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Abstract: Rice is one of the most significant crops cultivated in Asian countries. In Taiwan, almost
half of the arable land is used for growing rice. The life cycle of paddy rice can be divided into several
stages: vegetative stage, reproductive stage, and ripening stage. These three main stages can be
divided into more detailed stages. However, the transitions between stages are challenging to observe
and determine, so experience is required. Thus, rice cultivation is challenging for inexperienced
growers, even with the standard of procedure (SOP) provided. Additionally, aging and labor issues
have had an impact on agriculture. Furthermore, smart farming has been growing rapidly in
recent years and has improved agriculture in many ways. To lower the entry requirements and
help novices better understand, we proposed a random forest (RF)-based machine learning (ML)
classification model for rice growth stages. The experimental setup installed in the experiment
fields consists of an HD smart camera (Speed-dome) to collect the image and video data, along with
other internet of things (IoT) devices such as 7-in-1 soil sensors, a weather monitoring station, flow
meter, and milometer connected with LoRa base station for numerical data. Then, different image
processing techniques such as object detection, object classification, instance segmentation, excess
green index (EGI), and modified excess green index (EGI) were used to calculate the paddy height
and canopy cover (CC) or green coverage (GC). The proposed ML model uses these values as input.
Furthermore, growth-related factors such as height, CC, accumulative temperature, and DAT are
used to develop our model. An agronomist has been consulted to label the collected different stages
of data. The developed optimal model has achieved an accuracy of 0.98772, and a macro F1-score of
0.98653. Thus, the developed model produces high-performance accuracy and can be employed in
real-world scenarios.

Keywords: machine learning; image processing; smart farming; paddy rice growth stages; random
forest; precision agriculture

1. Introduction

All human existence is affected by agriculture, which is one of the most significant
industries in the world. Besides providing security, nutrition, and health for a nation’s
citizens, agriculture production is vital for its economy [1]. Paddy rice is one of the most
common foods and is cultivated primarily in Asia. In Taiwan, rice is usually cropped from
February to November, and is considered the most farmed crop [2]. The first farming
period (or cropping season) is from February to July, and the second is from August to
November. The second farming period would be shorter than the previous one as both
temperature and day length are longer. However, the growth duration of rice plants varies
with the variety of species and the environment in which they grow. Based on the season
and different species, the life cycle of the rice plant is around 100 to 210 days [3].
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The life cycle of rice generally includes the vegetative stage, reproductive stage, and
ripening stage. Each stage can be subdivided into more detailed stages. Figure 1 demon-
strates the growth stages [4]. In Taiwan, Good Agricultural Practice (TGAP) publishes rice
farming methods (or SOP) for farmers [5]; the SOP is more in line with Taiwan’s planting
conditions. The SOP contains the rice growth stages and related field work according to a
particular growth stage (cf. Figures 1–3).

Figure 1. Paddy Rice Growth Stages Illustration from [2].

Figure 2. The First Rice Farming Period and Related SOP.

The figures above show some curves or trend lines. From left to right, curved lines
represent tillering counts, panicle counts, and panicle weights; straight lines represent
paddy weights. There are several common indices for paddy rice, which indicate the
growth of paddy rice. The indices, however, cannot be measured with images, they must
be measured manually.

The stages after transplantation are sorted into Table 1, which contains 11 stages across
three phases. Splitting phases into multiple stages is ideal in farming as different actions
are taken at different periods. Based on the consultations with experts, we recommend
treating the ripening stage as a single phase. This is because the transitions in ripening
phases are extremely difficult to classify precisely. In addition, there are no fields of work
to operate in the ripening phase. In this case, the stages are selected across vegetative and
reproductive phases, and the ripening phase (treat milk stage, dough stage, yellow ripening
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stage, and mature stage as one), in a total of 8 stages (cf. Table 1). These 8 stages are used
for the classification task.

Figure 3. The Second Rice Farming Period and Related SOP.

Table 1. Growth Stages of Paddy Rice Sorted by TGAP and Our Experts for Classification Task.

Stage Phase Selection

Transplantation

Vegetative

Yes
Early Tillering Yes
Peak Tillering Yes
Late Tillering Yes

Panicle Initiation
Reproductive

Yes
Booting Yes
Heading Yes

Milk

Ripening

Yes
Dough Yes
Yellow Ripening Yes
Mature Yes

Although the farming SOP covers most of the cultivation, the transition between
stages is still difficult to observe. Typically, farmers determine stages by observing changes
in leaf color, fertility days, and physiological changes. These methods are effective for
experienced farmers, but not every farmer has had the same experience. However, it is
difficult to determine the transitions between each stage. Thus, the cultivation of rice
is challenging and experience-intensive, leading to labor issues (aging) and a lack of
experience inheritance. If an inexperienced person only follows the provided SOP, they
are likely to fail. Different field studies need to be carried out at different stages, and
adjustments need to be made according to the actual situation. Although it is difficult,
replacing the younger generations is more challenging.

Introducing smart farming [6,7] has led to an improvement in yield production [8]
and cropping period. In addition, deep learning or machine learning [9] is increasingly
being used in smart farming, such as for pest detection, yield prediction, and crop quality.
In this paper, we propose a classification model to classify the paddy rice growth stages.
As a result, farmers and young generations will have a better understanding of their crops,
improve their farming methods and, most importantly, lower entry requirements. Thus,
agricultural operations can be monitored and controlled remotely using the developed sys-
tem rather than by observing them onsite and observing how they are performing. Through
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smartphones or desktops, farmers can stay up to date with paddy rice developments. As
a result of structural and environmental changes such as aging farmers, low birthrates,
worker shortages, difficulty in farm maintenance, and experience inheritance disconnec-
tion in recent years, smart farming is more relevant to Taiwan’s agriculture industry. The
developed system can make farming easier, as the majority of fieldwork can be automated,
reducing the amount of manual work. As it does not require patrolling, with 24/7 monitor-
ing changes are more intuitive. It also provides a beginners’ guide to understanding crops
and making informed decisions, allows workers to be trained more efficiently and lowers
labor costs and is also an eco-friendly approach to sustainable agriculture or permaculture.

