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Abstract: Crop models are important for understanding and regulating agroecosystems. Although
the CERES-Wheat model is an important tool for winter wheat research, it has some limitations
under water stress conditions. To narrow the gap, this study aimed to improve the performance
of the CERES-Wheat model under water stress in arid and semi-arid regions based on the winter
wheat experimental data from 2012 to 2014. The Priestley–Taylor (PT) and FAO56 Penman–Monteith
(PM) equations were used to calculate the reference crop evapotranspiration and further modified
the crop coefficient of the CERES wheat model to improve the simulation accuracy of crop yield
and evapotranspiration under water stress conditions. The results showed that: water stress before
jointing seriously affected the accuracy of the CERES-Wheat model in simulating biomass and grain
yield, so it was necessary to improve the original model. In the original and improved models, the
accuracy of the PM equation was lower than that of PT. In addition, the simulation accuracy of
the improved model was higher than that of the original model (the average RMAE and RRMSE
are less than 30%). In general, among the four scenarios, the PT equation for calculating crop
reference evapotranspiration and crop coefficient had the best performance. Water stress occurred
at the heading and grain filling stages, and the simulated biomass was in good agreement with the
observed results, which better simulated the soil water content under water stress at the later growth
stages. Therefore, the change in water stress response function had positive effects on winter wheat
growth under simulated water stress conditions. This study provided a reference for applying the
CERES-Wheat model in arid and semi-arid areas.

Keywords: evapotranspiration; dynamic crop coefficient; water stress; CERES-Wheat; winter wheat

1. Introduction

The global wheat cultivation area is 214 million hectares, with a total output of
762.06 million tons, ranking second among cereal crops [1]. Winter wheat (Triticum aestivum
L.) is one of the main staple crops in the arid and semi-arid regions of northwest China.
However, winter wheat production is constrained by increasingly tight water supplies,
which causes farmers to consider limited irrigation as an alternative to full irrigation prac-
tices. Therefore, many studies are exploring the benefits of limited or deficit irrigation on
winter wheat.

Due to the time-consuming, expensive, and lack of generality for traditional field
methods, crop models have become valuable tools for predicting crop growth, develop-
ment, and yields based on meteorological and environmental conditions and agricultural
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management [2,3]. The models greatly simplify and shorten the research processes of
agricultural systems and are, therefore, suitable alternatives for field experiments, sav-
ing time and economic costs. Additionally, crop models have been widely employed to
optimize farming management practices and provide technical guidance for farmers and
decision-makers [4,5]. In recent years, crop models have been increasingly applied for
agricultural decision-making and management at local, regional, and global scales [6–8].

Major wheat simulation models include the CERES-Wheat in the Decision Support
System for Agrotechnology Transfer (DSSAT) crop system model [9], SWHEAT [10], SU-
CROS2 [11], AFRCWHEAT2 [12], STICS [13], Sirius [14], etc. DSSAT was developed by
the United States Department of Agriculture for agricultural experiment analysis, yield
prediction, agricultural production risk assessment, etc [3,15,16]. It has a simple inter-
face and a wide application range. The DSSAT-CERES-Wheat model is a sub-module
of the DSSAT model, which mainly simulates the growth process of winter wheat. The
DSSAT-CERES-Wheat requires inputs of irrigation schemes and meteorological and soil
information, which can comprehensively consider the impact of soil, weather, management,
and other factors. The output data mainly include winter wheat phenology, soil moisture,
leaf area index, and yield. The CERES-Wheat model has been applied widely in irrigation
scheduling [17,18], fertilizer management [19,20], plant breeding [21], and influences of
climate change on wheat production around the world [22–24]. For example, He et al. [25]
applied the CERES-Wheat model to simulate spring wheat growth and development under
different irrigation practices in Minqin, Gansu, China and selected an optimal irrigation
schedule. Yao et al. [26] used the CERES-Wheat model to study the effects of drought
change on leaf area index (LAI), biomass, and yield of wheat in arid and semi-arid northern
regions, Qinghai-Tibet Plateau, Huang-Huai-Hai Plain, and northeast Plain from 1961 to
2018. The CERES-Wheat model can also efficiently simulate soil water dynamics, phenology,
biomass, yield and nitrogen in Pakistan [20,27]. Wajid et al. [28] found that the simulated
crop phenology, LAI, total dry matter, and yield using the CERES-Wheat model had a high
degree of consistency with the measured data. Thus, the CERES-Wheat model could be
used as a decision support system tool for crop improvement in a fragile environment.

