
Citation: Nguyen, N.M.T.; Liou, N.-S.

Ripeness Evaluation of Achacha Fruit

Using Hyperspectral Image Data.

Agriculture 2022, 12, 2145. https://

doi.org/10.3390/agriculture12122145

Academic Editors: Ahmed

Mustafa Rady and Ewa Ropelewska

Received: 25 October 2022

Accepted: 7 December 2022

Published: 13 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Ripeness Evaluation of Achacha Fruit Using Hyperspectral
Image Data
Ngo Minh Tri Nguyen and Nai-Shang Liou *

Department of Mechanical Engineering, Southern Taiwan University of Science and Technology,
Tainan 710, Taiwan
* Correspondence: nliou@stust.edu.tw

Abstract: In this study, spectral data within the wavelength range of 400–780 nm were used to evaluate
the ripeness stages of achacha fruits. The ripeness status of achacha fruits was divided into seven
stages. Both average and pixel-based approaches were used to assess the ripeness. The accuracy
and n-level-error accuracy of each ripeness stage was predicted by using classification models
(Support Vector Machine (SVM), Partial Least Square Discriminant Analysis (PLS-DA), Artificial
Neural Network (ANN) and K-Nearest Neighbor (KNN)) and regression models (Partial Least Square
Regression (PLSR) and Support Vector Regression (SVR)). Furthermore, how the curvature of the fruit
surface affected the prediction of the ripeness stage was investigated. With the use of an averaged
spectrum of fruit samples, the accuracy of the model used in this study ranged from 52.25% to 79.75%,
and the one-level error accuracy (94.75–100%) was much higher. The SVM model had the highest
accuracy (79.75%), and the PLSR model had the highest one-level error accuracy (100%). With the
use of pixel-based ripeness prediction results and majority rule, the accuracy (58.25–79.50%) and
one-level-error accuracy (95.25–99.75%) of all models was comparable with the accuracy predicted
by using averaged spectrum. The pixel-based prediction results showed that the curvature of the
fruit could have a noticeable effect on the ripeness evaluation values of achacha fruits with a low or
high ripeness stage. Thus, using the spectral data in the central region of achacha fruits would be
a relatively reliable choice for ripeness evaluation. For an achacha fruit, the ripeness value of the
fruit face exposed to sunlight could be one level higher than that of the face in shadow. Furthermore,
when the ripeness value of achacha fruit was close to the mid-value of two adjacent ripeness stage
values, all models had a high chance of having one-level ripeness errors. Thus, using a model with
high one-level error accuracy for sorting would be a practical choice for the postharvest processing of
achacha fruits.

Keywords: hyperspectral imaging; machine vision; fruit sorting; ripeness; achacha

1. Introduction

The ripening of fruits, usually involving color change and increasing sugar content,
refers to the processes that occur at the later stages of maturation and the early stages of
senescence for fruits [1]. Achacha (Garcinia humillis), which originates from Bolivia [2,3],
has recently become one of Taiwan’s commercial plantation fruits. As the achacha fruits
ripen, the skin color changes from green to yellow and then to dark orange. The color
changes are due to the loss of chlorophyll and concomitant synthesis of the characteristic
pigments, such as carotenoids [4]. At the current stage, in Taiwan, achacha fruits are
harvested manually. Harvesters try to pick achacha fruits with proper maturity and to
ensure that the fruit is not over-ripe or senescent; however, at which stage of maturity
the achacha fruits should be picked from the tree is difficult to be judged by harvesters,
sometimes because the color of the fruits varies under different light conditions. For
example, the same achacha fruit exposed to direct sunlight or in the shadow of a tree may
appear to have different colors. Furthermore, under-ripe achacha fruits could be picked
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by mistake during the fast-paced harvesting process. Because the ripeness stage is an
important indicator of the quality of the achacha fruits from the customers’ perspective,
determining the ripeness stage is an important task in the postharvest processing of achacha
fruits. Currently, the ripeness stage of achacha fruits is visually identified by the farmer
in front of the sorting line. The disadvantage of this method is low efficiency, prone to
mistakes and inconsistency. Many physical and chemical features, such as size, shapes,
texture, firmness, colors, the concentration of chlorophyll, soluble solids content (SSC),
starch, sugars, acids and oils, can be used to quantify fruit ripeness [5]. The use of non-
destructive techniques for fruit maturity assessment can be traced back to more than a half-
century ago [6]. After that, many non-destructive fruit ripeness evaluation methods based
on different technologies, including electrical bio-impedance [7], computer tomography,
electric nose [8], magnetic resonance imaging, RGB color imaging [9], spectroscopy [10],
spectral imaging [11,12], ultrasound [13] have been developed. Among the aforementioned
techniques, imaging technologies have emerged as powerful tools for sorting and grading
fruits because the same data obtained by imaging technologies can be used not only for
fruit maturity measurement but also for other postharvest processing tasks, such as surface
defect detection, size or shape grading.

