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Abstract: Currently, pineapple processing is a primarily manual task, with high labor costs and low
operational efficiency. The ability to precisely detect and locate pineapple eyes is critical to achieving
automated pineapple eye removal. In this paper, machine vision and automatic control technology
are used to build a pineapple eye recognition and positioning test platform, using the YOLOv5l target
detection algorithm to quickly identify pineapple eye images. A 3D localization algorithm based on
multiangle image matching is used to obtain the 3D position information of pineapple eyes, and the
CNC precision motion system is used to pierce the probe into each pineapple eye to verify the effect
of the recognition and positioning algorithm. The recognition experimental results demonstrate that
the mAP reached 98%, and the average time required to detect one pineapple eye image was 0.015 s.
According to the probe test results, the average deviation between the actual center of the pineapple
eye and the penetration position of the probe was 1.01 mm, the maximum was 2.17 mm, and the
root mean square value was 1.09 mm, which meets the positioning accuracy requirements in actual
pineapple eye-removal operations.

Keywords: pineapple eye; three-dimensional; YOLOv5; stereo-matching

1. Introduction

Pineapple is a fruit with a high added economic value. In 2018, China’s yearly
pineapple production was approximately 1.64 million tons [1]. Approximately 30% of
pineapples are utilized for production and processing [2]. The processing of pineapple is
complicated, especially because even after the pineapple has been skinned, there are still
many eyes on its surface that need to be removed. Currently, the main way to remove
pineapple eyes is to do so manually with special tools, which is labor intensive and has high
labor costs and low production efficiency. The key to automatically removing pineapple
eyes is to rapidly and accurately identify and locate pineapple eyes.

Machine vision technology is frequently utilized in fruit recognition and quality
inspection because of its noncontact nature, high speed, and high precision [3]. In traditional
machine vision technology, targets are primarily recognized based on characteristics such
as color, shape, and texture. Li et al. [4] proposed a field recognition system for pineapple
based on monocular vision through threshold segmentation, morphological processing, and
other operations to recognize pineapples and obtain pineapple center point information.
Lin et al. [5] presented a segmentation method using texture and color features, and Leung-
Malik textures and HSV color features were fused to realize the detection and recognition
of citrus fruit. Lv et al. [6] proposed a method to deepen the fruit region and improve
the edge definition in images by using a histogram equalization algorithm. Then, the R-B
color difference image based on histogram equalization was obtained, and green apple
recognition was realized. Kurtulmus et al. [7] used circular Gabor texture analysis for green
citrus object recognition. When the fruit surface is uneven in color, shadowed, or obscured
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due to environmental factors such as light, the recognition quality of traditional machine
vision technology is significantly reduced [8].

By applying machine learning technology to fruit image analysis, a better applica-tion
effect and higher efficiency can be obtained [9]. Li Han et al. [10] used a naive Bayes classifier
to classify fruit and nonfruit regions, and the interference caused by the color similarity of
green tomatoes and green foliage backgrounds was eliminated to improve the fruit recognition
accuracy. Wang et al. [11] proposed a litchi recognition algorithm based on K-means clustering,
which can better resist the influence of illumination changes and can maintain high accuracy
for recognition under occlusion and different lighting conditions. Zhao et al. [12] extracted the
Haar-like features of grayscale images and used the AdaBoost classifier for classification and
recognition. In the actual environment, the detection accuracy rate of ripe tomatoes reached
96%, and the classifier structure was simple.

In recent years, object detection based on deep learning has shown great advantages
in the field of fruit image recognition [13,14]. The convolutional neural network, with its
fast detection speed and excellent ability to extract target features, not only reduces the
workload but also improves the recognition speed and accuracy [15]. Zhang Xing et al. [16]
proposed a study on pineapple picking and recognition under a complex field environment
based on the improved YOLOv3. The multiscale fusion training network was used to
detect single-category pineapple, and a detection and recognition rate of approximately
95% was achieved using this method. Tian et al. [17] proposed an improved YOLOv3
model to identify apples at different growth stages in orchards. The model was used with
the DenseNet method to process low-resolution feature layers; this method effectively
enhances feature propagation, promotes feature reuse, improves network performance,
and has good recognition performance under apple overlap and occlusion conditions.
Yu et al. [18] proposed a mask R-CNN algorithm to identify 100 wild strawberry images.
The results demonstrated that the average recognition accuracy was 95.78% and the recall
rate was 95.41%. Zhang et al. [19] proposed a real-time detection method for grape clusters
based on the YOLOv5s deep learning algorithm. By training and adjusting the parameters
of the YOLOv5s model on the data set, the fast and accurate detection of grape clusters was
finally realized. The test results showed that the precision, recall, and mAP of the grape
cluster detection network were 99.40%, 99.40%, and 99.40%, respectively.