Moreover, the CERES-Wheat model has been applied under sufficient water supply
conditions [29–31] and water stress conditions [32,33]. However, it had some limitations
under water stress conditions. For instance, in New Zealand, grain yield simulation
accuracy was low during drought conditions in various growing stage treatments, with
a root mean square error (RMSE) of over 3000 kg hm−2 [34]. An RMSE of 897 kg ha−1

has been reported when comparing the simulated grain yields with the consensus values
across 141 wheat-growth sites in China [35]. Tian et al. [36] observed that the percentage
error in grain yields simulated at 36 stations in China ranged between 11.6% and 33.6%,
depending on the calibration methods. Yao et al. [37] also conducted field experiments on
winter wheat growth under a movable rain shelter with different water stress treatments in
Yangling, Shaanxi, China. They found that the CERES-Wheat model had low accuracy with
discrepancies in phenology dates of winter wheat. There were relatively large simulation
errors between observed and simulated yield when water stress occurred at the wintering
and returning green stages. Yan et al. [32] found that the CERES-Wheat model simulated
yield, maximum leaf area index, and above-ground biomass poorly under water stress
conditions compared to adequate water.

The poor performance of CERES-Wheat under water stress conditions brought the
necessity of modifying it to improve its performance since water stress has severe impacts on
agricultural production, especially in arid and semi-arid regions of northwest China [32,33,38].
The simulation errors could result from the low accuracy of simulated potential crop
evapotranspiration (E0). The CERES-wheat uses a static crop coefficient (KCS) multiplied
by reference crop evapotranspiration (ET0) to evaluate E0, which only works well for
non-stressed water conditions. Dejonge et al. [39] found that CERES-Maize overestimated
evapotranspiration (ET) under deficit irrigation. Soldevilla-Martinez et al. [40] pointed out
that the DSSAT model was not accurate in simulating daily ET variations. Kheir et al. [41]
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found that the water use efficiency of simulation-based evapotranspiration increased with
the increase of irrigation with a slight increase; under the condition of low water value is
low, the simulation effect is poor. Therefore, the simulated accuracy of ET must be improved
under water stress conditions, improving yields’ simulation and crop model performance.

So far, the poor accuracy of ET and yield simulation of CERES-Wheat under water
stress remains unresolved. To address this, we assume that using the dynamic crop
coefficient could improve the performance of the CERES-Wheat. Therefore, the objective
of this work is to evaluate total soil water dynamics accuracy and winter wheat yield-
related indices simulated by the non-modified and modified CERES-Wheat model using
experimental data from various sites. This research would provide insights and guidance
for the broader application of CERES-Wheat in arid and semi-arid areas.

2. Materials and Methods
2.1. Field Experiment

Field data of winter wheat from three experimental field sites provided by Yao et al. [37]
and DSSAT v4.7 databases [42] were employed for modifying and validating the CERES-
Wheat model. The sites and aims of different experiments are: (i) winter wheat experiments
in the irrigation test station of Northwest A&F University, Yangling, China (34◦17′ N,
108◦04′ E) during 2012–2014 were used for the modifications of KCS, The wheat variety
‘XiaoYan 22′ was used, and the sowing dates were 15 October 2012 and 2013. Strip planting
was adopted, and samples were taken every two weeks before the jointing stage and once
a week after the jointing stage. The soil parameter data of three experimental field sites are
shown in Table S1. (ii) Winter wheat experiments located in Kansas State, USA (37.18◦ N,
99.75◦ W) and Rothamsted, England (52.50◦ N, 0.50◦ W) were employed for validating
the modified CERES-Wheat model. Details of the experimental designs are presented in
Table 1. The ET was determined by field observations of soil water content within depths
of 0–100 cm using water balance.

Table 1. The experiment information of irrigation for the three experiments used for modifying and
validating the CERES-Wheat model.

