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Abstract: The emission of particulate matter (PM) from agricultural activities, such as concentrated
animal feeding, straw combustion, and mechanized harvest, is a hot issue in the sustainable develop-
ment of agriculture, which has attracted more and more attention from government departments and
researchers. However, the research on the transport of particulate matter in the agri-environment still
lacks flexible and efficient measurement methods to obtain real-time and accurate spatial distribution
data. The objective of our study is to produce a new intelligent platform for agri-environment atmo-
spheric monitoring with high mobility, temporal and spatial resolution, and remote data transmission
function to overcome the shortcomings of traditional atmospheric particulate matter monitoring
stations, such as small particle size range, immovability, and high cost. Through the light scattering
sensor, microcontroller, and wireless data transmission device assembled on the high-mobility drone,
the platform could measure the mass concentration of PM2.5, PM10, and TSP at different spatial
points in the agri-environment and transmit the measurement data to the receiving device on the
ground through three modes: CLOUD, TCP, and UDP. We also developed monitoring software based
on the Android platform, which could complete the connection of device and real-time monitoring
of measurement data on the ground. Compared with stationary measurement devices, the biggest
advantage of our mobile monitoring system is that it has the ability to measure the concentration
of TSP and the vertical distribution of PM, which is very important for the research of agricultural
environmental particulate matter emission characteristics. After the sensor and communication
performance experiments, the sensors had high consistency in the overall change trend, and the
communication accuracy rate was high. We carried out a flight measurement comparison experi-
ment at the Wenhua Road Campus of Henan Agricultural University, and the measurement data
were highly consistent with the data from the national monitoring stations. We also conducted
an agri-environmental atmospheric measurement experiment in Muzhai Village and obtained the
vertical distribution data of PM concentration at the nearby measuring point when the harvester
was working. The results showed that after the harvester worked for a period of time, the PM2.5,
PM10, and TSP concentrations reached the maximum at the altitude of 20 m at the measurement
point, which were 80, 198, and 384 µg/m3, respectively, 2.64~3.10 times the particle concentration
in the environment before the harvester began to work. Our new platform had high mobility, sensi-
tive reading, and stable communication during the experiment, and had high application value in
agricultural environmental monitoring.

Keywords: agri-environmental monitoring; particulate emission; temporal and spatial distribution;
drone; long-distance wireless communication

1. Introduction

Environmental pollution has endangered planetary health [1] since the Industrial
Revolution in the late 18th century. To achieve a world that is healthy for both the global
biosphere and human civilization, the critical challenge is to curb the environmental impact
of socioeconomic activities. Among the environmental problems affecting human health,
the biggest threat is the inhalation of particulate matter with an aerodynamic diameter of
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less than or equal to 2.5 µm, abbreviated to PM2.5 [2]. As an important component of air
pollution, atmospheric particulate matter (APM) has attracted worldwide attention [3–5].
APM is a general term for various solid and liquid suspended particulate substances in
the atmosphere [6], which are uniformly dispersed in the air to form a relatively stable
suspension system [7]. Several studies have demonstrated the effects of PM2.5 on human
health [8,9]. Higher PM2.5 concentrations not only increase the risk of respiratory diseases
such as asthma and bronchitis, but also increase the risk of cardiovascular disease. World-
wide exposure to ambient PM2.5 causes over 4 million premature deaths annually, with
most of these deaths occurring in developing countries [10].

There is also a serious problem of particulate matter emissions in the agricultural
environment, which has received great attention in China. For example, the particulate
matter generated from soil erosion by wind and mechanized harvesting is mainly soil dust
particles and also contains some fungi and other microorganisms [11,12]. The reason for
the generation of these particles is the disturbance of wind and agricultural equipment to
the crop plants and soil. Affected by many factors, different regions, different soil types,
and different soil depths cause different soil particle size distributions [13], and even under
different tillage methods, soil particle size distributions will also change [14]. Since particles
larger than 100 µm in the air will sediment quickly under the action of gravity, the general
research object is particulate matter with an aerodynamic diameter of less than or equal to
100 µm, abbreviated to PM100, which is also called total suspended particles (TSP) because
they can be suspended in the air for a long time. According to the soil analysis method of
Gee and Bauder [15], taking cultivated land as an example, among all soil particles with a
particle size of less than 100 µm, the particles with a particle size between 20 and 50 µm
accounted for 20.41%, and the particle size between 50 and 100 µm accounted for 78.9%. It
can be seen that the particulate matter produced by agricultural production activities is
mostly large particles, which is very different from the common research that mainly uses
PM2.5 and PM10 as the measurement objects. Although the sedimentation rate of these
large particles is higher than that of PM2.5 and PM10, on a local scale, the accumulation
of high concentrations of TSP will still cause harm to the health of agricultural personnel,
production safety, and the surrounding environment. On the one hand, the particulate
matter emitted from agricultural activities will diffuse to the surrounding villages and
affect the health of the population in rural areas. On the other hand, under the action
of wind, this particulate matter will be transmitted over a long distance to reach urban
areas. In the process of transmission, the particulate matter will be deposited and affect the
local ecosystem and population health. With the concern about the pollution caused by
atmospheric particles, government departments have also taken some actions. Through
these actions, especially the actions taken under the UNECE Convention on Long-Range
Transboundary Air Pollution, air emissions were substantially reduced, and ecosystem
impacts decreased. Widespread scientific research, long-term monitoring, and integrated
assessment modelling formed the basis for the policy agreements [16].