The objective of this study is to explore the possibilities of using IoT and big data
(BD)-driven ML prediction models to assist farmers in efficiently determining different
growth stages of paddy rice and in determining grain yield. It is very important to explore
alternatives to traditional agriculture systems in view of the continuously increasing food
demand of the world. In addition, accurate estimation of the heading date of paddy rice
greatly helps farmers to understand the adaptability of different crop varieties in a given
location. For the calculation of the paddy height and CC or GC, different image processing
techniques are used: analytics for the calculation and classification of different growth
parameters using machine learning in computer vision; image recognition for individual
plants; automated plant height calculation; automated green coverage calculation is em-
ployed to monitor the paddy’s tillering status; and automated leaf color classification for
monitoring the paddy’s nitrogen level.

2. Background and Related Work

Smart Farming and IoT are expected to have a significant impact [10], especially on
rice production, through BD [9], ML, and the IoT [11]. Smart farming for rice strategies can
now anticipate changes and spot opportunities [12]. This is due to the increasing volume
and diversity of data being collected and acquired by these advancing IoT technologies. A
high-quality sensor dataset has a significant impact on the effectiveness of the modeling
procedures using deep learning (DL) algorithms. Due to the extensive use of these three
elements (for example, BD, ML, and IoT) in rice production operations in agriculture, a
new era of rice smart farming or rice precision agriculture has emerged. There have been
several studies in the literature that study the use of these technologies in paddy cultivation.
Researchers in the study in [13] used image processing and machine learning algorithms
to estimate or predict the maturity of rice panicles to determine the appropriate harvest
time. The authors collected paddy panicles from two rice varieties and scanned them with
a flatbed scanner after dehulling. Then, they segmented the paddy panicle based on the
hue, saturation, and intensity (HSI) color space. After that, they used RGB and HSI color
spaces to extract color features. A total of 22 color features were extracted from each paddy
panicle image. They developed an RF model to predict maturity. The model was trained
with the 22 color features and 10-fold cross-validation was applied. They used R-square
and root mean square error (RMSE) to evaluate their model.

In comparison to the variation in colors and standard deviation, the correlation be-
tween the mean value of color and maturity is relatively low. Then, they used these
optimal features to repeat the training process. Finally, an R-squared of 0.93, RMSE of
1.18%, R-squared of 0.94, and RMSE of 1.60% were obtained on the two varieties they
collected, respectively. The authors claimed that their methods performed better than
other research [14,15]. However, the proposed method was only validated for the two rice
varieties they had experimented with.

Studies [16,17] aimed to estimate rice growth, nitrogen (N) nutrition status, and
canopy cover. For extracting color indices, they analyzed digital camera images and image
processing methods. CC is commonly used to determine crop yield and growth parameters,
such as the leaf area index (LAI). The process of measuring CC on the field is ineffective and
takes a considerable amount of time. To distinguish the plant pixels from the background
pixels, the authors used color indices. They calculated CC values as the ratio of the plant
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pixels to the total pixels. Among the color indices, the excess green index (EGI) and
modified EGI (MEGI) are effective for measuring rice CC in the field. The authors adopted
the CC method and developed step-wise multiple linear regression (SMLR) to estimate
crop growth and N nutrition. They estimated the LAI, the dry weight, and the nitrogen
accumulation. According to their study, CC has positive correlations with LAI, shoot dry
weight, and shoot N accumulation. Their models for LAI, shoot dry weight, and shoot
N accumulation showed acceptable precision and accuracy. The authors state that digital
cameras can be used to monitor rice growth non-destructively.

In another study [18], SVM was used to detect the age of rice farms. The RGB variables
were obtained using histograms generated from drone-captured images. Rice growth can
be divided into four stages, including the initial phase, the vegetative phase, the generative
phase, and the harvest phase. Based on their results, 93.3% accuracy was achieved. By
using drone images, they claimed to be able to identify the age-growth stage of rice quickly
using histograms and SVM. A time span ranging from weeks to months was defined by
the authors for the stages. Their classification result is acceptable given that they only
considered five stages (post-harvest included).

Another study [19] proposed an automatic identification algorithm to determine
whether the rice has entered the tiller period. They had installed some surveillance cameras
for data acquisition. The proposed rice tiller recognition method combines principal com-
ponent analysis (PCA) and Support Vector Machine (SVM). The plants are first segmented
from the background using Excess Green Feature and then go through K-means clustering
for further segmentation. Then, more features are extracted and data dimensions are re-
duced using the PCA algorithm before undergoing the SVM binary classification model.
These results are claimed to be promising and generalizable.

Satellite images are often used to determine vegetation cover or canopy cover. Another
research [20] developed a paddy growth stages classification by adopting LANDSAT-8
spectral data, and deep learning methods with multiple regularizations (Fast Dropout,
Dropout, and Batch Normalization). The vegetation indices used are the Enhanced Vegeta-
tion Index (EVI), the Normalized Difference Vegetation Index (NDVI), the Atmospherically
Resistant Vegetation Index (ARVI), and the Land Surface Water Index (LSWI).

Aging and the declining number of farmers are impacting Japan’s agriculture [21],
therefore the aim of this study was to support farmers by estimating the paddy’s growth
stage. The authors had their images taken at different heights such as 30 m, 60 m, and 100
m. They attached a multi-spectral sensor to their drones to capture pictures of multiple
wavelength bands. The adopted multi-spectral sensor is capable of capturing Green, Red,
Red Edge, and Near Infrared images. To generate NDVI images, they used the reflectance of
Red and Near Infrared images. The authors implemented a Convolutional Neural Network
(CNN) to classify five paddy growth stages. They concluded that images taken at a height
of 60 m have the most accurate results.