Cultivar Sowing date Treatment Irrigation Amount (mm) Harvest
Date Reference Aim

XiaoYan 22
(China)

15/October/2012
15/October/2013

Date 12/15 3/15 4/15 5/1 5/15

2/June/2013
7/June/2014 Yao et al. [37] Modification

I1D1 - - 40 40 40
I1D2 40 - - 40 40
I1D3 40 40 - - 40
I1D4 40 40 40 - -
I2D1 - - 80 80 80
I2D2 80 - - 80 80
I2D3 80 80 - - 80
I2D4 80 80 80 - -
CK 80 80 80 80 80

NEWTON
(USA) 16/October/1981

Date 4/6 4/20 4/27

23/6/1982 DSSAT
databases Calibration

T1 - - - - -
T2 - - - - -
T3 - - - - -
T4 65 78 70 - -
T5 65 78 70 - -
T6 65 78 70 - -

MARIS
FUNDIN
(England)

6/November/1974 T1–T8 - - - - - 1/8/1975 DSSAT
databases

Calibration

Daily solar radiation (SRAD, MJ m−2), maximum temperature (TMAX, ◦C), minimum
temperature (TMIN, ◦C), and rainfall (RAIN, mm) are shown in Figure 1. Rainfall during
the growing winter wheat season in Kansas State and Rothamsted are 600.3 mm and
558.1 mm, respectively.
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Figure 1. Daily solar radiation, maximum temperature, minimum temperature, and precipitation
during winter wheat growing seasons in three experimental field sites. The SRAD, TMAX, TMIN,
and RAIN represent daily solar radiation, maximum temperature, minimum temperature, and
rainfall, respectively.

2.2. General Description of the CERES-Wheat Model

The CERES-Wheat model is embedded in the CSM platform (DSSAT v4.7), is part of
the Decision Support System for Agrotechnology Transfer, and is capable of simulating soil
carbon and nitrogen, water balances, growth and development, and yields of wheat at a
daily step [3]. It requires meteorological, soil, crop genetic coefficient, and management data.
Meteorological data include daily maximum temperature, daily minimum temperature,
precipitation, and solar radiation. Soil data include soil type, physical soil properties of each
layer, and initial physical and chemical properties of soil. Crop genetic parameters include
ecotype, species type, and variety type. Field management data include crop variety, sowing
time, sowing method, irrigation management, fertilization management, and harvest time.
In addition, DSSAT-CERES-Wheat usually simulates canopy solar radiation uptake and
photosynthesis, root nutrient uptake and activity, assimilate partitioning, water uptake and
transpiration, growth and respiration, leaf area expansion, organogenesis and senescence,
and field management in days [18,43–46]. It has been proven that DSSAT-CERES-Wheat
can optimize irrigation regimes and increase the economy of agricultural production [3].

The basic principle for determining water stress is to compare potential transpiration
(EP0) and potential root water uptake (TRWUP) [47]. Under well-watered conditions,
TRWUP is higher than EP0. As soil water content decreases with root water uptake and
surface evaporation, TRWUP also decreases. At a particular stage, a threshold is reached
where the first water stress factor (TURFAC, Equation (1)) is activated, which mainly
affects wheat expansive growth. When EP0 equals or exceeds the TRWUP, a second stress
factor (SWFAC, Equation (2)) is activated [48]. SWFAC mainly affects growth and biomass-
related processes.

TURFAC = TRWUP/(RWUEP1 × EP0) (1)

SWFAC = TRWUP/EP0 (2)
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where RWUEP1 is a species-specific parameter that is set to 1.5. The TURFAC and SWFAC
values are set to 1.0 under non-water-stress conditions. EP0 is estimated as follows:

EP0 = E0 × (1− exp(−KEP× LAI)) (3)

where KEP (default value of 0.685) is defined as an energy extinction coefficient of the
canopy for total solar irradiance; LAI is leaf area index; E0 is potential crop evapotranspira-
tion, which is calculated as the product of static crop coefficient and reference evapotran-
spiration, mm.

E0 = KCS × ET0 (4)

ET0 can be calculated either with the Priestley–Taylor [49] or with the FAO56 Penman–
Monteith equations [50].

The Priestley–Taylor (PT) equation for computing ET0 is written as:

ET0 = EEQ = 2.04× 10−4 · Rs − 1.83× 10−4 × ALBEDO · (0.6TMAX + 0.4TMIN + 29) (5)

where EEQ is the daily equilibrium ET, mm d−1; ALBEDO is the crop albedo; TMAX and
TMIN are maximum and minimum temperatures, respectively, ◦C; Rs is total solar radiation,
MJ m−2 d−1.

