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Abstract: The fresh weight of vegetables is an important index for the accurate evaluation of growth
processes, which are affected by factors such as temperature and radiation fluctuation, especially in a
passive solar greenhouse. Predicting dynamic growth indexed by fresh weight in a solar greenhouse
remains a challenge. A novel method for predicting the dynamic growth of leafy vegetables based on
the in situ sensing of phenotypic and environmental data of batches is proposed herein, enabling
prediction of the dynamic fresh weight of substrate-cultivated lettuce grown in a solar greenhouse
under normal water and fertilizer conditions. Firstly, multibatch lettuce cultivation experiments
were carried out and batch datasets constructed by collecting growth environmental data and lettuce
canopy images in real time. Secondly, the cumulative environmental factors and instantaneous fresh
weights of the lettuce batches were calculated. The optimum response time in days was then explored
through the most significant correlations between cumulative environmental factors and fresh weight
growth. Finally, a dynamic fresh weight prediction model was established using a naive Bayesian
network, based on cumulative environmental factors, instantaneous fresh weight, and the fresh
weight increments of batches. The results showed that the computing time setpoint of cumulative
environmental factors and instantaneous fresh weight of lettuce was 8:00 AM and the optimum
response time was 12 days, and the average R2 values among samples from three batches reached
95.95%. The mean relative error (MRE) of fresh weight prediction 4 days into the future based on
data from the current batch was not more than 9.57%. Upon introducing another batch of data, the
prediction 7 days into the future dropped below 8.53% MRE; upon introducing another two batches,
the prediction 9 days into the future dropped below 9.68% MRE. The accuracy was improved by the
introduction of additional data batches, proving the model’s feasibility. The proposed dynamic fresh
weight growth prediction model can support the automatic management of substrate-cultivated leafy
vegetables in a solar greenhouse.

Keywords: fresh weight prediction; growth model; naive Bayesian network; solar greenhouse;
substrate-cultivated lettuce

1. Introduction

In line with an annual increase in greenhouse planting area in recent years [1,2], the so-
lar greenhouse, a relatively low-cost, environmentally controllable, and highly productive
option for farmers, has become the predominant facility type used to provide year-round
vegetable production in northern China [3,4]. A solar greenhouse has a large roof area along
the south side which is passively heated by sunlight during the daytime [5]. Meanwhile,
a thermal blanket is rolled over the greenhouse at night to hold heat inside the structure,
and a northern brick wall preserves heat inside the structure [6]. Compared with Venlo
greenhouses [7], passive solar greenhouses generally provide only basic environmental
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control with low-cost equipment [8]. In addition, the use of advanced automated fertigators
to ensure sufficient water and fertilizer absorption of vegetables in solar greenhouses has
become popular owing to significant labor savings [9]. In production in a Venlo green-
house, environmental control technology [10,11] is used to regulate indoor environmental
parameters such as light, temperature, humidity, and carbon dioxide, making the vegetable
growth environment close to optimal. Solar greenhouses have the disadvantages of large
temperature fluctuation ranges and frequently weak solar radiation [12], which is not
conducive to crop growth, making the crop growth models established in Venlo greenhouse
systems unsuitable for application in solar greenhouses.

In a suitable environment, vegetable growth adheres to certain inherent laws through-
out the plant’s life cycle [13]. Scholars have studied many crop growth models [14–17] with
the aim of guiding future crop production in greenhouse systems through regulation of
the environment, water, and fertilizer. In one greenhouse crop growth system, a machine
learning method based on the expectation maximum algorithm was applied to link envi-
ronmental parameters with crop growth [18]. Based on only a small number of samples,
future crop growth could be predicted several days in advance. Thus, the feasibility of
using environmental parameters to predict vegetable growth in greenhouse systems has
been verified. However, in the above-mentioned model, leaf area index, evapotranspiration,
and dry weight were taken as crop growth indicators, and the leaf area index and dry
weight were obtained by destructive methods at intervals of one week. For one thing,
indicators obtained using destructive methods cannot provide growth indicators over
the whole life cycle sequence of a specific plant, and indicators for shorter time intervals
were not obtained. For another, many vegetables needed to be planted in order to assess
indicators using destructive sampling during the vegetable growth period, and the process
was inefficient and cumbersome. Moreover, the indicators used to measure vegetable
growth could not directly reflect the current vegetable yield (i.e., fresh weight).