Image processing techniques were mostly used in the research discussed above to
obtain color features or indices of observation objects, and ML algorithms to identify growth
stages or maturity levels. The methods they use are convincing and have proven effective.
However, to access or collect the data, human labor is required, which is time-consuming
and less automated. Moreover, many factors could affect or reflect rice growth, such as
temperature, height, fertility days, or days after transplanting (DAT). Furthermore, the time
intervals of [18] are large, which makes it unlikely to determine the precise growth stages
successfully. This study makes the following contributions: (1) developed a classification
model to classify the rice growth stage, using an RF-based ML model. (2) an height
calculation method using OpenVAS camera calibration method was developed to calculate
paddy rice height, (3) image processing techniques such as excess green index (EGI) and
modified excess green index (MEGI) techniques and instance segmentation were used to
determine canopy cover, paddy rice maturity, and the nitrogen level of the paddy rice plants,
which were then given as inputs to the developed classification model, and (4) agricultural
operations can be controlled and monitored remotely rather than by observing them in
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person through the developed agriculture platform. The results show that the transition
between paddy rice growth stages can be determined and classified using ML techniques.
Therefore, the proposed model has practical significance and is innovative.

3. Design and Implementation

For paddy rice, there are three common methods to determine the growth stage:
(a) days after transplantation (DAT), (b) the age of leaves, and (c) the physiological obser-
vation. In comparison to counting the age of leaves, DAT and physiological observation
are more convenient and faster. Counting the age of leaves provides the most accurate
estimation, but it is time-consuming and expensive. Our classification model was based
on DAT and exterior observation (images). Figure 4 illustrates the system architecture
including image recognition, image processing, and classification, which will be discussed
in this section. To extract paddy instances from an image, a segmentation model is devel-
oped. The paddy height can be calculated using the output results of the model and camera
calibration technique. Excess Green Index (ExG/EGI) is a common method of describing
crop CC and has shown high performance in experiments. The canopy cover rate was
calculated using the EGI method. In addition to other features, the height calculation and
canopy coverage rate are inputs to the classification model. By analyzing the inputs, the
model will eventually determine the growth stage. An expert’s advice is sought when
selecting criteria for growth stages.

Figure 4. The system Architecture for the Paddy Rice Growth Stage Classification.

3.1. Image Recognition

Image recognition tasks include object detection, object classification, semantic seg-
mentation, instance segmentation, and panoptic segmentation. Depending on the user’s
needs, each task serves a different purpose. In this paper, instance segmentation is used
because it allows the user to calculate the height, analyze leaf color, and so on for every
predicted instance.

3.2. Instance Segmentation Model

Instance Segmentation is the technique to segment every detected-and-classified
individual object in an image. It identifies object outlines at the pixel level. In general, it
detects instances of objects and marks their boundaries.

Detectron2 [22] is a well-known library for detection and segmentation algorithms,
which was developed by Facebook AI Research (FAIR). It provides numerous pre-trained
models for different computer vision tasks as shown in Figure 5. For this study, the model
in the category COCO Instance Segmentation Baselines model with Mask R-CNN was
selected. Mask R-CNN with ResNeXt-101-FPN(X101-FPN) [23] backbone has the highest
AP among the categories (cf. Table 2). Mask R-CNN [24] is widely used to perform instant
segmentation tasks and other tasks as well.
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Figure 5. Difference Between Computer Vision Tasks (Adopted from [25]).

Table 2. Detectron2 COCO Instance Segmentation Baselines Models with Mask R-CNN Scores.

Name lr
Sched

Train
Time

(s/iter)

Inference
Time
(s/im)

Train
mem
(GB)

Box
AP

Mask
AP Model Id

R50-C4 1× 0.584 0.110 5.2 36.8 32.2 137259246

R50-DC5 1× 0.471 0.076 6.5 38.3 34.2 137260150

R50-FPN 1× 0.261 0.043 3.4 38.6 35.2 137260431

R50-C4 3× 0.575 0.111 5.2 39.8 34.4 137849525

R50-DC5 3× 0.470 0.076 6.5 40.0 35.9 137849551

R50-FPN 3× 0.261 0.043 3.4 41.0 37.2 137849600

R101-C4 3× 0.652 0.145 6.3 42.6 36.7 138363239

R101-DC5 3× 0.545 0.092 7.6 41.9 37.3 138363294

R101-FPN 3× 0.340 0.056 4.6 42.9 38.6 138205316

X101-FPN 3× 0.690 0.103 7.2 44.3 39.5 139653917

3.3. Data Collection and Training Setup

In Taiwan, there are two major paddy-growing seasons: the first farming period
(March to July), and the second farming period (August to November). Most farmers had
their paddy seedlings transplanted during these periods. Growing species affect the length
of the farming cycle. Fast-breeding species can be harvested in 90 to 110 days, and common
species can be harvested in 100 to 140 days. The length of the farming period is also affected
by farming strategies. There will be a shorter length in the northern Taiwan area, while it
will be longer in the central and south Taiwan areas. This is because the weather varies
according to geographical location.

To implement and test the developed smart agriculture platform for paddy rice, we
collaborated with three major different farms across Taiwan. One field is in north Taiwan
(Hsinchu County), and the other two are in central Taiwan (Changhua County). The smart-
agriculture platform developed can monitor any devices installed on the farm, including
IoT devices (soil sensors, weather stations, etc.) and surveillance cameras. Real-time video
streams and sensor data can be viewed on the platform [26]. Surveillance systems based on
IoT devices (Speed-dome camera) have been installed in these experimental fields. Images
are automatically captured by the camera on a schedule. With a wide temperature range of
−40 to 60 ◦C, the Speed-dome can capture clear images at night and has a 360-degree lens
rotation and 33× zoom capabilities. These schedules (including the camera’s angle) were
already set up in the developed platform [26], and on-site previewing and streaming are
also available. The surveillance camera (Speed-Dome) is powered by a solar panel and has
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a Raspberry Pi to perform actions (downlink/execute commands from the website, capture
images, upload images, record video, etc.). AWS cloud servers control the smart agriculture
platform devices and actuators, which record 100 presets of fixed camera angles, perform
regular shooting tasks, upload images automatically to Amazon S3 cloud, and establish an
image database of farms and crops. Real-time video streams and sensor data can be viewed
on the platform. Using both farming periods, we collected 29,324 amounts of data (based
on every paddy instance predicted by the instance segmentation model). As we installed
equipment on Field 1 much earlier than on the other fields, a large amount of data has
been collected from it. Early stages (especially the transplanting stage and early tillering
stage) have shorter periods than others, so their data records are smaller, resulting in an
imbalanced dataset. Table 3 represents the data collected from the three experimental fields
for two paddy growing seasons and the data count for each stage.