Studies related to fruit positioning, which are widely used, have mainly focused
on the three-dimensional positioning of fruit for robot picking, and methods include
binocular stereo vision, structured light stereo vision, and monocular stereo vision. In
binocular stereo vision, not only can the image information of different angles of the target
be obtained, but the three-dimensional position information of the target through stereo
matching can also be obtained [20]. Therefore, this is a widely used approach in fruit and
vegetable recognition [21], positioning [22], and acquisition of phenotypic parameters [23].
Luo et al. [24] proposed a method for solving and positioning enclosure based on binocular
stereo vision. When the depth distance was within 1000 mm, the positioning error was
less than 5 mm. However, the calibration process of the binocular camera is complex, and
the calculational burden of the algorithm was relatively large [25]. Stereovision, which is
based on structured light, is a combination of structured light technology and binocular
stereo vision technology. Through structured light matching, the corresponding pixels
of the left and right cameras are subjected to stereo matching, parallax calculation, and
recovery of the three-dimensional data of the scene. Zhang et al. [26] used a machine vision
system based on a near-infrared array structure and three-dimensional reconstruction
technology to realize the recognition and positioning of apple stems and calyxes. However,
structured light stereo vision is easily affected by illumination [27]. Monocular stereo
vision positioning can be divided into monocular camera positioning of one, two, or more
images. The positioning of a single image mainly relies on the mapping relationship
between the known spatial information of the characteristic light points, lines, or other
image features to obtain the position coordinate information [28]. Generally, images from
different perspectives are obtained using the positioning method by changing the position
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of the camera, and the matching relationship of image feature points is used to obtain
the relative positional relationship between the cameras during multiple shots to realize
the positioning of the target. Zhao et al. [29] used a monocular color camera to build a
vision system to locate the picking point of litchi clusters and realize the three-dimensional
positioning of litchi clusters.

To date, there have been no research reports on pineapple eye machine-vision recog-
nition or positioning. Based on the analysis of the existing research in the field of fruit
recognition and positioning, deep learning technology based on convolutional neural
networks is proposed in this paper to carry out research on pineapple eye recognition.
On this basis, combined with the entire circumference-image-acquisition-of-pineapple
method, the three-dimensional localization of pineapple eyes is realized by applying the
stereo-matching method of monocular and multiangle images.

2. Materials and Methods
2.1. Structure and Working Principle of the Test Platform

The structure of the pineapple eye recognition and positioning test platform is shown
in Figure 1. The notebook is an HP-Shadow Elf equipped with an Intel i7-10750H CPU@2.60
GHz processor, 16 GB RAM, and an NVIDIA GeForce GTX1650Ti graphics card. The 64-bit
Windows 10 operating system is installed, and the software development environment is
Visual Studio2017 + OpenCV4.0.0. The color camera is an Imaging Source DFK41BU02
with a resolution of 1280(H) × 960(V), a frame rate of 15 fps, and an 8.5 mm Computar lens.
A CR-9600-R ring light source is installed directly under the camera lens. The Mitsubishi
FX3U-32MT PLC controller is used as the control core, and the PLC is connected to the
notebook through the serial communication port. The motion platform is composed of
a clamping cylinder, servo motor, linear slide, probe cylinder, and probe. The peeled
pineapple is clamped using the clamping cylinder and rotated at a precise angle by the
servo motor to acquire the entire circumference of the pineapple image. In this paper, a
probe is used to evaluate the accuracy of the identification and positioning algorithm. The
probe is installed on the probe cylinder and can be inserted into the pineapple through the
telescopic movement of the probe cylinder. The probe cylinder, which can accurately move,
is installed and positioned in the direction parallel to the pineapple axis.
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2.2. Image Acquisition of Pineapple Eyes