The fresh weight of vegetables is an important index for accurate evaluation of the
growth process, so it is of great significance to apply the fresh weight index to the predic-
tion of crop growth. Compared with hydroponic vegetables, the online, nondestructive
monitoring of the fresh weight of substrate-cultured vegetables during the growth process
is a challenge. In view of the importance of fresh weight, Yanes et al. [19] proposed a deep
learning image segmentation method to obtain information from canopy images for the
estimation of fresh weight of hydroponic lettuce, and a regression model relating lettuce
size and fresh weight was established. Jung et al. [20] established a model of the relation-
ship between the projected area of lettuce canopy and fresh weight in an environmentally
controllable, water-based lettuce cultivation system based on the morphological analysis
machine vision method. Jiang et al. [21] developed a fresh weight estimation system for
hydroponic lettuce based on online image processing, which realized high-precision esti-
mation of the fresh weight of lettuce and allowed environmental control for high-quality
production. In hydroponic vegetable production systems, the plants can be removed from
the nutrient solution temporarily and directly weighed without hindering their continuous
growth. This is convenient for nondestructive calibration of fresh weight and makes it easy
to realize nondestructive, high-precision fresh weight estimation. In substrate culture sys-
tems, the plants can be taken out of the substrate and directly weighed to accurately obtain
the fresh weight. However, plants weighed in this way will not continue to grow [22,23],
and the subsequent fresh weight growth cannot be obtained. It is difficult to achieve
nondestructive estimation of the fresh weight of substrate-cultivated vegetables. In order
to solve this problem, Liu et al. [24] proposed a fresh weight estimation method based on
the fusion of phenotypic characteristics and environmental parameters, which was used
to realize nondestructive estimation of the individual and population fresh weights of
substrate-cultured lettuce in a solar greenhouse.

However, accurate prediction of dynamic fresh weight growth based on in situ sensing
in solar greenhouse systems is still a challenge. Fresh weight growth of vegetables is affected
by many complex environmental factors [25]. Large indoor temperature fluctuations and
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frequently weak solar radiation in solar greenhouse systems lead to differences in the
fresh weight growth of different batches. There is a complex and uncertain relationship
between vegetable fresh weight growth and environmental factors. Therefore, in contrast
to the static modeling of fresh weight under hydroponic conditions [19], a novel prediction
method for the dynamic growth of leafy vegetables based on phenotypic and environmental
data of batches is proposed herein, which is able to predict the dynamic fresh weight
of substrate-cultivated lettuce in a solar greenhouse system under normal water and
fertilizer conditions.

The main contributions of this paper are as follows:
(1) Multibatch substrate-cultivated lettuce cultivation experiments were carried out,

with the growth environment and lettuce canopy images monitored in real time. A dataset
was built using phenotypic and environmental data of batches.

(2) Computation of the cumulative environmental factors and instantaneous fresh
weight of batches of lettuce was achieved. The optimum response time was explored
via the most significant correlations between cumulative environmental factors and fresh
weight growth.

(3) A dynamic fresh weight prediction model was established using a naive Bayesian
network, based on cumulative environmental factors, instantaneous fresh weight, and fresh
weight increments of batches, which can be used to predict the dynamic fresh weight of
substrate-cultured lettuce in a solar greenhouse system.

2. Materials and Methods
2.1. Experimental Design

The experimental site was Solar Greenhouse No. 6 in Shandong Agricultural Univer-
sity Science and Technology Innovation Park, located in Tai’an City, Shandong Province,
China (36.16◦ N, 117.16◦ E). The greenhouse has a span of about 8 m, a height of about
4 m, and a length of about 50 m from east to west. The experimental material was Italian
lettuce, which was produced by Hebei Maohua Seed Industry Limited Company. The main
characteristics of this lettuce are a semi-erect form, plant height of about 26 cm, develop-
ment of about 28 cm, and nearly round leaves. The color is emerald green, and the loose
leaves do not form a ball. In order to improve the accuracy of the dynamic fresh weight
prediction model, multiple batches of planting experiments were carried out. The same
variety of lettuce was used for the multiple batches of planting experiments. When the
lettuce seedlings in a batch had grown to five leaves and a heart, the batch was transplanted
into a planting tank filled with substrate.