Table 3. Total data collected from three experimental fields and data count for each stage.

Field Farming Period Data Count Stages Data Count Stages Data Count

1 1, 2 25,140 1 36 5 3865

2 1, 2 600 2 200 6 4592

3 1 3584 3 2316 7 5406

4 3638 8 9271

Total 29,324

To increase the data size and reduce overfitting when training machine-learning
models, Dectron2-based data augmentation has been used in this study. There are two
basic augmentations provided by default in Detectron2: random flipping and resizing the
shortest edge. For the training setup, the COCO-Instance Segmentation task was used
as the input format. Image per batch is set to 4, the learning rate is 0.01, weight decay is
0.0001, and epoch is set to 30. The training process was carried out on a Google Colab Pro
environment which consists of 16 GB of GPU memory.

3.4. Image Processing

A description of each algorithm or method used in image processing is presented in
this section. Two parts make up this section: a calculation of height as well as a calculation
of green coverage.

3.4.1. Height Calculation Using Camera Calibration

The image recognition block’s output results include not only segmentation but also
the bounding boxes that indicate each of the predicted instances. These coordinates could
be incorporated into the following height calculation. A height calculation method using
the OpenVAS Camera Calibration method was developed in our lab and has been applied
in different scenarios with good results. As a result, this method was applied to determine
the height of the paddy plant in this paper.

The calibration of a camera is the process of estimating its parameters and determin-
ing the relationship between its 3D coordinates in the real world and its equivalent 2D
projection in the image captured by the calibrated camera. OpenCV provides a camera
calibration method, which simplifies our work greatly. It is based on Zhang’s. From a tech-
nical standpoint, camera calibration determines the camera matrix, distortion coefficient,
rotation vector, and translation vector. The camera matrix transforms 3D world coordinates
into 2D image coordinates. The distortion coefficient returns the position of the camera
in the world, with the values of the rotation and translation vectors. OpenCV Camera
Calibration utilizes a chessboard (whose size is known) to obtain real-world coordinates
for 3D points. The calibration steps are as follows:

• Define real-world coordinates of 3D points using a known-size chessboard.
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• Capture different viewpoints of the chessboard.
• Find the pixel coordinates (u, v) for each 3D point in different images (use findChess-

boardCorners() method from OpenCV)
• Find camera parameters (use the calibrateCamera() method from OpenCV).

Figure 6 shows the process of defining real-world coordinates. The X and Y axes point
to the chessboard, and the Z axis is perpendicular to the chessboard (this can be treated
as the distance from the camera to the chessboard, or plane). The red dot represents the
known 3D origin point (0, 0, 0). By calculating the camera parameters from known 3D
world coordinates (Xw, Yw, Zw), we can obtain their corresponding pixel location (U, V) in
the image. By calibrating the camera with the bounding box coordinates (Uj, Vj) provided
by the Instance Segmentation model shown in Figure 7, their world coordinates (Xj, Yj, Zj)
can be retrieved as well. Lastly, assuming Z = 0, by calculating the difference between Yw
and Yj, the height data are obtained.

Figure 6. Demonstration of Camera Calibration Using a Chessboard and Different Viewpoints
Captured.

Figure 7. The Coordinates of Paddy Instances Predicted by Instance Segmentation Model.

3.4.2. Green Coverage (GC) Rate

As mentioned, crop canopy cover (CC) is one of the common ways to represent
vegetation. a widely used method of evaluating the rate of CC is EGI, which is a widely
used image processing method. The objective of this study was to evaluate green coverage
using the EGI methods using CC’s concept. The designed procedure is shown in Figure 8.
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EGI and MEGI are employed to separate plants from backgrounds. After that, image
binarization is carried out to filter some noises to achieve cleaner segmentation. Eventually,
the GC rate will be calculated through the white pixels’ ratio based on the binarization
results. To determine the GC rate, we used the following image selection principles:

• The image is based on a large area of rice field and tries to avoid the non-field area.
• The image angle is based on the depression angle and tries to cover only the rice field

area.
• Likely, the uneven coloration or partial brightness of the objects in the image will

be caused by the intensity of the sunlight in the morning (sunrise) and the evening
(sunset). To reduce the impact of the natural environment on the photos, we chose the
images taken between 8:00 am and 4:00 pm.

Figure 8. Flow Chart of Calculating GC Rate.

3.4.3. Excess Green Index (EGI) and Modified EGI

Most of the images have three: Red (R), Green (G), and Blue (B), basic channels. The
EGI method can be used to filter out or segment plants from the background. The color
index of RGB needs to be normalized before the EGI function can be applied. Modified
EGI (MEGI) is a variation of EGI. Plant pixels have greater G and g thus greater EGI and
MEGI, indicating better segmentation between the paddy rice plant and the background.
Since the natural environment is complex, the output results of EGI might not be ideal. In
this case, MEGI is adopted for further processing to eliminate non-background pixels.

3.4.4. Binarization and CC Rate Calculation

Image binarization is a common image processing technique that transforms the image
into black and white or 0 and 255 in values. MEGI outputs are not necessarily optimal for
most images. In that case, the role of binarization here is to remove smaller MEGI values
which potentially might be background pixels. However, it also simplifies the calculation
of the ratio of white pixels as well. The CC rate is calculated based on the white pixel ratio
against the image’s size as follows:

GC Rate = (WhitePixels)/(Width × Height) × 100% (1)

where width and height indicate the image’s width and height.