Goodfarmer Philippine pineapples, which were manually peeled and placed on the
test platform for image acquisition, were used for the experiments. Before image acquisition,
the dot calibration plate was used to reduce the lens distortion and perspective distortion
caused by the tilt of the camera [30]. To obtain the images of all pineapple eyes and provide
a sufficient number of images for multiangle image stereo matching, images of pineapples
were collected in 60◦ intervals, and 6 images were collected for each pineapple. Figure 2
shows images of the same pineapple collected from different angles. From this figure, there
are obvious differences in the shape and size of pineapple eyes.
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2.3. Pineapple Eye Recognition Algorithm Based on YOLOv5

In this paper, YOLOv5 is selected as the target detection network for pineapple eye
recognition. Among the commonly used object detection networks, strong detection perfor-
mance is achieved with the YOLOv5 network [31], which uses mosaic data enhancement,
adaptive anchor frame calculation, and adaptive image scaling at the input end. In the
backbone network, the features of the target adopted through Focus and CSPNet (cross-
stage partial network) can be quickly extracted. In the neck network, FPN (feature pyramid
network) and PANet are used for multiscale fusion of the extracted features. GIoU (gen-
eralized intersection over union) loss is used as the loss function of the target detection
frame in the output end. NMS (nonmaximum suppression) is introduced to filter out the
overlapping candidate frames and obtain the best prediction output. These improvements
ensure the detection accuracy and speed of small targets and have the advantages of a
shallow structure, small weight file, and relatively low requirements for the configuration
of the mounted equipment.

There are 4 versions of YOLOv5 [32]: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
The width and depth of the YOLOv5s model are the initial values. This model is small
and fast and is suitable for the detection of small and simple datasets. The YOLOv5m
and YOLOv5x models have the deepest depths and are suitable for detection on large
and complex datasets. As the depth of the network increases, the detection accuracy
is improved, while the detection speed is reduced. In YOLOv5, the learning ability of
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the neural network improves, the amount of calculation is reduced, and high detection
accuracy is maintained. To maximize the detection speed while maintaining sufficient
detection accuracy, YOLOv5l is used in this paper as the pineapple eye detection model.
The structure of YOLOv5l is shown in Figure 3.
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To construct the experimental dataset, 240 pineapple images were obtained from
40 pineapples. Then, the image was processed with data enhancements, such as rotation
and horizontal and vertical mirror images, to improve the robustness of the recognition
mode, and 600 pineapple images were finally obtained, with a total of approximately
18,000 pineapple eyes. The pineapple eye images were manually labeled one by one by
labeling software. Pineapple eyes in the image were marked with a rectangular box and
then named P. The labeling information was stored in the PASCALVOC (Pattern Analysis,
Statical Modeling and Computational Learning, Visual Object Classes) format [33], in which
the coordinates, labels, and serial numbers of each box are contained. The pineapple eye
image, labeled data, and other files were saved according to the PASCALVOC dataset
directory structure to build the pineapple eye dataset.

The 600 pineapple eye images enhanced by the dataset were divided into a training set,
validation set, and test set at an 8:1:1 ratio. Because the size of the pineapple eye target is small,
to improve the detection accuracy, the input size is 640 × 640 pixels, 32 images were taken as
a batch, and the weight parameters were updated once for each batch of images trained.

YOLOv5 incorporates the current mainstream detection approach FPN (feature pyra-
mid network) [34] and inherits the grid generation idea of the YOLO algorithm.
The 640 × 640 feature plot is divided into grid areas of equal size S × S cells (usually
80 × 80, 40 × 40, or 20 × 20). After maximum suppression, the output end of the network
outputs the prediction information of all grid information. The prediction information of
each grid includes the classification probability and confidence of the target as well as the
center coordinates and length and width of the box surrounding the detection target. The
classification probability represents the classification information of the predicted target in
the grid region, and the confidence represents the probability of the detection target in the
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grid region. The central coordinates and length-and-width information of the box represent
the specific size and position of the target predicted by the grid.