Machine vision systems based on conventional RGB images have been adopted for
fruit ripeness evaluation for many years. For example, tomato maturity was classified based
on HSV color histogram and color moments extracted from RGB images captured using
a computer vision system [14]. The combination of color feature and back propagation
neural network (BPNN) was used to detect three maturity levels (green, orange and red)
of tomatoes [15]. Cardenas-Perez et al. [16] proposed a ripening index (RPI) for assessing
apple ripeness (unripe, ripe and senescent). The ripeness of fruits was determined based
on the external color using image processing techniques [17–19]. However, color features
could be affected by factors such as light intensity and exposure time of the digital camera,
which cause noise [20]. Furthermore, the color difference between intermediate adjacent
ripeness levels might not be significant [21]. Thus, it could be difficult to distinguish
multiple intermediate adjacent ripeness stages of fruits by RGB images. In addition to
using color digital cameras to obtain RGB imaging, hyperspectral imaging (HSI) systems
have been successfully used for the assessment of fruit ripeness. HSI systems can acquire
data in both spatial and spectral domains at the same time [22]. The ripening of fruits
usually involves chemical processes, such as chlorophyll degradation, changes in respi-
ration, biosynthesis of carotenoids and changes in ethylene production [23]. Many of the
visible changes throughout the ripening process are ascribed to changes in pigmentation
induced by changes in chlorophyll content and accumulation of carotenoids. Compared
with using RGB images obtained by digital image sensors with broadband Bayer filter
mosaic, the changes in ripeness stages can be better observed using high spectral resolution
data obtained by hyperspectral imaging systems, because, for fruits without significant
color difference between intermediate adjacent ripeness levels, the ripeness level can be
differentiated better based on the subtle spectral shifts in the measured spectra. Logan
et al. used RGB images and hyperspectral images to analyze the ripeness of fruits and
vegetables. The results showed that hyperspectral images outperform RGB images for age
classification on all their tested produce [24]. Furthermore, Zhang et al. used VIS-NIR
and NIR hyperspectral image data to evaluate the maturity of strawberries with three
levels [25], and Wei et al. classified four ripeness levels of persimmons using VIS-NIR
hyperspectral image data [26].

Machine learning classification models using hyperspectral data were widely used for
maturity assessment. To name a few, a Support Vector Machine (SVM) was used to evaluate
the ripeness of strawberries [25] and blueberries [27]. An artificial Neural Network (ANN)
was used to recognize bananas with four ripeness levels [28]. Soft independent modeling
of class analogies (SIMCA) was used for bananas [29] and pears [30]). Linear Discriminant
Analysis (LDA) was applied to tomatoes [31] and apples [32].
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The objective of this study was to develop ripeness stage evaluation models with
the use of HSI data for achacha fruits. Both pixel-based and averaged hyperspectral data
were used in this study. The performance of classification and regression models was
investigated. Furthermore, how the curvature of the fruit surface affects the prediction of
the ripeness stage was explored.