The aboveground growth environment of the lettuce was the closed microclimate
environment of the passive solar greenhouse. Due to the structural characteristics of a
passive solar greenhouse, only simple environmental regulation could be achieved during
the lettuce growth process, barring the introduction of heating, fans, supplementary lights,
etc. For example, in the morning, the thermal blanket was opened to allow storage of
heat from the sunlight. At noon, the vent was opened to allow natural ventilation for
dehumidification, cooling, and air exchange. In the evening, the thermal blanket was closed
for insulation, so as to ensure a normal indoor lettuce growth environment and prevent
frostbite of the lettuce plants. The underground growth environment of the lettuce plants
was the substrate. The substrate had the characteristics of good ventilation and a good
drainage effect, but the water retention effect was relatively poor. Therefore, Yamazaki
formula nutrient solution at a 100% concentration was used for irrigation via the water
and fertilizer application system in the greenhouse (Figure 1), ensuring normal water and
fertilizer conditions throughout the lettuce cultivation experiment.
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Figure 1. Lettuce cultivation experiment.

2.2. Acquisition of Environmental Data and Lettuce Images in the Solar Greenhouse

An environmental monitoring and image acquisition platform (Figure 1) was used
to record the temperature, humidity, photosynthetically active radiation, carbon dioxide
concentration, and lettuce canopy images in the solar greenhouse during the lettuce culti-
vation experiment. The platform was mainly composed of a support mechanism, guide
rail slide, hanger, cross bar, sensor, and controller. The support mechanism was used to
support the guide rail slide so that the guide rail slide could move horizontally in the
north–south direction at a certain height from the ground. The guide rail slide was fixed at
the upper end of the support mechanism and the cross bar equipped with the sensor was
connected through the hanger, so that the sensor could move in the north–south direction
synchronously with the cross bar. The height of the cross bar could be adjusted according
to the current situation, and the cross bar and the guide rail slide were kept vertical in the
horizontal direction. The guide rail slide was controlled by the controller and the cross bar
equipped with sensors was moved to complete the environmental monitoring and image
acquisition tasks in the upper part of the planting area.

2.3. Calculation of Environmental Factors and Instantaneous Fresh Weight
2.3.1. Calculation of Cumulative Radiant Heat Product

The effects of temperature and radiation on the fresh weight of lettuce can be measured
by the cumulative radiant heat product. The specific calculation formula is as follows [26]:

RTE =



0 (T < Tb)
T−Tb

Tob−Tb
(Tb ≤ T < Tob)

1 (Tob ≤ T ≤ Tou)
Tm−T

Tm−Tou
(Tou < T ≤ Tm)

0 (T > Tm)

(1)

TEP = ∑ RTEP (2)

RTEP =
24

∑
i=1

(
RTEi × PARi × 3600/106

)
(3)

where Tb is the lower limit of growth temperature (◦C), Tm is the upper limit of growth
temperature (◦C), Tob is the lower limit of optimum growth temperature (◦C), Tou is the
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upper limit of optimum growth temperature (◦C), T is the ambient temperature (◦C), RTE is
the relative thermal effect, RTEP is the daily cumulative radiant heat product (MJ·m−2·d−1),
RTEi is the relative thermal effect in the i-th hour, PAri is the average photosynthetically
active radiation in the i-th hour (MJ·m−2·d−1), and TEP is the cumulative radiation heat
product (MJ·m−2).