2.4. Three-Dimensional Positioning Algorithm for Pineapple Eyes

In this paper, images of pineapples are collected using 30◦ intervals; obviously, the
same pineapple eye appears on multiple consecutive images. By analyzing these images
and matching the same pineapple eyes in different images, the parallax information of the
pineapple eye can be obtained. The depth information of the pineapple eye can be obtained
through triangulation. In this paper, two images with an angle difference of 90◦ are used as
a group for stereo matching analysis to obtain the three-dimensional position information
of all pineapple eyes. Considering the high similarity of pineapple images from different
angles, the traditional stereo-vision-matching algorithm is not expected to perform well.
In addition, a large amount of calculation is required in this algorithm, which also has
low efficiency. Therefore, this algorithm is not suitable for the needs of actual production.
Figure 4a,b show the comparison of the γ degree and γ + 90-degree pineapple eye images.
Here, one pineapple eye appears in both images.
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The central coordinates (uc, vc) and (uc1, vc1) are used to describe the position of the
pineapple eye in the two images. Therefore, the position of the pineapple eye in the two
images must satisfy the following two constraints: (1) the center of the pineapple eye is
located on the same vertical line in the two images, that is, vc1 = vc. (2) The row coordinates
of the center of the pineapple eye on the two images can be predicted by the displacement
of the center of the pineapple eye after the pineapple is rotated by 90◦, namely, uc1 = uc + d.

In order to obtain the value d in Figure 4c, Figure 5 is used to describe the solution
process in detail, f is the focal length, and S is the distance between point O and point p, the
optical center of the camera; R is the radius on the contour of the pineapple cross-section
through C of the pineapple eye. We can obtain Formula (1).

η = arc tan
(

l0dx
f

)
R = S sin η

l1dx
R sin r = f

S−R cos r
d = d1 + d2 = R sin r + R cos r

(1)

where dx represents the physical size of a pixel on the u-axis, which is 0.00465 mm in this
paper, η is the angle between the Op and the Ap, and r is the OG and the OC1.
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Since the contour of the pineapple cross section through C of the pineapple eye is
not an ideal circle, and due to system errors such as installation and imaging, uc1 and vc1
cannot fully meet the above constraints; therefore, a certain tolerance ∆ is added when
finding a matching pineapple eye in the γ + 90 degree image. In other words, we search for
the target pineapple eye within the rectangular box (uc1 − ∆,vc1 − ∆,uc1 + ∆,vc1 + ∆). To
ensure that there is only one pineapple eye in the rectangular box, ∆ is set to a third of the
minimum distance between the two pineapple eyes in the image. Obviously, according to
the above constraints, the pineapple eye below the rotation axis in Figure 4a is not found in
Figure 4b, so there is no need to perform a matching operation.

In this paper, a 3D localization algorithm for pineapple eyes based on monocular
multiangle image matching is proposed. After obtaining the image coordinates of the same
pineapple eye in two images with a difference of 90◦, the depth of the pineapple eye is
calculated by triangulation. The information is then used to calculate the three-dimensional
position information of the pineapple eye. The camera coordinate system Oc_XcYcZc is
established with the camera optical center as the origin, as shown in Figure 6. The center
point C of any pineapple eye is selected as the measurement object. (uc, vc) represents
the pixel value of pineapple eye center C under the imaging plane, O1 is the intersection of
the imaging plane of the pineapple eye center point C and the camera optical axis, and the
pixel value is (u0, v0) .

The circle in Figure 7 is the cross-sectional profile of the pineapple through point C.
ψ is the angle between the line segment OC and the optical axis of the camera, which
satisfies the formula ψ = arctan

(
h1
h2

)
. The pineapple is rotated clockwise in the direction

indicated by the arrow in the figure. p refers to the optical center of the camera. The distance
between point C and point p of the camera optical center is W, the distance between point
O and point p of the camera optical center is S, and l1 is the number of pixels in the axial
direction of the pineapple eye imaging plane. When the pineapple rotates clockwise by
90◦, which is equivalent to a 90◦ counterclockwise rotation of the camera, as shown in the
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dotted line in Figure 8, l2 is the number of pixels in the axial direction of the pineapple eye
imaging plane after rotation. The following formula can be obtained from Figure 7: α = arctan

(
l1×dx

f

)
β = arctan

(
l2×dx

f

) (2)
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To facilitate subsequent experiments and the operation of removing pineapple eyes 
in practical engineering applications, the pineapple three-dimensional space coordinate 
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In this formula, dx represents the physical size of a pixel on the u-axis, which is
0.00465 mm in this paper. α and β can be solved by using Formula (2), and h1 and h2 in
Figure 7 can be simultaneously solved according to the following equations.