2. Materials and Methods
2.1. Hyperspectral Image Data Acquisition and Preparation

A custom-made push-broom Hyperspectral Imaging (HSI) system was used to obtain
spectral data of achacha fruits. The system consists of a Basler Ace acA2440-175 um
monochrome camera, an Imaging spectrograph (Imspector V10E, Spectral Imaging Ltd.,
Oulu, Finland) with 23 mm C-mount zoom lens (OLE23-f/2.4, Spectral Imaging Ltd., Oulu,
Finland), two halogen lamps, a computer (3.1 GHz Ryzen 9-3900 CPU, 32 GB memory) and
a motorized positioning sample table driven by an AC servo motor (SDE-010A2, Shihlin,
Taiwan) and PWM signals from data acquisition devices (NI-myDAQ, National Instruments,
Austin, TX, USA). The spectral images were acquired by a GUI program developed in
Labview software 2020. The black-and-white calibration was performed on the raw data
obtained by the hyperspectral imaging system to obtain the relative reflectance [33]. The
black reference images were obtained by turning off the light sources and covering the lens
with a black cap, and the white reference images were acquired with the use of a white
diffuse board.

2.2. Achacha Samples

The achacha fruits with various ripeness stages were obtained from an orchard in
Pingtung, Taiwan. The specimens were stored at room temperature (25 ◦C), and hyperspec-
tral images of specimens were obtained within two days after specimens were harvested.
Seven ripeness stages were used to discern the various ripening levels of the achacha fruits.
The total number of achacha specimens used in this study was 414. When preparing the
data for training and validation, the extremes were numbered as ripeness stage “1” and
“7”. Then the rest of the samples were sorted into five fairly equal intervals. Finally, the
two most representative samples of the seven ripeness stages were selected for obtaining
hyperspectral image data for training and validation of ripeness evaluation models. The
pseudo-RGB images, created by combining three wavelengths (Red: 622 nm; Green: 530 nm;
Blue: 465 nm), of the most representative samples of the seven ripeness stages are shown in
Figure 1. Except at ripeness stage 1 (green) or 7 (deep orange), achacha fruits more or less
have a mix of colors or color gradients with the neighboring ripeness stage. At ripeness
stages 2 and 3, the surface of the achacha fruits consists of mixed colors of green and yellow
mottles. For achacha fruits at ripeness stages 2 to 6, since sunlight exposure can accelerate
the color changing of the fruit surface, the side exposed to sunlight usually had a riper look
than that of the opposite side for the same fruit.
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In order to create a mask for separating the fruit sample from the background, an
ANN classification model was trained to differentiate fruit pixels from background pixels
using HSI data (Figure 2b). The curvature of the achacha fruits led to intensity distortion
during the scan. The intensity of the spectral data of pixels near the border was low.
Therefore, the mask image was eroded from the border to remove pixels belonging to
severe intensity distortion regions (Figure 2c). Because the ripeness stages of the achacha
fruits were visually assigned by human experts, spectral data within the wavelength range
of 400–780 nm were used in this study.
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Figure 2. (a) RGB image of achacha fruit, (b) full mask containing fruit sample and (c) eroded mask
to define region of interest (ROI) for ripeness evaluation.

2.3. Training and Validation Data Preparation

For each ripeness stage, 20,000 labeled data points were randomly selected from the
region defined by the eroded mask of the two most representative achacha fruit samples
shown in Figure 1; the data were divided into training and validation sets. The train-
ing set was used for model training, and the validation set was used for the selection
of hyperparameters.

2.4. Ripeness Evaluation Models

Classification models were widely used to classify the ripeness stage of fruits. For
example, with the use of RGB images, tomatoes were classified into 3 ripeness levels [15];
by using hyperspectral image data, navel oranges and okras were classified into 3 ripeness
levels [34,35]. However, in general, classification models are used for predicting discrete
labels, and regression models are used for predicting continuous quantities. The ripening of
fruits is a continuous process. The color of achacha fruits continuously changes from green
to yellow and to dark orange when ripening; the evaluation of the ripeness stage of achacha
fruits can be considered a regression problem. In this study, both classification models
(Support Vector Machine (SVM), Partial Least Square Discriminant Analysis (PLS-DA),
Artificial Neural Network (ANN) and K-Nearest Neighbor (KNN)) and regression models
(Partial Least Square Regression (PLSR) and Support Vector Regression (SVR)) were used
to identify the ripeness stage of achacha fruits. For regression models, the predicted levels
were obtained by rounding the regression output to the nearest integer value.