The FAO56 Penman-Monteith (PM) method was adopted to calculate daily ET0
(mm day−1), which was proposed by Allen et al. [50]:

ET0 =
0.408∆(Rn − G) + γ

( 900
T+273

)
U2(es − ea)

∆ + γ(1 + 0.34U2)
(6)

where ∆ is the slope of saturated vapor pressure, KPa ◦C−1; T is the daily average air
temperature at 2 m, T = 0.5 (Tmax + Tmin), ◦C; γ is psychrometric constant, KPa ◦C −1; Rn is
net radiation, MJ m−2 day−1; G is downward ground heat flux, MJ m−2 day−1, G = 0 for
daily timescale; esat and ea are saturated and actual vapor pressures, KPa.

For the PT method, the KCS value is a function of maximum temperature (TMAX).

KCS =


0.01× EXP(0.18× (TMAX + 20)) TMAX < 5 ◦C
1.1 TMAX ∈ [5, 35] ◦C
0.05× (TMAX− 35) + 1.1 TMAX > 35 ◦C

(7)

For the PM method, the KCS value is a function of the leaf area index (LAI):

KCS = 1.0 + (EORATIO− 1.0)× LAI/6.0 (8)

where EORATIO is defined as the maximum KCS at LAI = 6.0 [51,52]. For the wheat, the
parameter is hardcoded to EORATIO = 1.0. This fixes KCS at 1.0 for the entire simulation,
making it static and limiting mid-season crop coefficient options for wheat, which has
recommended mid-season KC values of 1.15 and above Allen et al. [50].

2.3. Modification of KCS in CERES-Wheat

To modify the CERES-Wheat under water stress conditions, it is necessary to link the
factors governing the interception of solar radiation (such as LAI) with those governing ET
demands to provide a more mechanistic representation of the ET. Kang et al. [53] directly
compared crop coefficient (KC) and LAI and provided a function to compute KC and LAI
(Equation (9)). An exponential decay function for dynamic crop coefficient KCD is proposed
by Dejonge et al. [39] to replace the original crop coefficient KCS (Equation (10)):

KCKang = KCmin + 0.8466LAI/(0.7887 + LAI) (9)

KCD = KCmin + (KCmax − KCmin)(1− exp(−SKC × LAI)) (10)
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where KCmin and KCmax are minimum and maximum crop coefficients, which are 0.4 and
1.15, respectively. SKc is a shaping parameter (=0.8).

2.4. Model Calibration and Verification

The generalized likelihood uncertainty estimation (GLUE) was used to estimate genetic
parameter values. The GLUE output variables include the unit grain weight (HWUM, mg),
above-ground biomass (CWAM, kg hm−2), grain yield (HWAM, kg hm−2), and important
phenology dates (e.g., anthesis date, ADAP, and maturity date, MDAP). There are two
rounds of model runs in the current DSSAT-GLUE package. The genetic coefficients related
to crop phenology (ADAP and MDAP) and coefficients related to crop growth (HWUM,
CWAM, and HWAM) were estimated in the first and second rounds, respectively. The
20,000 model runs were recommended in each GLUE round to ensure that the genetic
coefficients were each estimated accurately and the posterior distributions were reliable
He [54]. For the cultivars ‘XiaoYan 22′, the parameters G2 (41.7) and PHINT (130) were
determined according to the observed values of HWUM and leaf number (nine leaves).
Yan et al. [32] and Li et al. [55] validated wheat variety parameters using GLUE and
indicated good performance. Other parameters were estimated using the observation data
of CK treatment collected in the 2012–2013 and 2013–2014 growing seasons. Winter wheat
cultivars ‘NEWTON’ and ‘MARIS FUNDIN’ are provided in the DSSAT database (Table 2).

Table 2. Genetic coefficients of different winter wheat cultivars in the CERES-Wheat model.