h1 = S(1−tan(β))tan(α)
1−tan(α)tan(β)

h2 = S(1−tan(α))tan(β)
1−tan(α)tan(β)

(3)

In Formula (3), h1 is the distance between point C and point O1, mm. h2 is the distance
between point C and point K, mm. Figure 7 shows that the center point C of the pineapple
eye is imaged at time t, and the object distance of the imaging plane is W = S − h2. Then,
the number of pixels of pineapple eye point C on the imaging plane and in the camera
coordinate system are determined using the following equation:

dx(uc−u0)
f = Xc

W
dx(vc−v0)

f = Yc
W

(4)

In other words, at time t, the center point C of the pineapple eye fulfills the matrix in
the camera coordinate system, with the camera optical center serving as the origin:Xc

Yc
Zc

 = W

uc −u0 0
vc −v0 0
0 0 1




dx
f

dx
f
1

 (5)

To facilitate subsequent experiments and the operation of removing pineapple eyes in
practical engineering applications, the pineapple three-dimensional space coordinate with
O as the center is established O_XYZ. The geometric vector approach is used to translate
the camera coordinates into the 3D space coordinates of the pineapple eye, as shown in
Figure 8. 

X = −Xc
Y = Yc × cos(−α) + (S − Zc)× sin(−α)
Z = S − ((S − Zc)× cos(α) + Yc × sin(α))

(6)

Furthermore, the three-dimensional coordinates of the pineapple eye (X, Y, Z) are
converted to the probe, which can be used for eye removal after changing to the eye-removal
tool. Position L and pineapple rotation angle θ are represented by the space coordinates
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(L, θ), and O2 is the starting point of the probe. As shown in Figure 9, the corresponding
conversion formula is as follows:{

L = X1 − X
θ = Y

S−Z × 180/PI
(7)
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In Equation (7), X1 is the distance from the optical center of the horizontal axis camera
to the starting point of the probe. Because the pineapple is rotating during the image
acquisition process, all the calculated coordinates of the pineapple eyes are the result of
the calculation of the current pineapple angle conditions. To obtain the coordinates of all
pineapple eyes for the whole pineapple in the same coordinate space, we should reverse
rotate the coordinates of all pineapple eyes to the 0◦ position. Therefore, Formula (7) should
be modified to the following: {

L = X1 − X
θ = Y

S−Z × 180
PI − γ

(8)

The position information of all pineapple eyes can be obtained after image stereo
matching and pineapple eye position computation. To ensure that the position information
of each pineapple eye is calculated, the image acquisition angle interval is set to 30 degrees,
which leads to the same pineapple eye being calculated in multiple sets of images. This
results in more calculated pineapple eyes than the actual number of pineapple eyes. To
avoid the same pineapple eye being repeatedly calculated, a successful match of a pineapple
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eye in the image is marked. When using the image and the next picture, the marked
pineapple eye does not participate in the matching calculation.

2.5. Flow Diagram of 3D Positioning Algorithm

The flow diagram of the 3D positioning algorithm for pineapple eyes based on mul-
tiangle image stereo matching in the study is shown in Figure 9. It mainly includes all
pineapple eye image acquisition to identify and match the pineapple eye on the γ and
γ + 90-degree image. When matching images on the γ degree and γ + 90 degree, all the
pineapple eye coordinates (L, θ) are stored in a list. When matching the next set of images
(γ + 30 degree and γ + 120 degree), some pineapple eyes which are duplicated with the
previous set of images will inevitably be obtained. Because the pineapple eye coordinate
(L, θ) is a global coordinate, the coordinates (L, θ) are approximate. By comparing the
newly obtained pineapple eye coordinates with the pineapple eye coordinates stored in the
list, it is easy to find and eliminate duplicate pineapple eyes. In this paper, the Euclidean
distance judgment is used as the judgment basis; when the distance between the two
pineapple eyes is less than 1 mm, the two pineapple eyes are considered to be duplicate
pineapple eyes.