PLSR projects both independent and dependent variables to new spaces to find the
direction in which independent variables can explain dependent variables as much as pos-
sible. PLSR relieves the limitation of multiple-variable linear regression on correlated data
and therefore is effective for use as a regression model for full wavelength hyperspectral
data [5]. PLS-DA was developed based on the Partial Least Square (PLS) algorithm for
classification purposes. For binary problems, PLS-DA is performed by training a PLSR
model with dummy variables representing the 2 classes, then separating them, such as
by thresholding. In multiclass problems, a one-vs-rest scheme is applied. The PLS base
algorithms were used to predict ripeness [29,30,36] and ripeness parameters, such as firm-
ness [26], Ripening Index (RPI) and Internal Quality Index (IQI) [37]. In this study, the
optimal number of components for PLS and PLS-DA was obtained by performing a Least
Mean Squared Error (LMSE) evaluation on the validation data set.

SVM is a popular model for ripeness classification [25,27] due to its ability to work
well with a limited number of samples. A binary SVM model tries to find the separating
hyperplane that can separate the 2 classes with the largest margin to the support vectors. In
this study, multiclass SVM was performed through a one-vs.-one scheme. Support Vector
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Regression (SVR) is a regression version of SVM. Instead of considering all prediction
errors, SVR ignores errors smaller than a threshold defined by an ε-insensitive tube [38],
so it becomes less sensitive to noise as well as more robust [39]. SVR was used to predict
parameters related to ripeness, such as anthocyanin concentration, pH index and sugar
content of wine grape berries [40]. The kernel trick is commonly applied for SVM and SVR
to tackle nonlinearly separable problems. In this study, Radial Basis Function (RBF) kernel
was used for SVM and SVR models.

KNN is a model that can be used for both classification and regression. Without
training, the prediction of new data points is based on K nearest training point(s), where K is
the number of considered nearest neighbors. In ripeness evaluation, the KNN classification
form is commonly used [27,29]. In this study, K was chosen as 1, and the Standardized
Euclidean distance was used. ANN is widely used in many fields, including ripeness
classification [28,41,42]. ANN models can distinguish classes via training weights and bias
using backpropagation. In this study, the ANN model structure had 3 layers, including
an input layer (381 nodes), a hidden layer (500 nodes, ReLU activation function), and an
output layer (7 nodes, Softmax activation function).

2.5. Pixel-Based Classification and One-Level Error Prediction

When performing ripeness stage assessment using data from imaging devices, such as
color CCD cameras or hyperspectral imaging systems, using the average of image data from
the region of interest (ROI) as the single data point to represent the whole fruit for training
and predicting is a common method adopted by researchers. With the use of the mean spec-
trum of each fruit sample, strawberries were classified into 3 ripeness levels by SVM [25].
Bananas were classified into 3 ripeness stages using the mean spectrum averaged from the
ROIs of two sides with the tip-end and stalk-end removed [29]. Tomatoes were classified
into 4 ripeness stages using the mean spectrum representing each sample averaged from
100 × 100 pixels at the center of the ROI [20]. However, for fruits that have a non-uniform
color distribution at certain ripeness stages, the use of averaged data could lose the informa-
tion related to the mixed color and color gradient and may produce incorrect predictions.
In order to solve the non-uniform color issue, Amirulah et al. [43] and Garcia et al. [44] use
a pixel-based approach to investigate starfruit and tomato ripening stages.