2.3.2. Calculation of Crop Evapotranspiration

If reference evapotranspiration is used to replace crop evapotranspiration, there will
be a large error. Therefore, in order to improve the accuracy of calculation of crop evapo-
transpiration, the crop coefficient was used to correct the reference evapotranspiration. The
specific calculation formula is as follows [27]:

ETc = ET0 · Kc (4)

ET0i =
0.408∆(Rn− G) + γ 1713

T+273 (es − ea)

∆ + 1.64γ
(5)

∆ =
2505 · exp

(
17.27T

T+237.3

)
(T + 237.3)2 (6)

es =
es(Tmax) + es(Tmin)

2
(7)

es(Tmax/min) = 0.6108 · exp
(

17.27Tmax/min

Tmax/min + 237.3

)
(8)

ea =
es(Tmin)

RHmax
100 + es(Tmax)

RHmin
100

2
(9)

R = K · PAR (10)

Rn = a·R + b (11)

where ET0 is the reference evapotranspiration under full irrigation (cm·d−1), ∆ is the slope
of the saturated vapor pressure curve (kPa·◦C−1), Rn is the net radiation of the crop canopy
(MJ·m−2·d−1), G is the soil heat flux density (MJ·m−2·d−1), γ is the dry and wet table
constant (kPa·◦C−1), T is the daily average temperature at the height of 1.5 to 2.5 m above
the surface (◦C), Tmax/min is the daily maximum or minimum air temperature at the height
of 1.5 to 2.5 m above the surface (◦C), es is the average saturated vapor pressure at the
height of 1.5 to 2.5 m above the surface (kPa), ea is the average actual vapor pressure at
the height of 1.5 to 2.5 m above the surface (kPa), RHmax/min is the daily maximum or
minimum relative humidity at the height of 1.5 to 2.5 m above the surface (%), ETci is the
evapotranspiration of crops on the i-th day under full irrigation (cm/d), Kc is the crop
coefficient, R is the total solar radiation (MJ·m−2·d−1), PAR is the photosynthetically active
radiation (MJ·m−2·d−1), K is the conversion coefficient between photosynthetically active
radiation and total solar radiation, and a and b are the conversion coefficients between net
radiation and total radiation.

If G = 0, γ = 0.067, Kc = 0.7, 1.00 or 0.95 [28], K = 80/39 [29], a = 0.8277, and
b = 0.2909 [30], then ETc can be calculated using Formulas (4)–(11) and the indoor tempera-
ture, humidity, and photosynthetically active radiation.

2.3.3. Calculation of Instantaneous Fresh Weight and Fresh Weight Increment

Based on the previous research results of this research group [24], the online, nonde-
structive calculation of the fresh weight of substrate-cultivated lettuce grown in a solar
greenhouse was realized by combining the data of phenotypic characteristics and environ-
mental characteristics. Firstly, the collected lettuce canopy images were used to extract
phenotypic characteristics such as shape, color, and texture. Then, using the online moni-
toring values of temperature and photosynthetically active radiation, cumulative radiant
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heat product was calculated as an environmental factor. Finally, the above factors were
introduced into the model for fresh weight estimation of substrate-cultivated lettuce grown
in a solar greenhouse, and the instantaneous fresh weight of the lettuce was obtained
(Figure 2). The fresh weight increment was obtained by subtracting the instantaneous fresh
weight at one time point from another.
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2.4. Exploration of Optimum Response Time in Days

In order to study the optimum response time of the most significant correlations
between cumulative environmental factors and fresh weight growth, a naive Bayesian
network [31–33] was used to establish the relationship model. There were n − k elements
in the dataset, including cumulative environmental factors, instantaneous fresh weight,
and fresh weight increments of the previous k days, and the dataset was divided into a
training set and a test set. The training set was introduced into the naive Bayesian network
for model training, and the test set was used for model testing.

The determination coefficient of the model was calculated by referring to Formula
(12) using predicted values and measured values, and was used to examine the degree of
correlation between predicted values and measured values of the samples in the dataset.
The normal value range is from 0 to 1, and the closer it is to 1, the better the model fits the
data. The calculation formula is as follows:

R2 = 1− ∑n
i=1(y_testi − y_prei)

2

∑n
i=1(y_testi − y_mean)2 (12)

where y_testi is the measured value of the i-th sample in the dataset (g), y_prei is the
predicted value of the i-th sample in the dataset (g), and y_mean is the average of the
measured values of all samples in the dataset (g).