Parameter Definition
Value

XiaoYan 22 NEWTON MARIS FUNDIN

P1V Days at the optimum vernalizing temperature required to
complete vernalization (d) 41 45 30

P1D Photoperiod response (% reduction in rate/10 h drop in pp, %) 93 75 83
P5 Grain filling (excluding lag) phase duration (◦C d) 621 500 515
G1 Kernel number per unit canopy weight at anthesis (# g−1) 22 25 15
G2 Standard kernel size under optimum conditions (mg) 41.7 30.0 44.0
G3 Standard, non-stressed mature tiller wt (incl grain) (g) 1.0 2.0 3.2

PHINT The interval between successive leaf tip appearances (◦C d) 130 95 100

2.5. Statistical Method

Relative mean absolute error (RMAE) and relative root mean square error (RRMSE)
are used to evaluate the performance of the original and modified CERES-Wheat models
by comparing the simulated and observed ADAP, MDAP, HWUM, CWAM, and HWAM.
Both tools are dimensionless in comparing different output variables [56]:

RMAE =
1
n

n

∑
i=1

|Si −Oi|
|Oi|

× 100% (11)

RRMSE =

√
1
n

n
∑

i=1
(Si −Oi)

2

O
× 100% (12)

where Oi and Si are the i-th observed and simulated values, respectively; O is mean
observed value, and n is the total number of values.

3. Results
3.1. Calibration and Validation of the Original CERES-Wheat Model

The simulation accuracy of grain yield (HWAM) was high, the RMAE value was
2.8%, and the RRMSE value was 3.0% (Figure 2b). In contrast, the simulated ET value
was low, with RMAE and RRMSE > 20% (Figure 2c). For the validation process, RMAE
and RRMSE at flowering and mature stages are less than 3.0% (Figure 2a). However, the



Agriculture 2022, 12, 1902 7 of 15

simulated anthesis and maturity dates were the same for different treatments each year,
while observed dates differed because of various water stress scenarios. The simulation
accuracy of grain yield and ET was relatively poor, especially for the treatments with water
stress at returning green stage heading. The HWAM was underestimated seriously, with
RMAE and RRMSE values of HWAM and ET close to 20%, and even the RRMSE exceeded
30% for HWAM (Figure 2b,c). This indicated that water stress before jointing could greatly
influence the model simulation performance of biomass and grain yield. Therefore, it is
necessary to improve the original model.
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‘ADAP’, ‘MDAP’, ‘HWAM’, and ‘ET’ indicate the day after planting, anthesis date, maturity date,
grain yields, and ET, respectively.



Agriculture 2022, 12, 1902 8 of 15

3.2. Evaluation of Modified CERES-Wheat Model
3.2.1. Performance of the Modified Crop Coefficient in the CERES-Wheat Model

Since the equations of KCS and water stress response function have been modified, the
performance of using the modified KCS is then assessed stepwise in this section.

When ET0 was calculated using the PM, the crop coefficient was a constant (1.0), while
when computed using the PT, the crop coefficient changed to 1.1 with wheat growth, but
in the early and late growing stages (Figure 3). However, the crop coefficient of wheat
was different at different growth stages. With wheat’s growth and development, the crop
coefficient increased and afterward decreased. The changes in KCD and KCKang align with
the actual situation. In addition, the more severe the water stress, the more substantial
the difference in crop coefficients estimated by different methods (Figure 3a,c). Before the
jointing stage, there was no significant difference in crop coefficient between treatments.
After jointing, the more severe the water stress, the lower the LAI of winter wheat, and the
lower the leaf surface tendency to cover the ground, so the crop coefficient was smaller.
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during the 2012–2013 seasons.

The water factor for winter wheat photosynthesis under different irrigation scenarios
fluctuated with wheat growth during the 2012–2013 seasons (Figure 4). Our study showed
that before model improvements, there were little differences in water factors between
different treatments before jointing, which ranged from 0 to 0.48, indicating that winter
wheat growth was subjected to water stress. However, the field experiment showed a
minimal effect of water stress on wheat growth. Therefore, the model overestimated the
impact of water stress on wheat growth. By improving the crop coefficients (KCD and
KCKang), we observed that the water factors of different treatments were all 0, indicating
that the early water stress had little effect on the growth of wheat, which was consistent
with the results of the field experiments. However, severe water stress will limit the normal
development of winter wheat and affect photosynthesis. Therefore, the water stress factor
of 0 for the modified model still has some limitations, and further improvement is needed.
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3.2.2. Comparisons of Summary Output Variables Using Modified CERES-Wheat Model

Tables 3 and 4 show the performance of using the improved KCS in simulating HWUM,
CWAM, and HWAM in the CERES-Wheat model. The original and modified model’s
simulated anthesis and maturity dates were the same values and, therefore, not considered
in the analysis. The RMAE and RRMSE of CWAM and HWAM were lower when using
the PM than the PT method in the original and modified model. However, the RMAE and
RRMSE of HWUM were higher when using the PM than the PT method. In addition, the
simulation accuracy of the modified model was more elevated than the original model
(averaged RMAE and RRMSE were less than 30% in the modified model). In general, the
highest simulation accuracy among the four scenarios is the scheme of PT_KCD.