Polder et al. used a pixel-based approach to grade tomatoes into 5 ripeness levels.
In addition to an exact prediction, one-level error prediction was also considered. The
ripeness of the sample was decided through the majority rule of all pixels within the
mask, and the one-level error accuracy was also investigated [45]. The ripening process of
achacha fruits is a continual progression, and there are no clear separation borders between
consecutive ripeness stages. Furthermore, achacha fruits more or less have a mix of colors
or color gradients between the neighboring ripeness stages. In this study, both average
and pixel-based approaches were used for the ripeness stage study of achacha fruits. The
accuracy (named as exact accuracy in this study) and n-level error accuracy of the ripeness
stage evaluation models were investigated. For the n-level error accuracy (n is a positive
integer), the predicted ripeness stage within an n-level higher or lower than the actual label
was considered correct. The formula for n-level-error accuracy calculation is

n− level− error accuray =
Number of prediction of |Predicted level − Actual level| ≤ n

Total number of prediction
(1)

Furthermore, for the pixel-based approach, how the curvature of fruits affects the
ripeness predictions were also examined.

3. Results and Discussion
3.1. Spectral Characteristics of Different Ripeness Stages

The average spectra of the seven ripeness stages of achacha fruits are shown in Figure 3.
For achacha fruits at ripeness stages 1 and 2, the rapid change in reflectance in the near-
infrared range (red edge) can be clearly seen. For fruit at ripeness stage 1 (green), the fruit
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surface is completely green, and chlorophylls are the dominant photosynthetic pigments.
The reflectance peak (or chlorophyll bump) and the valley of the spectrum are located at
wavelengths corresponding to the local minimum and maximum absorption wavelengths
(550 nm and 670 nm) of chlorophyll, respectively [46,47]. At ripeness stage 2, there is an
obvious break in color from green to yellow; however, the color of the skin is not uniform.
The reflectance of the spectrum is higher than that of stage 1 due to the appearance of
beta-carotene; however, the absorption peak and valley of chlorophyll can still be observed.
Most of the surface is not green at ripeness stage 3; instead of chlorophylls, beta-carotene
is the dominant pigment. Although the absorption peak (670 nm) of chlorophyll still can
be observed, the reflectance of spectra at a wavelength greater than 520 nm is higher than
those of fruits at ripeness stages 1 and 2 since beta-carotene has low absorption of light
with a wavelength higher than 520 nm. For the achacha fruits at ripeness stage 4~7, the
reflectance of spectrum or color depends on the breaking down status of chlorophyll and
carotene. In general, the molecules of carotene are more stable than those of chlorophyll.
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3.2. Average-Spectrum Approach Using Regression and Classification Algorithms

The exact accuracy and n-level error accuracy of the six ripeness evaluation models
with the use of averaged spectral data of ROI of each fruit are shown in Figure 4. The exact
accuracy of all models used in this study ranges from 52.25% to 79.75%. Compared with
other models, PLS-based models had the lowest accuracy. In this study, the optimal num-
bers of components chosen, through Least Mean Squared Error (LMSE) on the validation
data set, for PLSR and PLS-DA are 26 and 48, respectively. The degrees of accuracy of PLS-
DA and PLSR are 57.25% and 64.25%, respectively. Furthermore, the support vector-based
models had the highest accuracy. The degrees of accuracy of SVR and SVM are 79.75% and
75.75%, respectively.

Of all models, the one-level error accuracy is much higher than exact accuracy. Further-
more, the regression models have higher one-level error accuracy than classification models
do. Both one-level error accuracies of PLSR and SVR are higher than 99%. The reason why
regression models have higher one-level error accuracy could be regression models retain
the information about the order of the ripeness levels. Compared to classification models,
most incorrect predictions of regression models fell into adjacent ripeness levels instead of
other ones.
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The PLSR model has the highest one-level error accuracy (100%); however, the PLS-DA
model has the lowest one-level error accuracy. Moreover, PLS-DA is the only algorithm
with a prediction error higher than 2-level (0.75% and 0.25% for three- and four-level errors,
respectively). Although PLS-DA was commonly used for ripeness prediction with high
accuracy using averaged spectrum [29,30,36], it seems that it is not suitable for the ripeness
evaluation of achacha fruits.