For real-time monitoring, the government has built some fixed monitoring sites,
which can monitor the mean value of PM2.5 and PM10 in a specific time interval (for
example, 1 h) and upload it to the online website for publication. However, due to cost
reasons, traditional fixed monitoring sites are generally set far apart (usually more than
a few kilometers or even tens of kilometers), are mostly located in urban areas such as
schools, parks, and residential areas, and rarely involve agricultural areas. For the study of
particulate matter emissions and hazards in agricultural activities, it is very important to
obtain measurement data with high spatial and temporal resolution through flexible and
mobile monitoring platforms. However, the measurement instruments used in air quality
monitoring stations generally use micro-oscillating balances and beta-ray attenuation
methods. These instruments present difficulty when moving because they are large and
heavy. Due to the influence of complex meteorological conditions, the spatial distribution
of particles produced by agricultural activities is very complex, and it is difficult to obtain
complete data by fixed measurement devices. Moreover, the expensive equipment price has
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become the bottleneck of wide application. With the development of drone and remote data
transmission technology [17], some flexible and efficient intelligent monitoring systems are
also gradually applied in agricultural production. Therefore, how to use highly flexible
drones to carry a low-cost and lightweight measurement system is very important for the
study of agricultural environmental particulate matter emission characteristics.

The research background of this paper is shown in Figure 1.
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Figure 1. Diffusion, transmission, and measurement of particulate matter from agricultural activities.

The objective of our study is to produce a sensor fusion system with high spatial
and temporal resolution and remote data transmission function, which is assembled on
a highly maneuverable drone platform and can not only measure PM2.5 and PM10, but
also TSP and other environmental information such as temperature and humidity. Among
this information, the concentration of TSP is a very important indicator in the agricultural
environment, but it has not been considered in the previous measurement systems and
national monitoring stations that focus on urban environments. Our system can transmit
the measurement data to the receiving device on the ground for real-time monitoring. This
study overcomes the shortcomings of traditional atmospheric particulate matter monitoring
stations, such as small particle size range, immovability, and high cost, and provides more
abundant data for the follow-up research on particulate matter emissions and hazards in
agricultural activities.

2. Related Studies
2.1. Drone Technology

In recent years, drone technology has been widely used in agricultural production. For
example, drone remote sensing technology is used to monitor irrigation and crop growth,
and drones for plant protection are used to spray pesticides. Drone products on the market
have high stability, but while providing certain convenience, their expensive price and
extremely limited scalability also bring great restrictions. Therefore, an assembling drone is
the best choice. The flight control system is the core component for the drone to complete
the whole flight process, such as takeoff, air flight, mission execution, and return, and plays
a decisive role in the maneuverability and stability of the drone. The flight control system
calculates the attitude data returned by the gyroscope and completes the action and flight
attitude adjustment by changing the speed of propellers according to the remote-control
command.

The Earth-centered, Earth-fixed coordinate system (acronym ECEF) and body coordi-
nate system are established, as shown in Figure 2. The propellers are numbered clockwise.
In the figure, θ represents the pitch angle, ϕ the roll angle, ψ the yaw angle, and the red
arrow represents the rotation direction of the propeller.
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The rotation matrix of any vector from the body coordinate system Obxbybzb to ECEF
Oexeyeze is expressed as the following:
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Let U1, U2, U3, and U4 denote the lift, roll moment, pitching moment, and yawing
moment, which are linearly related to the square of the propeller angular velocity ωi, the
angular velocity of the propeller numbered i, the total moment of inertia of the entire motor
rotor and propeller JRP, and Ω = −ω1 + ω2 − ω3 + ω4. The six-degree-of-freedom control
model of a quadrotor can be described by the following system of equations:

..
x = −U1

m (cos ψ sin θ cos ϕ + sin ψ sin ϕ)
..
y = −U1

m (sin ψ sin θ cos ϕ− cos ψ sin ϕ)
..
z = g− U1

m cos ϕ cos θ
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ϕ = 1

Ixx
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θ = 1
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ψ = 1
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(2)

where m is the mass of the drone and g the acceleration of gravity, and the control informa-
tion U, moment of inertia matrix I, and angular velocity ω of the drone body are expressed
as follows:

U =


U1
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U3
U4

 =
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p
q
r

 =


.
ϕ
.
θ
.
ψ

 (4)

where kl is the lift coefficient, kM is the torque coefficient, and l is the distance from the
propeller axis to the drone’s center of mass. It can be seen from Equations (2) and (3) that
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the control of the drone’s position and flight attitude can be achieved by changing the
rotational speed of different propellers.

