up-regulated genes related to immunity and detoxification genes were found
in the current study and in Cry1A-resistant P. xylostella [38]. Thus, the down-regulation
of Bt targets and transporters and simultaneous induction of detoxification mechanisms
could lead to increased resistance to insecticides. In our transcriptome analysis, most genes
within the ABCG family were down-regulated in ACB-IeR and ACB-FR compared with
ACB-BtS; a similar result was reported in the ACB-AcR strain [20], which indicates that
ABCG genes are putative receptors of Cry1Ac, Cry1Ie and Cry1F, and need more data
to support this conclusion. Similarly, trypsin-like genes were up-regulated in ACB-IeR
and ACB-FR compared with ACB-BtS (Table S2), but the functional relationship with Bt
resistance is still unclear.

As the well-known receptor of Bt toxins, cadherin, APN and ALP was listed in Table S2.
In total, 45 cadherins, 9 ALPs and 30 APNs were differentially expressed in ACB-IeR or
-FR strains. Cadherins acted as receptors of Cry proteins are reported in many insect
orders [39,40]. Binding with Cry1 toxins can form critical toxic oligomer that can effectively
kill the insect [41]. Much research indicates that mutation of cadherin can generally link
with Cry1A proteins resistance in Pectinophora gossypiella, Heliothis virescens and Helicoverpa
armigera [14,42,43]. Knocking down by RNAi and knocking out by CRISPR/Cas 9 of
cadherin can decrease the insect’s susceptibility to Bt proteins [44]. Synergism between
cadherin and ABCC2 were reported by in vitro and in vivo test [45,46].

In particular, Bt-resistance mechanisms have involved several ABC transporters from
subgroups A [47], C [14,48] and G [49]; as reported previously [20], members of the three
subgroups are down-regulated in Cry1Ab- and Cry1Ac-resistant O. furnacalis. The results of
RT-qPCR showed that the abundance of Ofabca2 was reduced in the midgut of Cry1F- and
Cry1Ie-resistant larvae (Figure 4), and interestingly, Ofabcg1 increased both in Cry1F- and
Cry1Ie-resistant larval midgut transcripts and RT-qPCR results (Figure 4). This may indicate
that although Cry toxins have some of the same receptors, the molecular mechanisms
involved in developing resistance characteristics of different resistant O. furnacalis strains
may be different.

Less differential expression ALPs (nine ALPs) were found in the two resistant strains.
GPI-tethered or soluble ALPs involve dephosphorylation. Decreasing expression of ALPs
were found in resistant strains of Ostrinia furnacalis, Plutella xylostella, Spodoptera frugiperda
and Helicoverpa armigera [50,51], but in a resistant strain of Diatraea saccharalis, ALP transcript
levels were not reduced [52]. In our result, only ncbi_114355045 was significantly up-
regulated in ACB-FR and -IeR strains, ncbi_114362710 was significantly down-regulated in
ACB-IeR strains and ncbi_114355386 was significantly down-regulated in ACB-FR strains.
Further experiments could unearth the functions of these genes.

In addition, more differential expression APNs (30 APNs) were found in ACB-FR and
-IeR strain. Not all the APNs could interaction with Cry toxins; some of them were reported
associated with resistance [53]. In H. armigera Cry1Ac resistant strain, there was a 22 aa
deletion of APN, and in Spodoptera exigua, APN1 was absent in Cry1Ca resistant strain
midgut [54]. Further SNP or deletion can be analyzed between resistant and susceptible
strains of O. furnacalis. The knocking down of APNs could decrease the susceptibility to
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Cry1A toxins in Chilo suppressalis [55], the gene down-regulated in ACB-FR or ACB-IeR,
probably the receptors of Cry1F or Cry1Ie.

Moreover, previous studies have shown that most of the genes annotated as GSTs and
trypsin in ACB-AhR have low expression levels [21]. Interestingly, we screened data related
to GSTs from the transcript; most of the GSTs in ACB-FR showed an up-regulation trend,
but it was down-regulated in ACB-IeR (Supplementary Materials: Table S9). The different
expression GSTs in ACB-FR may be involved in Bt resistance, and could be partially
responsible for Cry1F-sepecific resistance. The difference was that the genes annotated
as trypsin alkaline C-like are mostly up-regulated in Cry1F- and Cry1Ie-resistant strains
(Supplementary Materials: Table S8). According to previous reports, GSTs were related to
resistance and participated in the detoxification of exogenous substances [56]. Trypsin is
also considered the main protease for detoxification [57]. Thus, further research is needed
to clarify the role of genes in the mechanism of Bt resistance.

In addition, GO and KEGG pathway analysis was performed on the DEGs of ACB-
FR, ACB-IeR and ACB-BtS to find more genes related to Bt resistance in ACB. It can
be seen that a large part of genes is related to catalytic activity in terms of molecular
function (Supplementary Materials: Table S3). In the previous report, the molecular
function part of the resistant strain of P. xylostella involved the most genes in the category
of catalytic activity. These findings indicate that the resistance mechanism may also be
related to catalytic activity [38,58]. Furthermore, KEGG pathway enrichment analysis
showed that ACB-FR and ACB-IeR was significantly enriched in a series of genes in the
same KEGG pathways (Supplementary Materials: Table S4), such as retinol metabolism,
ABC transporters, metabolism of xenobiotics by cytochrome P450, protein digestion and
absorption, pancreatic secretion, chemical carcinogenesis, fat digestion and absorption and
drug metabolism-cytochrome P450; these pathways may be related to Bt toxins resistance.
ABC transporters play a key role in the mode of action of the Bt toxin. Previous reports
have shown that mutations in the ABC protein can confer high levels of resistance [59].
The two KEGG pathways about P450 are very important in the metabolism of xenobiotics
and drugs. CYP450 includes many subfamilies, but only six exist in insects, five are insect
specific, CYP6/CYP9/CYP12/CYP18 and CYP28, and one, CYP4, includes sequences
from vertebrates [60,61], especially for CYP4 and CYP6 which are reported to relate with
insecticide resistance [62,63]. Bt toxins also act as xenobiotics or drugs for insects, and
enrichment on the two pathways in the comparison of resistant and susceptible strains
indicates P450s are related to Bt resistance.

5. Conclusions

Cry1Ie- and Cry1F-resistant strains were selected in our lab and compared with
susceptible strains. ACB-IeR strains evolved more than 862.07-fold greater resistance to
Cry1Ie than susceptible strain ACB-BtS, and ACB-FR strains evolved more than 961-fold
greater resistance to Cry1F than ACB-BtS. Further analysis of the transcriptomes of the
three strains showed that a larger proportion of genes were significantly down-regulated in
the Bt-resistant strain. This study is based on the transcripts of Cry1Ie- and Cry1F-resistant
strains, focusing on finding the differences between the two strains at the molecular level,
which is believed to provide ideas for delaying Bt resistance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12020298/s1, Table S1: Primers used for RT-qPCR
experiment; Table S2: The transcripts significantly up- or down-regulated in ACB-IeR or -FR compared
with ACB-BtS strain; Table S3: Gene ontology analysis of Ostrinia furnacalis transcriptome; Table S4:
Significantly enriched KEGG pathways in Ostrinia furnacalis. Table S5: Differentially expressed genes
among ACB-BtS, ACB-FR and ACB-IeR. Table S6: Transcript data about heat shock protein; Table S7:
Transcript data about UDP-glucuronosyltransferase; Table S8: Transcript data about trypsin alkaline
C-like genes; Table S9: Transcript data about glutathione S-transferase genes.
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