3.5. RF-Based ML Classification Model

For classifying the growth stage, a Random Forest (RF) [27] algorithm-based ML
model was developed [28]. As an ensemble algorithm, bagging (or bootstrap aggregating)
fits multiple models on different subsets and then combines their results. Random Forest is
an ensemble of decision trees and is trained with the bagging method. It can be used for
classification and regression. Multi-decision trees are built and merged using RF, resulting
in more accurate and stable predictions.

RF uses randomly selected samples from the training dataset to train each decision tree,
so every tree will be trained with a different subset of samples. As a result, each decision
tree becomes more unique and the correlation between trees is reduced. RF aggregates the



Agriculture 2022, 12, 2137 11 of 23

predictions from the individual decision trees and takes the majority votes (classification) or
average (regression). The decision tree uses the Information Gain or Gini Impurity criterion
to split nodes (generate child nodes). Both methods are based on the concept of entropy.
Entropy can be defined as a metric of the purity of the sub-split or how much variance
the data have (how data are distributed). The decision tree calculates the entropy of each
feature after every split, selects the most significant feature, and starts splitting according
to it. High entropy means high impurity or many different classes in the branch.

Information gain is calculated for a split by subtracting the weighted entropies of each
child node from the root node. Higher information gain means the child node has less
entropy and less variance, which is optimal for splitting. Gini impurity is the probability
that the data point is incorrectly classified. Consequently, a node with zero Gini Impurity
contains only one class. However, these two methods have no significant difference in the
performance of the model [29]. In SciKit-Learn [30], the default criterion for RF is Gini
Impurity. The output results from the image processing block (height and CC Rate) will be
used as inputs for the RF model. The RF regression model (cf. Figure 9) has been selected
for classifying the growth stages of paddy rice because it performs well on large datasets
and produces more accurate predictions by combining multiple decision trees. In addition,
it has a low variance, which is ideal for our dataset since it consists of different species and
experimental fields.

Figure 9. The architecture of Random Forest.

Each input image might have multiple predicted instances and a certain GC rate. Each
instance is considered a record of data, so an image may consist of more than one record
due to the instance segmentation model’s results. The growth factors are collected from
sensors installed in the field. Experts in the field gather ground truth about the field (height,
tillering amount, etc.). The following 12 features are included in the training of our model
as shown in Table 4.
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Table 4. The Definition of Each Input Training Feature.

Training Features Definition

green_cov GC rate calculated from the image, outputted from GC block

period Farming period (first or second), 1 and 2 are used to represent these growing periods

FirstDay_day The day of transplantation date (e.g., 2022/03/04, day = 4)

FirstDay_month The month of transplantation date (e.g., 2022/03/19, month = 3)

FirstDay_year The year of transplantation data ((e.g., 2022/03/04, year = 2022))

ObsTime_day The day of the input image’s observation date (e.g., 2022/03/19, day = 4)

ObsTime_month The month of input image’s observation month (e.g., 2022/03/19, month = 3)

ObsTime_year The year of input image’s observation year (e.g., 2022/03/19, year = 2022)

DAT Days after transplantation (Observation Date-First Day (Date) = DAT)

Temperature (◦C) Air temperature of the day collected by installed sensors

acc_temp
Accumulated temperature,
T−10 = Effective accumulated temperature of the day,
Start summing up from the transplantation day till the observation day

height Output (height) from height calculation block

3.6. Data Labelling

The selection of stages and the labeling of the image dataset to represent different
growth stages of the paddy rice from transplanting to maturity were supervised by experts.
The following Table 5 represents the selected stages and their codes. A total of 4200 labeled
instances were obtained from 607 images (577 were for training, 30 were for testing).
For labeling purposes, the leaves on both sides of the main body are not included, thus
keeping the body as a cylinder as much as possible. During the process of labeling, we
encountered some difficulties. The later stages were the most difficult to observe from the
highest point, except for the early stages. There may be some differences in height between
the real subjects and the models. In the later stages of tillering, the leaves and panicles
sagged and overlapped, making labeling harder. Figure 10 represents some of the labeled
image samples.

Figure 10. Demonstration of Labelled Images.
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Table 5. Label Code for Each Growth Stage.

Growth Stage Code Growth Stage Code

Transplantation Stage 1 Panicle Initiation Stage 5

Early Tillering Stage 2 Booting Stage 6

Peak Tillering Stage 3 Heading Stage 7

Late Tillering Stage 4 Ripening Stage 8

4. Experiment and Results
4.1. Image Recognition Using Instance Segmentation Model

To evaluate the performance of the model, Average Precision (AP) and Average Recall
(AR) are used, both of which range from 0 to 1. In AP tests, there are three common
AP scores: AP, AP50, and AP75, which encompass IoU values of 0.5 to 0.95, and 0.5 to
0.75, respectively. There are two types of evaluation in the instant segmentation model:
bounding box and segmentation. Both have AP and AR performance scores. The bounding
box AP of the developed model is 0.559, and the segmentation AP is 0.506 shown in Table 6.
Both of the scores are better than the Detectron2 baseline model. A recall is a measure of
how many of the positive cases the classifier correctly predicted over all the positive cases
in the data. Because every instance is not labeled, predicting as accurately as possible is the
priority. Both AR scores indicate that the model is capable of detecting most instances in
the input image. Given the amount of data, the proposed model has an AP and AR that is
comparable to or even better than the baseline model from Detectron2.

Table 6. Evaluation of Instance Segmentation Model.

Evaluation Type
Score

AP AP50 AP75 AR

Bounding Box 0.559 0.780 0.671 0.613

Segmentation 0.506 0.780 0.660 0.539

Some predicted results are shown in Figure 11 below. It can be observed that our
model can segment paddy instances well. The first two images in Figure 11 are in an early
stage because we did not label every paddy instance in the image. Therefore, the number
of predicted instances is relatively low.