Figure 5 shows the exact accuracy and n-level-error accuracy of the six ripeness
evaluation models using pixel-based prediction and the majority rule approach. For the
classification models, the output of pixels is considered as the labels of ripeness level; the
majority rule can be applied to the classification results to obtain the ripeness level of the
fruit. Because, for the regression models, the ripeness value of each pixel is a real number,
the classification results were converted to the labels of ripeness level before applying the
majority rule. The conversion rules are as follows. For a pixel with a ripeness value less than
1.5, the ripeness level is 1; for a pixel with a ripeness value within the interval of [n − 0.5,
n + 0.5) where n is an integer ranges from 2 to 6, the ripeness level is n; and for pixel with
ripeness value equal or greater than 6.5, the ripeness level is 7. The exact and n-level-error
accuracies of the six models using pixel-based prediction and majority rule are comparable
to those of the six models using the average spectrum. Thus, the same pixel-based spectral
data can be used for defect classification (if necessary) and ripeness evaluation, and there is
no need to prepare an additional average spectrum for ripeness assessment.
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using pixel-based prediction and majority rule and (b) the close-up of prediction accuracy.

Because the ripeness outputs of regression models (SVR and PLSR) are real numbers,
additionally applying the majority rule to the pixel-based classification results to obtain the
ripeness level of a fruit, the mean or average of pixel-based prediction results can also be
used to obtain the ripeness stage of fruits. In this study, the mean of pixel-based prediction
results was rounded to an integer to be the ripeness level of achacha fruits. Figure 6
shows the exact accuracy and n-level-error accuracy of regression models using the average
and majority rule of pixel-based prediction results. For both average and majority rule
approaches, SVR has higher exact accuracy; however, PLSR has higher one-level error
accuracy. PLSR using the average approach has the highest one-level error accuracy and
has no ripeness stage error of more than one level; in addition, the predicting speed of
the PLSR model is much faster (about 400 times) than that of the SVR model in this study.
Therefore, the pixel-based approach using the PLSR model is more suitable for on-line
real-time sorting applications if a one-level error is acceptable.
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3.3. The Effect of Curvature on Ripeness Evaluation

When performing hyperspectral imaging acquisition using uniform illumination,
reflected light from regions near the edge of an object with a curved surface will have its
intensity reduced greatly [48] and may have undesired imaging artifacts [49]. In this work,
no surface curvature effect correction algorithm was applied to the hyperspectral data of
achacha fruit samples because the correction needs fruit shape information, which should
be obtained by using an extra device, such as a 3D profilometer. Figure 7 shows the effect of
curvature on ripeness evaluation results of regression models. The pixel-based prediction
results of samples with low, medium and high ripeness levels evaluated using PLSR and
SVR models are shown in Figure 7b,c, respectively. The curvature of fruit has a similar
influence on the ripeness evaluation results of both models; however, the curvature effects
on the two models are not the same. For fruit that had a low ripeness stage, the curvature
effect shifts the ripeness values to higher values for the PLSR model and to lower values
for the SVR model, respectively. The curvature of the fruit has no obvious effect on the
ripeness evaluation values of both models for medium ripeness fruits. Furthermore, the
curvature of high ripeness stage fruits moves the ripeness values to lower values for both
models. However, the effect on the SVR model, shown in Figure 7c, is more serious. It is
worth noting that, for both models, the ripeness evaluation results of the central regions
of samples are relatively consistent, except that the ripeness values predicted by PLSR are
slightly higher than those predicted by SVR for the high ripeness level fruit.

The aforementioned results suggest that using the spectral data in the central region
of achacha fruits would be a relatively reliable option for ripeness evaluation. In this
study, the original mask of the fruit was eroded by a diamond structuring element with
101 × 101 kernel size. Depending on the fruit size, about 50% to 65% of the area was eroded.