2.6. Probe Positioning Test

In this paper, a probe test method is proposed for evaluating the positioning accuracy
of the positioning system. The probe mounted on the linear slide, as illustrated in Figure 10,
may be accurately moved and positioned in the direction of the pineapple axis. At the same
time, the servo drive motor rotates the pineapple at a precise angle. Therefore, according
to the coordinates (L, θ) of any pineapple eye, the probe can be moved to the position of
the pineapple eye and inserted into the pineapple eye through the extension action of the
probe cylinder. The deviation er (error) between the actual center of the pineapple eye and
the probe penetration position can be calculated to evaluate the positioning accuracy of the
pineapple eye:

er =
√
(W2/2 − W1 − 0.99)2 + (H2/2 − H1 − 0.99)2 (9)
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Figure 10. Measurement principle of the probe position error. 1. pineapple eye, 2. probe, and
3. pineapple eye center point.

In Equation (9), er is the error, and W1 is the distance between the left edge of the
pineapple eye and the right edge of the probe, in mm. W2 is the maximum length of the
pineapple eye in the horizontal direction, in mm. H1 is the distance between the upper
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edge of the pineapple eye and the lower edge of the probe, in mm. H2 is the maximum
length of the pineapple eye in the vertical direction, in mm. The probe radius is 0.99 mm.

Using five Goodfarmer Philippine pineapples, the diameter of the pineapple eye was
9–12 mm (manual measurement) after manual peeling. The positioning test is carried out
on the built-in test platform. When the probe reaches each pineapple eye position, a Vernier
caliper is used to successively measure the distances W1, W2 , H1, and H2, as shown in
Figure 11.
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3. Results and Discussion
3.1. YOLOv5 Model Performance Evaluation

To evaluate the detection effect of the pineapple eye recognition model, the model
recognition accuracy and detection efficiency are mainly measured from four parameters:
recall (R), precision (P), average accuracy (AP), and detection time of a single pineapple eye.

P = TP
TP+FP

R = TP
TP+FN

AP =
∫ 1

0 PdR

(10)

The AP value in Formula (10) is the area between the P–R curve and the coordinate
axis, TP represents the number of positive samples (pineapple eyes) correctly predicted
as positive samples, TN denotes the number of negative samples correctly predicted as
negative samples, FP indicates the number of negative samples predicted as positive
samples, and FN suggests the number of positive samples predicted as negative samples.

The curve of network model training is shown in Figure 12. Figure 12a shows the
loss function curve of training, with a minimum value of 0.01689. Figure 12b shows the
accuracy P (precision) curve, and the maximum accuracy is 97.8%. Figure 12c shows the
recall rate R (recall) curve, and the maximum recall rate is 97.5%. Figure 12d shows the
mean average precision curve when the IOU threshold is set to 0.5.
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Figure 12. Model training results. (a) Value of loss varies with the number of iterations; (b) P vary
with the number of iterations; (c) R vary with the number of iterations; (d) mAP@0.5 vary with the
number of iterations.

The P–R curve is a graph that depicts the relationship between precision and recall. The
abscissa represents R, while the ordinate represents P. The region contained in the P–R curve
and the coordinate axis is AP. The larger the area between the curve and the coordinate axis
is, the better the model recognition effect. Figure 13 shows the P–R curve with a threshold of
0.5 generated in the training process. Since there is only one recognition target in this paper,
the AP is equal to the mAP (mean Average Precision). The mAP is 99.2%.
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To further verify the YOLOv5l model performance for pineapple eyes, the YOLOv5l
network was compared with YOLOv5s, YOLOv5m, and YOLOv5x on 60 images in the test
set; the target distribution of the test set was actually 1806 pineapple eyes. Then, the test
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set images were input into the above models, respectively. The target recognition results of
the pineapple eyes in the image samples of the test set by the model are shown in Table 1.
The YOLOv5 (l, s, m, and x) values of mAP at a confidence of 0.5 were 98%, 97.6%, 97.8%,
and 98%, respectively, showing the effectiveness of the proposed model. Additionally, the
average times required to detect one pineapple eye image were 0.015 s, 0.012 s, 0.019 s,
and 0.024 s, respectively. Figure 14 shows the YOLOv5l detection effect diagram with a
confidence level greater than 0.5.

Table 1. Identification results for the pineapple eyes in test set.