Figure 11. Model’s Predicted Instances.
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4.2. Image Processing-Based Height Calculation

The height of the paddy instances predicted by the RF-based DL model was calculated
using the image processing techniques discussed in the previous section. The height
calculation results are shown in Figure 12 throughout the growing seasons. The results are
averaged based on the day and smoothed using EWM (com = 5). Note that the trend graph
only serves the purpose of monitoring the height trend. The height of each paddy instance
is still considered an input record for the classification model. As illustrated in Figure 12c,
the results for Field 3 have several gaps in May and June due to bent and drooping leaves
and a relatively high shooting angle. This makes it difficult for our model to identify the
base of the rice. In addition, weeds blocked the view of the base.

Figure 12. The Height Trend Graph of three experimental Fields. (a) Height Trend of Field 1.
(b) Height Trend of Field 2. (c) Height Trend of Field 3.

The obtained results were compared with ground truth that was collected by experts,
which is shown in Tables 7–9. As the natural curvature of the rice body increased, the error
rate increased as well. Additionally, the ground truths were measured manually by pulling
and straightening the longest leaf.

Table 7. Field 1—Comparison of Height Calculation Based on Image and Ground Truth.

Date. 9/3 9/10 9/17 9/24 10/1 10/8 10/15 Average

Height Calculation 47.8 62.7 75.5 84.7 87.6 82.3 97.1

Ground Truth 48.0 60.4 75.4 85.9 90.5 97.8 106.0

Difference −0.2 +2.3 +1.2 −1.2 −2.9 −5.5 −8.9 3.0

Error Rate −0.42(%) +3.81(%) +0.13(%) −1.40(%) −3.20(%) −5.62(%) −8.40(%) 3.28(%)

Table 8. Field 2—Comparison of Height Calculation Based on Image and Ground Truth.

Date 3/17 3/25 4/1 4/8 4/15 4/22 4/29 5/6 5/13 5/20 5/27 6/3 6/10 6/17 Average

Height Cal-
culation
Result

17.38 32.32 37.58 41.30 46.56 57.84 67.26 69.99 76.51 81.57 82.32 92.33 94.95 95.01

Ground
Truth 18.38 33.88 41.38 55.88 56.38 58.75 67.88 69.75 71.75 78.00 81.38 83.38 94.00 103.38

Difference −1.00 −1.59 −3.79 −14.58 −9.82 −0.91 −0.62 0.24 4.75 3.57 0.84 8.96 0.95 −8.33 −1.52

Error Rate 5.42% 4.70% 9.17% 26.09% 17.42% 1.55% 0.91% 0.34% 6.63% 4.58% 1.16% 10.74% 1.01% 8.06% 6.98%
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Table 9. Field 3—Comparison of Height Calculation Based on Image and Ground Truth.

Date 3/12 3/19 3/26 4/1 4/9 4/16 4/23 5/7 5/28 6/3 Average

Height
Calculation

Result
41.88 45.35 52.76 57.52 63.00 68.04 78.53 86.39 105.03 123.26

Ground
Truth 10.3 18 26.85 33.6 38.1 48.9 58.8 71.2 100.8 103.9

Difference 31.58 27.35 25.91 23.92 24.90 19.14 19.73 15.19 4.23 19.36 21.13

Error Rate 306.60% 151.94% 96.50% 71.19% 65.35% 39.14% 33.55% 21.33% 4.19% 18.63% 80.84%

As can be observed from Table 9, Field 3 has the largest difference and also has
the greatest error rate. The camera height may have affected the calibration since Field
3 has the highest camera height as represented in Table 10. By comparing Field 1 to
Fields 2 and 3, it can be observed that there is a noticeable difference. A higher camera
height in Field 1 results in more horizontal views than in Fields 2 and 3. As a result of
the relationship between camera height and depression angle, the images are less than
ideal, and their distortion causes a substantial calculation error rate. Furthermore, the
image distortion makes it difficult to visualize the entire paddy instances, resulting in an
inadequate inference of the instance segmentation model.

Table 10. Camera Calibration Parameters of Three Fields.

Field Depression
Angle

Distance from Camera
to Chessboard (m)

Chess Height
above Ground (m)

Camera Height
(m)

1 23 1.2 0.6 1.0689

2 35 1.45 0.6 1.4317

3 50 1.596 0.6 1.8228

As images cannot depict straightened parts, error rates are still acceptable, and height
is generally not a concern in later stages. Field 3 has a high error rate, so ground truth
height is used in subsequent training instead of calibrated height.

4.3. Green Coverage (GC) Rate

The workflow of GC calculation is shown in Figure 13a, as well as the results for
each step. As we can see, EGI correctly extracts plant pixels from the background. MEGI
modified the results to be more in line with the plants, with even more detail. Binarization
has no difference with the MEGI results, but it is easier to calculate the ratio of the white
pixel. Moreover, it was found that images with different capturing angles produce different
results (cf. Figure 13b). In the future, it will be critical to develop and generalize the
selection process of images to achieve better results.

Furthermore, it was found that algae-infested or flooded fields might not have accurate
segmentation results, as shown in Figure 14a. The main reason is that algae or flooded fields
have more G pixels than background pixels, causing the segmentation results to be less than
ideal. It often happens in the early stages of the process, especially when transplantation
is taking place. Since paddy seedlings cannot absorb fertilizer nutrients effectively, algae
breed on them. Once those seedlings reach the tillering stage, these two problems are likely
to reduce. In addition, the intensity of the lighting or sunlight affects the images as well.
Due to the varying intensity of sunlight throughout the day (cf. Figure 14b), varying results
are seen throughout the experiment time. Light reflection reduces the greenness of the
paddy, leading to some extreme changes in the results.
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Figure 13. GC Workflow and GC at Different Capturing Angles. (a) The workflow of the GC
Procedure and the Output Results. (b) Different Results from Different Capturing Angles.