Table 3. Performances of static and dynamic crop coefficient in simulating HWUM, CWAM, and
HWAM. The superscripts ‘PT’ and ‘PM’ indicate ET estimation methods in the CERES-Wheat model.

Scheme
RMAE (%) RRMSE (%)

HWUM CWAM HWAM ET HWUM CWAM HWAM ET

KCDefault 19.4 23.7 24.0 20.1 21.5 27.0 29.2 26.2
PT KCKang 18.3 11.5 16.3 19.8 20.9 13.6 18.5 26.7

PT KCD 18.1 10.0 15.1 20.3 20.8 12.2 17.4 27.1
PM KCKang 18.5 8.6 17.5 21.5 21.2 9.8 21.0 30.7

PM KCD 18.5 8.5 17.2 21.8 21.2 9.8 21.0 30.9
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Table 4. Average performance of static and dynamic crop coefficients in simulated HWUM, CWAM,
and HWAM.

Scheme RMAE (%) RRMSE (%)

KCDefault 22.6 27.5
PT KCKang 16.5 19.9

PT KCD 15.9 19.4
PM KCKang 16.5 20.7

PM KCD 16.5 20.7

3.2.3. Comparisons of Time-Series Output Variables Using Modified CERES-Wheat Model

To adequately evaluate the modified CERES-Wheat model, we compared the simu-
lation results of several crucial time-series output variables. The simulated dynamics of
total soil water within depths 0–100 cm and winter wheat biomass varied greatly among
treatments (Figures 5 and 6).

For total soil water, the dynamic simulation results showed that the simulation errors
would become more prominent with the increase of soil water stress in the original model.
The original model underestimated soil moisture at the early stage of winter wheat growth or
overestimated the level of soil water stress, which probably contributed to the significant errors
in biomass simulation (Figure 5a,b,e,f). However, the simulations and observations could
match well when water stress occurred at the heading and grain-filling stages (Figure 5d,h).
This confirmed that the CERES-Wheat model could correctly simulate soil water content when
water stress occurred at later growth stages. After improving the CERES-Wheat model, the
simulation accuracy improved, especially under low irrigation levels.
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For biomass in winter wheat, either under low or high irrigation, if there were contin-
uous water stress at early vegetative stages (e.g., wintering, returning green, and jointing
stages), there would be significant errors in the simulation of biomass after the jointing
stage since simulations were significantly lower than observations in the original model
(Figure 6a,b,e,f). It overestimated the inhibition of winter wheat growth by soil water
stress at returning green stage. However, the model simulated and observed results were
very close when water stress occurred at the heading and grain-filling stages (Figure 6d,h).
The modified model-simulated and observed results were very close when using the dy-
namic crop coefficient estimator simultaneously to improve the model (Figure 6b–d,f–h). It
indicated that the model had been significantly improved. Despite improving the CERES-
Wheat model, there were still some simulation errors when severe water stress occurred at
wintering and returning green stages.

3.3. Validation of Modified CERES-Wheat Model

The validation results for winter wheat are presented in Table 5 for the two experi-
ments in the DSSAT v4.7 databases. The modified (WSRF1 + KCS and WSRF1 + KCD) and
original RMAE results averaged across all measurements were nearly equal for the two
cultivars. The RRMSE results were also roughly similar except for the output variable
HWAM. The results indicated that water stress response function improved when simu-
lating winter wheat growth under water stress conditions. However, the effect of crop
coefficient improvement on the simulation results was uncertain. Most of the modified
(WSRF1 + KCD) RMAE and RRMSE results for cultivar ‘NEWTON’ were greater than the
original results. In general, the improvement of the water stress response function did an
excellent job of simulating winter wheat growth under drought conditions.
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Table 5. Validation results of the CERES-Wheat model using different databases in the DSSAT v4.7.
Superscripts ‘a’ and ‘b’ represent the validation cultivars ‘NEWTON’ and ‘MARIS FUNDIN,’ respectively.