Figure 8 shows the normalized histograms (bin width = 0.01) and standard deviations
of the ripeness value distribution of pixels in ROI of the typical fruit samples at different
ripeness stages predicted by PLSR and SVR models. The shapes of histograms of the PLSR
model, compared with those of the SVR model, are closer to normal distribution. However,
the standard deviations of the SVR model were significantly lower than those of the PLSR
model, and the reason could be that the SVR can ignore smaller errors and thus are less
sensitive to noise [38,39]. The sample with ripeness stage three has the largest standard
deviation and the widely spread pixel-based classification results, and thus the sample is
more prone to the occurrence of one-level error. The reason why fruits at ripeness stage
three had the largest standard deviation of ripeness value could be due to the combined
effects of color gradient caused by non-uniform sunlight exposure and the mixed color
between the neighboring ripeness stages.
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The regression models using a pixel-based approach have high one-level error accu-
racy; however, applying different statistical methods to the same pixel-based classification
outcomes can result in different ripeness levels. The three typical cases shown in Figure 9
are used to illustrate how the distribution of ripeness values of pixels and the statistical
methods affect the classification outcome of achacha fruits.
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It can be seen from Figure 9a,b that, for fruits with the histograms of pixel-based
prediction results close to Gaussian distributions, the means of ripeness value are close
to the ripeness value corresponding to histograms’ peaks. If the mean of ripeness values
of the sample is far away from the bounds of intervals used to calculate the mode, the
ripeness levels predicted using the mean or mode of ripeness values would be the same.
On the other hand, if the mean is close to a bound of intervals, the ripeness levels predicted
using the mean or mode have a high chance of being one level different. For example, as
shown in Figure 9a, the mean ripeness value (6.045) of fruit is far away from the bounds
(5.5 and 6.5) used to compute mode, and thus the ripeness levels predicted using the
mean or mode of ripeness values are the same (stage 6). In contrast, the mean ripeness
value (5.504) of fruit shown in Figure 9b is only slightly higher than the upper bound (5.5)
of the interval for mode calculation because 51.09% and 48.62% of pixels had ripeness
values within the intervals 4.5, 5.5 and 5.5, 6.5 respectively, the ripeness level predicted the
using mean ripeness value is one level higher than that predicted using the mode of the
histogram. This specific sample was correctly predicted at level 5 by using mode since the
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distribution of level five is 2.47% higher than that of level 6. However, it was misclassified
as level 6 using the mean of ripeness values due to the long spread of the histogram on
the right-hand side. For fruit with non-Gaussian distributions of ripeness value histogram
shown in Figure 9c, the standard deviation of the histogram is larger than that of fruit with
Gaussian distributions of ripeness value histogram. Thus, the ripeness level calculated
using the majority vote (mode) or the rounded average (mean) could have a higher chance
of being different.

One thing that should be pointed out is that defect pixels, when performing pixel-
based classification, on the fruit surface can have abnormal ripeness values, which are much
higher or lower than the ripeness value the fruit should have. For fruits with small defect
area(s), which were not screened out by the sorting algorithm, the highly abnormal ripeness
values in a small area could have a more significant effect on the ripeness value calculation
based on mean rather than mode. Therefore, for achacha fruits with minor defects, using
the mode to obtain the ripeness level from pixel-based classification outcomes could be
more reliable than using the mean.

Although mere visual inspection by human vision allows inspectors to perform
ripeness stage sorting of fruits, quantification can be enhanced and standardized if fruits
under inspection can be compared to some type of standard. Thus, color charts have been
developed to make the ripeness evaluation of fruits more objective and allow normalization
of the measurements of different inspectors. The photo shown in Figure 1 can be used as
a ripeness chart to measure the ripeness stage of achacha fruits by inspectors. It is worth
noting that the ripening of fruits is a continuous process. When the ripeness value is close to
the bounds n − 0.5 or n + 0.5 of interval for mode calculation, using human vision, machine
vision with an RGB camera or a hyperspectral imaging system to classify the ripeness stage
has a high chance of having one-level ripeness errors. For example, the ripeness stages of
specimens shown in Figure 10b,d were assigned as four and six, respectively, by human
experts; however, the ripeness statuses of these samples predicted by all models are stage 5
(one level higher or lower than the assigned ripeness stages correspondingly). Furthermore,
for achacha fruits at ripeness stages from two to six, the ripeness values of the face exposed
to sunlight could be one level higher than that of the face in the shadow when using the
current seven-level ripeness scale. For this reason, dividing the ripeness status of achacha
into more stages (levels) would have limited usage to improve the ripeness evaluation of
achacha fruits. Taking the aforementioned circumstances into consideration, using models
with high one-level error accuracy for on-line sorting of achacha fruits would be a more
practical option.
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Figure 10. (a,c,e) Fruit samples of reference stages four, five and six. (b) Fruit samples with ripeness
stage four assigned and classified as ripeness stage five by all models. (d) Fruit samples with ripeness
stage six assigned and classified as ripeness stage five by all models.