The coefficient of determination was used as the evaluation index of the model. The
larger the coefficient of determination, the more significant the relationship between cumu-
lative environmental factors and fresh weight growth.
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The solution process with the most significant response between cumulative envi-
ronmental factors and fresh weight growth in the previous k days is shown in Figure 3.
The figures on the y axis represent the environmental parameters (temperature, humidity,
photosynthetically active radiation, and carbon dioxide concentration) or the instantaneous
fresh weight of lettuce at a certain time. Firstly, instantaneous fresh weight on day 1, cumu-
lative environmental factors (cumulative radiant heat product, crop evapotranspiration,
and average carbon dioxide concentration), and fresh weight increment from day 1 to day
k + 1 were taken as the first element group in constructing the dataset. The instantaneous
fresh weight on day 2, cumulative environmental factors, and fresh weight increment from
day 2 to day k + 2 were used as the second element group in constructing the dataset.
Correspondingly, instantaneous fresh weight on day n – k, cumulative environmental
factors, and fresh weight increment from day n − k to day n were taken as the last element
group in constructing the dataset, which had a total of n – k element groups. The dataset
was then divided into a training set and a test set, and the training set was substituted into
the naive Bayesian network for model training. Finally, the test set was substituted into
the above model and the determination coefficient was calculated, which was used as the
evaluation index for the significance of the response between cumulative environmental
factors and fresh weight growth in the previous k days.
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2.5. Establishment of Dynamic Fresh Weight Growth Prediction Model

Using the above methods, it was easy to obtain the optimum response time of the most
significant correlations between cumulative environmental factors and the fresh weight
growth of substrate-cultivated lettuce grown in a solar greenhouse. Thus, a dynamic fresh
weight prediction model was constructed, using the collected data to predict the dynamic
fresh weight growth of lettuce.
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2.5.1. Predicting the Fresh Weight on the Next Day

Firstly, a dataset labeled 1 is constructed using instantaneous fresh weight, cumulative
environmental factors, and fresh weight increment in the previous k days from day 1
to day n0, with a total of n0 − k elements. The dataset labeled 1 is imported into the
naive Bayesian network for training and testing of the model. Then, instantaneous fresh
weight on day n0 − k + 1 and cumulative environmental factors from day n0 − k + 1 to
day n0 + 1 are taken as the inputs of the above model, and the fresh weight increment
from day n0 − k + 1 to day n0 + 1 is derived by substituting the above model. Finally, the
instantaneous fresh weight on day n0 + 1 is calculated and the relative error is calculated.
The specific calculation formula is as follows:

m′n0 = mk + ∆m′n0−k (13)

RE =

∣∣m′n0− mn0
∣∣

mn0
(14)

MRE =
1
n ∑n

i=1 REi (15)

σ =

√
1

n− 1 ∑n
i=1(REi −MRE)2 (16)

where ∆m′n0−k is the predicted value of fresh weight increment from day n0 to day k (g), mk
is the measured value of instantaneous fresh weight on day k (g), m′n0 is the predicted value
of instantaneous fresh weight on day n0 (g), mn0 is the measured value of instantaneous
fresh weight on day n0 (g), RE is the relative error between the predicted value and
measured value of instantaneous fresh weight (%), MRE is the mean relative error (%), and
σ is the standard deviation of relative error (%).

2.5.2. Predicting the Fresh Weight in the Next 2 Days
1© Using the method of predicting the fresh weight on the next day, the fresh weight

increment from day n0 − k − 1 to day n0 + 1 can be obtained.
2© The instantaneous fresh weight on day n0 − k + 1, cumulative environmental

factors, and predicted fresh weight increment from day n0 − k + 1 to day n0 + 1 are taken
as the last element group to construct a new dataset labeled 2, with a total of n0 − k + 1
elements. The dataset labeled 2 is imported into the naive Bayesian network for training
and testing of the model.

3© The cumulative environmental factors from day n0 − k + 2 to day n0 + 2 and the
instantaneous fresh weight on day n0 − k + 2 are taken as the inputs of the above model,
and the fresh weight increment from day n0 − k + 2 to day n0 + 2 is derived by substituting
them into the above model.

4©With reference to Equations (13) and (14), the instantaneous fresh weight on day
n0 + 2 and the relative error are calculated.

2.5.3. Predicting the Fresh Weight in the Next m0 Days

Schematic diagram of the solution process for predicting fresh weight in the next m0
days based on the phenotypic and environmental data from the previous k days is shown
as Figure 4.
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Figure 4. Schematic diagram of the solution process for predicting fresh weight in the next m0 days
based on the phenotypic and environmental data from the previous k days.