Items
RMAE (%) RRMSE (%)

HWUM CWAM HWAM Averaged HWUM CWAM HWAM Averaged
a Default 21.0 22.4 19.3 20.9 24.4 21.6 21.5 22.5
a KCKang 23.9 21.0 16.0 20.3 28.2 24.6 26.2 26.3

a KCD 25.2 21.2 16.7 21.1 29.2 25.0 26.7 27.0
b Default 11.3 16.4 11.1 12.9 14.0 18.0 11.2 14.4
b KCKang 9.9 13.6 11.7 11.7 12.2 17.1 11.9 13.7

b KCD 9.3 13.7 11.8 11.6 11.9 17.1 12.0 13.7

4. Discussions

The CERES-Wheat model was able to correctly simulate the growth and yield of
winter wheat under sufficient water conditions. The simulation accuracy of winter wheat
yield was relatively high, which agreed with some previous studies [16,51,57]. However,
the simulation accuracy of the CERES-Wheat model became low when the water deficit
occurred at the early vegetative stage. It usually overestimated unit grain weight but
underestimated final ET and grain yield [58]. There are different reasons for large simulation
errors. Nouna et al. [59] found the model did not sufficiently simulate LAI during the
whole season. Yao et al. [60] suggested permanent wilting point plays an important role
in simulating winter wheat growth under water deficit conditions. These soil parameters
should be measured more directly and accurately and need to be further tuned based on
field observations when simulating crop growth under serious water stress conditions.
Dejonge et al. [39] found the evapotranspiration was overestimated or underestimated
when water stress occurred at the different growth stage. As a result, they provided a new
equation that calculates a dynamic crop coefficient as a function of LAI to improve the
accuracy of simulated ET [39].

In this study, the ET was estimated by PT (PM) method and the improved Kcs. The
simulation accuracy of the improved model was higher than that of the original model,
especially under low irrigation levels. The simulation results of HWUM, CWAM, and
HWAM are significantly improved, but the simulation results of ET are not improved. The
simulation errors may be first attributed to the low accuracy of water stress. Because the
effect of water stress on crop growth is very complex, the current linear function can not
quantify the effect of water stress on the crop growth process. Our results show that the
model underestimates ET, which is consistent with the results of Kang et al. [61]. The
simulation accuracy of ET is not high, which may be due to the large variation in seasonal
precipitation or the dependence of the calculation of potential ET on simulated LAI [41,61].
Although the ET simulation accuracy of the improved model is not improved, HWUM,
CWAM, and HWAM are significantly improved, which is the same as the results of previous
studies. The increase in HWUM, CWAM, and HWAM may be attributed to the lower
irrigation level, which led to the downward growth of wheat roots and the absorption of
more nutrients.

In general, the CERES-Wheat model has some drawbacks in simulating winter wheat
growth under complicated scenarios of soil water stress. For better applications to winter
wheat management in arid and semi-arid regions, the existing CERES-Wheat model needs
to be further improved. The process of crop growth is complex nonlinear; a simple linear
relation to describe the water stress response function may not accurately describe the
crop response process. In future studies, not only the influence of soil parameters and
crop coefficients on the CERES-Wheat model but also the influence of nonlinear changes in
water stress on the simulated results should be considered.
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5. Conclusions

In this study, a dynamic crop coefficient was used to improve the simulation accuracy
of the CERES-Wheat model under water stress. The error of the PM-based method is
larger, while the accuracy of the PT-based method is higher. Among the four scenarios,
PT_KCD has the better simulation accuracy, and the simulation accuracy is improved the
most. Although the simulation effect of the model on ET is not much improved, the
simulation accuracy of HWUM, CWAM, and HWAM is significantly improved. Therefore,
the improved CERES-Wheat model can better simulate winter wheat growth in arid and
semi-arid regions under water stress conditions. Under the future climate change scenario,
it is very important to determine the optimal irrigation amount to achieve a high yield. To
be effectively applied in winter wheat management in arid and semi-arid regions of China,
we suggest that the existing CERES-Wheat model should be further verified, modified, and
improved by fully considering the influence of various factors, such as the nonlinear water
stress index.
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