Figure 14. Effect of Algae and Light Intensity Throughout Day on the GC Rate. (a) Algae-infested
and Flooded Fields. (b) Different Green Coverage Results Throughout the Day.

To reduce the deviation in the growth (tillering status), the results of each day must be
averaged as shown in Figure 15. The GC results from three different fields were averaged
and plotted in the graph below. In both cases, it was the first farming period in 2022. GC
calculations are performed using at least two preset cameras per field.

By analyzing the graphs above, several phenomena can be observed. The GC rate
tends to moderate after a rapid rise and gradually decreases over time. The trends were
compared to the growth stages, and the summarized results are as follows: (a) GC rates
tend to moderate after rapid increases, and then begin to decline after some time; (b) rapid
growth could be considered the early (vegetative) stage, moderate growth (peak) would
be the reproductive stage, and dropping growth would be the ripening stage; (c) the GC
rate is reduced as the paddy plants start to turn yellow and panicles develop and mature.
These two factors result in a decrease in green pixels; and (d) in each field, camera presets
have a different GC rate due to the camera’s height, angle, and captured images, but they
tend to follow a similar trend.
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Figure 15. GC Rate for the Three Experimental Fields. (a) GC in Field 1 having sgrice Rice. (b) GC in
Field 2 having Tangba Rice. (c) GC in Field 2 having Tangba Rice.

R-squared analysis was performed between GC rate and paddy tiller counts to de-
termine the correlation between the two. For the calculation of the GC rate, we gathered
the number of tillers on the paddy plants that were captured by the camera presets. Based
on the range captured by the cameras, approximately eight to ten paddy instances were
collected. In the following step, we averaged the numbers for each day. The tillering stage
is the most representative stage of growth. Therefore, the stages before panicle initiation
were focused on.

All of the R-squared results shown in Figure 16 are greater than 0.85, which is con-
sidered significant in statistical terms. This proves that the proposed method accurately
measures the growth of paddy. As panicles mature, GC can still be used to determine
maturity, even though growth is not the main factor. The green pixels and GC rate will
decrease as the panicles and leaves gradually turn yellow later in the growth cycle.

4.4. Performance Analysis of Classification Model

The dataset is split into a training dataset and a testing dataset in a ratio of 3:1, the
number of tree estimators is set at 100, and the depth is freely expandable. For model perfor-
mance evaluation, SciKit-Learn Library-based evaluation metrics are used. To evaluate the
performance of the developed DL-based multi-class (different growth stages) classification
model, macro metrics are employed. According to SciKit-Learn, macro metrics calculate
metrics for each class and find their unweighted mean. This means that the imbalance
problem will not be encountered, as each class will be treated equally. The SciKit-Learn
Library treats accuracy as micro-averaging, which essentially computes the proportion of
correctly classified data. Thus, to evaluate the model’s performance, we mainly focus on
the F1 score instead of accuracy. In addition, the F1-score is a better metric to evaluate a
model in an imbalanced class distribution scenario, where accuracy can be misleading.

The baseline model produced an accuracy of 0.99454 and a macro F1-score of 0.97337,
as shown in Table 11. The full metric results for each stage are presented in Table 12. From
the results, it can be observed that the proposed baseline model performed well for all
stages, except for Stage 1, which has a lower F1-score of 0.87500. A confusion matrix is
used to describe the performance of a classification model on the test set and gives us more
insight into the model’s classification performance. As illustrated in Figure 17, the proposed
baseline model has shown a high performance, resulting in very few negative results.
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Figure 16. The R-Squared Analysis of Three Experimental Fields.

Table 11. The Performance of the RF Baseline Model.

Accuracy Macro F1-Score Macro Precision Macro Recall

Random Forest
(baseline) 0.99454 0.97337 0.98883 0.96138

Table 12. The Performance Metrics of the RF Baseline Model for Each Stage.

Stage Precision Recall F1-Score Total

1 1.00000 0.77778 0.87500 9
2 0.94444 0.94444 0.94444 54
3 0.99563 0.99346 0.99454 917
4 0.99465 0.99785 0.99625 931
5 0.99666 0.99832 0.99749 597
6 0.99112 0.98674 0.98892 1131
7 0.98817 0.99331 0.99073 1345
8 1.00000 0.99915 0.99957 2347

The proposed machine-learning model’s performance was further tested by utilizing
the SHAP python-based library. As illustrated in Figure 18, the RF technique was used
to retrieve the distribution of feature significance. Figure 18 indicates that accumulated
temperature has the greatest value for feature importance followed by DAT and Height.
Thus, these features are responsible for the better performance of the model.

To solve the imbalanced dataset problem, an up-sampling method was implemented.
The RandomOverSampler (ROS) and SMOTE-ENN methods from the “imbalanced-learn”
library 39 were employed to balance the dataset. RandomOverSampler (ROS) is an up-
sampling method that over-samples the minority class(es) by picking samples at random
with replacement. SMOTE-ENN is a combination of SMOTE 40 and ENN 41, in which
SMOTE is used for up-sampling and ENN is used to clean the data to remove noise, overlap-
ping, etc. Table 13 shows the data distribution after ROS and SMOTE-ENN were applied.
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Figure 17. Confusion Matrix for Random Forest.

Figure 18. SHAP Library-The Feature Significance of the Proposed Model, Employing the RF.

Table 13. Training Dataset Before and After Up-sampling Methods.

Stage Before RandomOverSampler SMOTE-ENN Stage Before RandomOverSampler SMOTE-ENN

1 27 6953 6951 5 1737 6953 6932

2 150 6953 6923 6 3444 6953 6699

3 2728 6953 6922 7 4055 6953 6710

4 2899 6953 6884 8 6953 6953 6931
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To build a generalized model with time-independent features, time-related features
were dropped and the model was trained using leaf height, GC, DAT, and accumulated
temperature, which is more growth-related. The results of the model trained after dropping
certain features are shown in Table 14. The accuracy and the macro F1-score decreased
slightly to 0.99018 and 0.95888, respectively. As a result, the proposed model does not rely
on time-dependent features.