Models Precision (%) Recall (%) mAP (%) Average Time(s)

YOLOv5l 98.0 96.6 98.0 0.015
YOLOv5s 98.3 96.2 97.6 0.012
YOLOv5m 97.9 96.3 97.8 0.019
YOLOv5x 98.1 96.5 98.0 0.024
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Average time is the time to detect one pineapple eye image.
In order to further analyze the accuracy of the YOLOv5l model in pineapple eye image

detection, the training results of YOLOv5l and the target detection model Mask R-CNN
were compared with a threshold of 0.5, as shown in Table 2. As can be seen from Table 2,
the mAP and detection speed of YOLOv5l are significantly higher than Mask R-CNN.

Table 2. Comparison models of YOLOv5l and Mask R-CNN.

Models mAP (%) Average Time (s)

YOLOv5l 99.2 0.015
Mask R-CNN 97.5 0.021

3.2. Result of Probe Positioning Test

The probe positioning test result, as shown in Figure 15, reveals that of the five Good-
farmer Philippine pineapples after manual peeling (460 pineapple eyes in total, 444 pineap-
ple eyes were successfully recognized), the deviation between the actual center of the
pineapple eye and the probe puncture position was 1.01 mm, and the maximum was
2.17 mm, with a root mean square value of 1.09 mm.
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3.3. Discussion

The YOLOv5 model has high detection accuracy on the self-built pineapple eye dataset.
In the sample images of the whole test set, the accuracy, recall, and AP of the model are higher
than 96%, indicating that the YOLOv5 recognition algorithm is feasible. The reason why a few
pineapple eyes could not be successfully identified is that the pineapple eyes on both sides of
the image are prone to distortion. This situation increases the recognition difficulty, resulting
in some pineapple eye recognition errors. Therefore, further research on the optimization
methods of models and parameters is needed to improve detection accuracy.

The localization experiment demonstrates that collecting images of the entire pineap-
ple circumference at even intervals and employing multiangle image matching with high
positioning precision may effectively accomplish three-dimensional localization of the
pineapple eye. Simultaneously, pineapple eye coordinates have been converted into a form
that can be directly applied by the actuator, which provides a good foundation for the
further development of pineapple eye-removal equipment for practical operations.

4. Conclusions

A pineapple eye recognition algorithm was presented based on deep learning. YOLOv5
was used as the target detection network for pineapple eye recognition. The 600 pineapple
eye images enhanced by the dataset are divided into a training set, validation set, and test
set with an 8:1:1 ratio. The values in the final model validation of precision, recall, and
mAP (mean average precision) were 97.8%, 97.5%, and 99.2%, respectively. The YOLOv5l
network was compared with YOLOv5s, YOLOv5m, and YOLOv5x on 60 images in the test
set. The YOLOv5 (l, s, m, and x) values of mAP were 98%, 97.6%, 97.8%, and 98%, showing
the effectiveness of the proposed model. Additionally, the average times required to detect
one pineapple eye image were 0.015 s, 0.012 s, 0.019 s, and 0.024 s. The detection results of
YOLOv5l and Mask R-CNN were further compared, and the results showed that YOLOv5l
was significantly higher than that of Mask R-CNN in both the mAP and detection speed.

A pineapple eye location algorithm based on monocular multiangle image stereo match-
ing was proposed. Two images with different angles of 90◦ were selected as a group for
stereo-matching analysis to obtain the three-dimensional position information of all pineapple
eyes, establish a camera three-dimensional coordinate system with the camera optical center as
the origin, and obtain the three-dimensional space coordinates (X, Y, Z) of the all pineapple
eye through the geometric vector method. To facilitate subsequent experiments and the
operation of removing pineapple eyes in practical engineering applications, in this paper, the
three-dimensional space coordinate (X, Y, Z) of the pineapple eye was transformed into the
space coordinate (L, θ) with the probe (or eye-removal tool) position L and the rotation angle
θ of the pineapple as the reference. The probe test results showed that the average deviation
between the actual center of the pineapple eye and the puncture position of the probe was
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1.01 mm, the maximum was 2.17 mm, the root mean square value was 1.09 mm, and the
positioning accuracy met the needs of the automated eye-removal operations.

The pineapple eye recognition and positioning algorithm proposed in this paper
provides an important theoretical basis for the development of automatic pineapple-eye-
removal equipment. The practical application performance of the algorithm needs to
be verified and improved in the actual eye-removal operation. At the same time, only
one variety of pineapple was tested, and the peeling operation was performed manually.
The applicability of the algorithm to different varieties of pineapples and machine-peeled
pineapples also needs to be further verified.
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