1© According to the method of predicting the fresh weight in the next 2 days, the fresh
weight increment from day n0 − k − 2 to day n0 + 2 can be obtained.

2© By analogy, the instantaneous fresh weight on day n0 − k + m0 − 1, cumulative
environmental factors, and predicted fresh weight increment from day n0 − k + m0 − 1 to
day n0 + m0 − 1 are taken as the last element to construct a new dataset labeled m0, which
has a total of n0 − k + m0 − 1 elements. The dataset labeled m0 is imported into the naive
Bayesian network for training and testing of the model.

3© The cumulative environmental factors from day n0 − k + m0 to day n0 + m0 and the
instantaneous fresh weight on day n0 + m0 are taken as the inputs of the above model, and
the fresh weight increment from day n0 − k + m0 to day n0 + m0 is derived by substituting
them into the above model.

4©With reference to Equations (13) and (14), the instantaneous fresh weight on day
n0 + m0 and the relative error are calculated.

Therefore, through the above methods, the future fresh weight can be predicted using
phenotypic and environmental data. For example, if instantaneous fresh weight on the
next day is predicted, the cumulative environmental factors from day n0 − k + 1 to day
n0 + 1 will be used, which from day n0 − k + 1 to day n0 are real and known. However,
the cumulative environmental factors from day n0 to day n0 + 1 have not occurred and are
unknown. Even if there is an error in estimating the environmental factors from day n0
to day n0 + 1, the impact on the accuracy of the cumulative environmental factors from
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day n0 − k + 1 to n0 + 1 is only 1/k. The overall error generated in fresh weight dynamic
prediction is not too large.

3. Results and Discussion
3.1. Fresh Weight Growth Curve of Lettuce

It can be seen from Figure 5 that on both sunny and cloudy days, the changes in fresh
weight at nighttime are not obvious, while the changes in fresh weight during the daytime
are relatively obvious. The fresh weight tends to decrease in the morning when the sun
suddenly becomes stronger. The fresh weight then rises slowly and gradually recovers.
When the sun is shining brightly at noon, the fresh weight tends to decrease again. The fresh
weight recovers slowly in the afternoon, and it tends to remain stable. The main reason is
that the transpiration during the daytime is obviously higher than that at nighttime [34],
and the lettuce water content changes faster under the high temperatures, strong light,
and low humidity of the daytime. Transpiration is an important indicator for measuring
plant water content [35], and its strength is closely related to the degree of water loss in
plants [36]. Moreover, water absorption through roots is the main way that water content is
maintained in plants [37]. When the water lost by transpiration is higher than that absorbed
by roots, the fresh weight of lettuce shows a downward trend. With the decrease of water
content in a lettuce plant, a larger pull force is created, forcing the root to absorb more water
to maintain normal metabolism and to supplement the water lost through transpiration.
When the rate of water absorption by the roots increases slowly, approaching and exceeding
the rate of water loss by transpiration, the fresh weight decreases slowly, stops gradually,
and begins to increase. Finally, the fresh weight approaches the previous fresh weight
range. During the processes of losing water through transpiration and absorption of water
through the roots, and with the increase of photosynthesis of the lettuce leaves, the content
of organic matter produced by photosynthesis gradually increases in the plant, making
the lettuce larger in volume and allowing more water to be stored in the plant. The fresh
weight of lettuce will then increase.
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Figure 5. Fresh weight growth curves in different weather conditions. (a) On a cloudy day, (b) on a
sunny day.

By comparing the change of fresh weight on a sunny day with that on a cloudy day, it
was found that the variation in fresh weight growth on the sunny day was higher than that
on the cloudy day. This was mainly due to the higher temperatures, stronger illumination,
and lower humidity on the sunny day than on the cloudy day, meaning that the volumes of
water lost through transpiration and absorbed by the roots were greater and the variations
of fresh weight were stronger. There is no sunlight at nighttime and there is little change in
temperature and humidity. The water lost by transpiration and the water absorbed by roots
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is relatively stable. At the same time, compared with a cloudy day, lettuce has a higher level
of photosynthesis and accumulates more organic matter on a sunny day, which enables
lettuce to absorb more water, increasing its fresh weight.