It is worth noting that, for regression models, the ripeness values are real numbers, so
the ripeness value (n + 0.5) at the midpoint of two adjacent ripeness levels (n and n + 1) can
be assigned to suitable fruits by human experts and combine the spectral data to the training
data set to improve the model without increasing the number of ripeness level. Furthermore,
although the ripeness level n was assigned to pixels with ripeness value within the interval
of [n − 0.5, n + 0.5), this interval can be adjusted to meet specific requirements of ripeness
stage output if necessary without re-training the regression models. Thus, compared to
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classification models for fruit ripeness level determination [17–19], regression models could
have more flexibility when they are deployed to the sorting line of fruits.

In this study, only spectral reflectance was used to evaluate the ripeness stage of the
fruit. However, the physicochemical properties of achacha fruits with the same color or
spectral reflectance from different farms, may more or less vary due to different cultivar
and environmental factors [50]. Therefore, the evaluation of other ripeness properties, such
as SSC [51,52], Total Soluble Solids (TSS) [53] and acidity [54,55], can help the ripening
evaluation of achacha fruits. However, the advantages of using color or spectral features to
evaluate fruit ripeness are non-invasive and fast, so they are suitable for on-line postharvest
processing. In future study, ripeness properties, obtained from invasive tests, such as
SSC, TSS and Titratable acidity, can be combined with spectral data to refine the ripeness
evaluation models.

4. Conclusions

The hyperspectral image data were used to evaluate the seven ripeness stages of
achacha fruits. Classification and regression machine learning models were used to assess
the accuracy and n-level-error accuracy of ripeness stages. The spectral data used for
training and validation were selected from the two most representative achacha fruit
samples of each ripeness stage. Besides using an averaged spectrum of fruit samples to
predict the ripeness stage, pixel-based ripeness prediction results of fruit samples were
also used to evaluate the ripeness stage. With the use of averaged spectral data, the
support-vector-based models (SVM and SVR) have higher accuracy than other models,
and the PLS-based models (PLSR and PLS-DA) have the lowest accuracy. Furthermore,
the regression models (PLSR and SVR) have the highest one-level error accuracy. With the
use of pixel-based ripeness prediction results and majority rule, the accuracy and one-level
error accuracy of all models used in this study are comparable to the accuracy and one-level
error accuracy predicted by models using averaged spectrum. Thus, the same pixel-based
spectral data can be used for ripeness evaluation and defect classification (if necessary) of
achacha fruits. The ripening of fruits is a continuous process. When the ripeness value of
achacha fruit is close to the mid value of two adjacent ripeness stage values, all models
have a high chance of having one-level ripeness errors. The use of high one-level-error
accuracy models would be a practical option for the postharvest process of achacha fruits.
The PLSR has the highest one-level error accuracy and has no ripeness stage error of more
than one level; additionally, the predicting speed of the PLSR model is fast. Therefore,
the pixel-based approach using the PLSR model is suitable for on-line real-time sorting
applications. For fruits with low or high ripeness stages, the curvature of the fruit has a
noticeable influence on the ripeness evaluation values. Thus, using only spectral data in the
central region of achacha fruits would be a relatively reliable choice for ripeness evaluation.
In order to improve the ripeness evaluation models, ripeness properties obtained from
invasive tests can be combined with spectral data to train the machine learning models.
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