Table 14. Comparison After Up-sampling Methods Applied.

Model Accuracy Macro F1-Score Macro Precision Macro Recall

RF (Less Features) 0.99018 0.95888 0.96949 0.94932

RF
(RandomOverSampler) 0.99373 0.96551 0.98805 0.95141

RF (SMOTE-ENN) 0.98772 0.98653 0.98518 0.98802

A comparison of the results of these two up-sampling methods was conducted to
determine which performed better. A comparison of each method is shown in Table 14. ROS
achieved the highest accuracy, but SMOTE-ENN had the highest F1-score. This is because
ROS makes all other classes match the majority class, resulting in highly balanced data,
which might have samples overlapping. The confusion matrix graphs for both methods are
presented in Figure 19a,b. As can be seen from the confusion matrix graphs, both methods
have a similar performance, but stage 1 is slightly different. ROS has a lower performance
than SMOTE-ENN. SMOTE-ENN outperforms ROS in stages 1 and 2 (higher F1-Score of
1.00000 and 0.97030). Due to its highest F1- Score, SMOTE-ENN generally performs better,
so for the remaining experiments, we use RF with SMOTE-ENN up-sampling.

Figure 19. Confusion Metrics for: (a) RF-(RandomOverSampler), and (b) RF-(SMOTE-ENN).

Additionally, we compared our model with existing machine learning models such as
K-Nearest Neighbor (KNN), Support Vector Classifier (SVC), Adaptive Boost (AdaBoost),
Gaussian Naive Bayes (GaussianNB), and Logistic Regression. These models are com-
monly employed in classification tasks and have shown good results in many instances.
StandardScaler and SMOTE-EEN was used to compare performance, except for RF (only
SMOTE-EEN is used). Scikit-Learn Library was used to implement all models, and their
default parameters were used.
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As can be seen from Table 15 shown above, the proposed model (RF with SMOTE-
ENN) outperformed other models. SVC has the most promising results among the other
five models, with an accuracy of 0.97313 and an F1-score of 0.96515. Followed by KNN, it
has an accuracy of 0.96576 and a macro F1-score of 0.93469. Only SVC and KNN have their
macro F1-score greater than 0.9, while others lie below 0.8 (inclusive).

Table 15. Classification Performance Comparison of Model with Existing ML Models.

Model Accuracy Macro F1-Score Macro Precision Macro Recall

RF (SMOTE-ENN) 0.98772 0.98653 0.98518 0.98802

KNN 0.96576 0.93469 0.95007 0.92945

SVC 0.97313 0.96515 0.95547 0.97744

AdaBoost 0.43609 0.32895 0.25549 0.47271

GaussianNB 0.83317 0.74009 0.71020 0.83983

Logistic Regression 0.86782 0.80107 0.76618 0.87496

The performance of GaussianNB was lower than expected. There was an assumption
that there might be a zero-probability problem, which occurs when test data for a class
are not included in training samples. Furthermore GaussianNB assumes that features are
independent, but in real-world situations, features can be interdependent, for example, the
height and GC rate change during DAT. As a result, Logistic Regression was also affected
by this situation since it also requires that features be independent of one another. If one is
related to the other, then the model will tend to emphasize the significance of those points.

AdaBoost had the worst results, with a macro F1-score of 0.32895. Due to AdaBoost’s
boosting technique (learns progressively), it is extremely crucial to ensure the quality of
the data. Therefore, AdaBoost is extremely sensitive to noisy data and outliers. Almost
all stages were misclassified by AdaBoost: these stages share some similarities with the
previous or next stage, so AdaBoost had difficulty classifying them. Due to the aggregation
of multiple tree outputs, RF remained robust to outliers and was less affected by noise. As
a result, the developed model can be considered the most optimal choice for the particular
classification task.

5. Conclusions and Future Works

In this paper, a classification model for paddy rice growth stages based on machine
learning and image processing was designed and implemented. The developed system
focuses on image data captured by the Speed-dome camera and growth factors determined
from the collected images through image processing techniques (e.g., height, green cov-
erage, etc.) installed in three different fields in Taiwan. The proposed system contains
three components such as an Image Recognition Block, an Image Processing Block, and
a Classification Model Block. Using an instance segmentation model, the first block will
segment every paddy instance. The trained instance segmentation model has achieved a
bounding box AP of 0.559, and segmentation AP of 0.506, which are both better than the
Detectron2 baseline model. In addition, since not all instances were labeled, the Average
Recall (AR) was taken into account. Both bounding box AR and segmentation AR are better
than the baseline model, at 0.61 and 0.539, respectively.

The image processing block performs height and GC rate calculations. Every paddy
instance predicted has its corresponding 2D image coordinates (bounding box coordinates)
in the input image. By converting the 3D real-world object points/coordinates to 2D image
coordinates, these coordinates are used to calculate the height of the paddy. Throughout
the growth stages, it had a minimum error rate during the tillering stages and started
increasing after the panicles were formed. It had an average error rate below 5%. Green
Coverage sub-blocks were used to indicate vegetative status. The EGI/MEGI method was
adopted, which is widely used in determining vegetative status or crop canopy cover. In
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EGI, the green pixels are extracted from images to segment the plants from the background.
As the color changes through the stages, the results can be used to represent growth status
as well as the different growth stages.

The outputs of the image processing block were used for training the developed RF-
based classification model. A paddy instance is considered a record of data. The proposed
model was able to classify the growth stages with an accuracy of 0.99018 and an F1-score of
0.9588. Up-sampling methods were used to resolve the imbalanced dataset problem such
as RandomOverSampler (ROS) and SMOTE-ENN. The SMOTE-ENN method produced
the most accurate results. RF with SMOTE-ENN achieved an accuracy of 0.98772, and
an F1-Score of 0.98653. With SMOTE-ENN applied, the performance in the classification
of early stages improved significantly. The developed model was compared with other
commonly used ML models. The proposed model with SMOTE-ENN outperformed all
these models.
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