In order to accurately construct the relationship between the environmental factors
and fresh weight growth, the calculation time of cumulative environmental factors and
instantaneous fresh weight of lettuce was set at 8:00 AM.

3.2. Optimum Response Time

It can be seen from Figure 6 that the response relationship between cumulative envi-
ronmental factors and fresh weight growth over different cumulative days was different
during the growth process among different samples in the same batch. With the increase in
the number of cumulative days, the predicted determination coefficient showed a trend of
increase at first. There was an individual decline in this process, but it did not affect the
trend of increase. When the cumulative time reached 12 days, the determination coefficients
for samples 1, 2, and 3 reached maximum values of 97.02%, 95.64%, and 97.06%, followed
by a trend of decrease. In this process, there was an individual increase, but it did not
affect the decreasing trend. The optimum response time of the most significant correlation
between cumulative environmental factors and fresh weight growth among the different
samples in the same batch was 12 days.
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Figure 6. The response relationship between cumulative environmental factors and fresh weight
growth among the different samples in the same batch. (a) Sample 1, (b) sample 2, (c) sample 3.

It can be seen from Figure 7 that the response relationship between cumulative environ-
mental factors and fresh weight growth in different cumulative days was different during
the growth process among the different samples in different batches. With the increase of
cumulative days, the determination coefficient showed a trend of gradual increase at first.
In this process, there was a decline in some cases, but it did not affect the trend of increase.
When the determination coefficient reached the maximum value, it began to decrease. In
this process, there was an increase in some cases, but it did not affect the decreasing trend.
In the samples from the first batch, the coefficient of determination reached a maximum
value of 97.57% for 13 cumulative days. The determination coefficient for 12 cumulative
days was 97.29%, which was very close to the maximum value of the determination co-
efficient, and only 0.28% lower. In the samples of the second batch, the determination
coefficient reached a maximum value of 94.14% for 13 cumulative days. The determination
coefficient for 12 cumulative days was 93.47%, which was very close to the maximum value
of the determination coefficient, and only 0.67% lower. In the samples of the third batch,
the determination coefficient reached a maximum value of 97.72% for 10 cumulative days.
The determination coefficient for 11 cumulative days was 97.39%, which was very close to
the maximum value, and only 0.33% lower. The determination coefficient for 12 cumulative
days was 97.09%, which was very close to the maximum value, and only 0.63% lower.
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Figure 7. The response relationship between cumulative environmental factors and fresh weight
growth among the samples in different batches. (a) Samples from the first batch, (b) samples from
the second batch, (c) samples from the third batch.

It can be seen in Table 1 that with the increasing number of cumulative days, the aver-
age value of the determination coefficient in the three batches of samples showed a trend
of first increasing and then decreasing. When the cumulative time reached 12 days, the
average of the determination coefficient reached its maximum value of 95.95%, indicating
that the optimum response time of the most significant correlation between cumulative
environmental factors and fresh weight growth among different samples in the different
batches was 12 days.

Table 1. Numerical distribution table of adjacent regions with maximum values of the coefficient of
determination in different batches.

Cumulative
Days

First Batch
Samples

Second Batch
Samples

Third Batch
Samples Average

10 0.9117 0.7976 0.9772 0.8955
11 0.9122 0.8339 0.9739 0.9067
12 0.9729 0.9347 0.9709 0.9595
13 0.9757 0.9414 0.8866 0.9346

3.3. Using Batch Data to Predict the Dynamic Fresh Weight of Lettuce

It is obvious from Figure 8 that the fresh weight on the next day can be predicted by
using only the data from the current batch (MRE1 = 6.25%, σ1 = 7.05%). The relative error
(Figure 9) of predicting fresh weight using only the data from the current batch fluctuated
greatly at first, and there was one point with a relative error of 40.9%. Subsequently, the
relative error fluctuation began to stabilize. This is mainly because the number of elements
constructed from the data of the current batch was relatively small at the initial stage, and
the accuracy of the model trained by the naive Bayesian network was relatively low. With
the increase of the number of elements in the dataset, the accuracy of the model trained by
the naive Bayesian network gradually improved, and the relative error started to decrease.

It can be seen from Table 2 that only the data from the current batch were used to
predict fresh weight, and the relative error gradually increased with the increasing number
of future days (MRE: 6.25% < 6.50% < 7.88%, σ: 7.05% < 6.76% < 11.17%). The data from
the current batch with the introduction of another batch were used to predict fresh weight,
and the relative error had a tendency to increase with the increasing number of future
days (MRE: 4.86% < 5.57% < 6.50%, σ: 5.77% < 6.04%, 5.77% < 5.78%). The data from
the current batch with the introduction of another two batches were used to predict fresh
weight, and the relative error gradually increased with the increasing number of future days
(MRE: 4.35% < 5.40% < 5.29%, σ: 4.87% < 5.38% < 6.11%).
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Figure 8. Prediction of fresh weight on the next day. Note: Predicted value 1 is the value of fresh
weight on the next day predicted using the data of the current batch. Predicted value 2 is the value of
fresh weight on the next day predicted by introducing another batch. Predicted value 3 is the value
of fresh weight on the next day predicted by introducing the data from another 2 batches.
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Figure 9. The relative error of predicting fresh weight using only the data from the current batch.

Table 2. Prediction of fresh weight error over the next 3 days.

Batches

Error Day 1 in the Future Day 2 in the Future Day 3 in the Future

MRE σ MRE σ MRE σ

Current batch 6.25% 7.05% 6.50% 6.76% 7.88% 11.17%
Introducing another batch 4.86% 5.77% 5.57% 6.04% 6.50% 5.78%

Introducing another 2 batches 4.35% 4.87% 5.40% 5.38% 5.29% 6.11%

As shown in Figure 10, the data from the current batch were used to predict the fresh
weight in the future. With the increasing number of future days, the MRE of fresh weight
prediction gradually increased. In other words, the accuracy of predicting fresh weight in
the future gradually decreased, and the MRE of fresh weight prediction over 4 days based
on data from the current batch was not more than 9.57%.
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Upon introducing another batch of data, the MRE of fresh weight prediction gradually
increased with the increasing number of future days. However, it was lower than that of
the fresh weight predicted using only the data from the current batch, and the MRE of fresh
weight prediction in the next 7 days based on the introduction of another batch of data was
not more than 8.53%, indicating that the accuracy of predicting fresh weight was improved
by introducing another batch.

After introducing the data from another two batches, the MRE of fresh weight pre-
diction tended to increase with increasing number of future days. However, it was lower
than that for the fresh weight predicted using the data with only one additional batch, and
the MRE of fresh weight prediction over 9 days based on the introduction of data from
another two batches was not more than 9.68%, indicating that the accuracy of the fresh
weight prediction could be further improved by introducing more batches.

4. Conclusions and Future Work

A dynamic fresh weight growth prediction model based on phenotypic and environ-
mental batch data was proposed, and was used to predict the dynamic fresh weight growth
of substrate-cultivated lettuce in a solar greenhouse under normal water and fertilizer
conditions. The computation of cumulative environmental factors and instantaneous fresh
weight of batches of lettuce was achieved. The optimum response days were explored
through the most significant correlations between cumulative environmental factors and
fresh weight growth. A dynamic fresh weight prediction model was established using a
naive Bayesian network based on cumulative environmental factors, instantaneous fresh
weight, and fresh weight increments of batches. Experimental results showed that the
calculation time setpoint of cumulative environmental factors and instantaneous fresh
weight of lettuce was 8:00 AM and the optimum response time was 12 days. The MRE of
fresh weight prediction over 4 days based on data from the current batch was not more
than 9.57%; upon introducing another batch of data, the prediction over 7 days dropped
to not more than 8.53% MRE; upon introducing another two batches, the prediction over
9 days dropped to not more than 9.68% MRE, proving the model’s feasibility.

In future work, the proposed dynamic growth prediction model of fresh weight
will be integrated with an automatic management system and sensing data to support
an autonomous fertigation strategy for substrate-cultivated leafy vegetables in a solar
greenhouse system, playing an important role in promoting the automatic cultivation and
management of vegetables in agricultural applications.
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