2.2. Light Scattering Particle Measurement Technology

With the increasing awareness of air pollution prevention and control [18–20], many
lightweight, low-cost particulate matter sensors are produced by manufacturers, such
as DSM501A and GP2Y1010AU0F particle sensors launched by Syhitech (Seoul, Ko-
rea) and Sharp (Osaka, Japan) [21], PMS5003T particle sensors launched by Plantower
(Nchang, China) [22], and palm-sized optical particle sensors launched by Panasonic (Os-
aka, Japan) [23]. Thanks to the rapid technological evolution of drones, sensors, wireless
communication, and tiny onboard computers, it is possible to realize the mobile atmo-
spheric particulate matter measurement of the agri-environment with high spatial and
temporal resolution under better technical support.

Light scattering particle sensors are based on Mie theory [24]. These sensors draw the
gas to be tested into the detection dark room through a fan and use a stable light source
to illuminate the particles of different diameters to generate scattered light with different
intensities. The intensity of the light scattering of a single particle based on the Mie theory
is described in the following equation:

Is =
λ2 I0

4πR2

(
|S1|2 sin2 ϕ + |S2|2 cos2 ϕ

)
(5)

where λ is the wavelength of incidence light, I0 the intensity, R the observation distance, θ
the angle between the light path and the scattered light, Si the amplitude function related
to θ, and ϕ stands for the angle between the vibration plane of incident light and scattering
surface. The scattered light was converted into pulse signal with different amplitudes
through the photoelectric conversion device, so as to obtain the mass concentration of
particles. The working principle is shown in Figure 3.
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3. Materials and Methods
3.1. Overall System Architecture

Figure 4 depicts the overall architecture of our proposed monitoring platform. The
platform we designed comprises four subsystems: flight power and control subsystem
(FPCS), multi-sensor fusion subsystem (MSFS), long-distance wireless communication
subsystem (LWCS), and ground real-time monitoring subsystem (GRMS).
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The flight power and control subsystem is composed of a 4-rotor drone using Pixhawk
open source flight controller and a ground flight remote controller. The diagonal distance
of the drone is 680 mm, and it has GPS and aerial photography functions. Its excellent
size, load capacity, and mobility can meet the installation and work requirements of
other subsystems.

The multi-sensor fusion subsystem consists of two light scattering sensors, a tem-
perature and humidity sensor, an ultrasonic distance sensor, a microcontroller, and other
auxiliary devices. The subsystem can measure the mass concentration data of PM2.5, PM10,
and TSP, and obtain agri-environmental data such as temperature and humidity. Through
the ultrasonic sensor, some distance information can be obtained.

The long-distance wireless communication subsystem consists of a WI-FI module, a 4G-
DTU module, and a cloud server. We designed 3 data transmission modes to ensure timely
and reliable delivery of measurement data to cloud servers or mobile phones. The ground
real-time monitoring subsystem is responsible for receiving and displaying detection data
from the cloud server or directly from the WI-FI module.

The following describes the details of the FPCS, MSFS, LWCS, and GRMS
development processes.

3.2. Flight Power and Control Subsystem

FPCS comprises a 4-rotor drone, 8000 mAh 6S battery, GPS, Pixhawk flight control
system, remote controller, aerial camera, video transmission module, ground receiver, etc.
The main parameters and configurations are shown in Table 1.
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Table 1. Parameters and devices for FPCS.

Parameter/Device Value/Model

Diagonal distance (propellers excluded) 680 mm
Takeoff weight (battery included) 2800 g

Max load 3000 g
Max flight time (no wind) 35 min (at a consistent 25 km/h)

Max flight distance (no wind) 15 km (at a consistent 25 km/h)
Max Speed 65 km/h

Max takeoff altitude 2000 m
Transmission distance 2000 m
Carbon fiber propeller 381 mm (15 inches)

Battery 6S 8000 mAh
Electric motor D4310-400KV

Electronic speed control HobbyWing 40A
GPS RadioLink M8N

Flight control system Pixhawk 2.4.8
Remote controller RadioLink AT9S Pro

Camera SJCOM SJ4000
Video transmission TS832

Ground receiver Hawk Eye LP-School

The main function of FPCS is to provide installation platforms and mobility capabilities [25,26]
for subsystems such as MSFS and LWCS. The diagonal distance of the drone is relatively
large, making it possible to install a variety of sensors and data transmission components.
At the same time, the high-performance motor and large-capacity lithium battery can
ensure that the monitoring system has high load capacity, mobility, and endurance during
operation. The assembled FPCS system is shown in Figure 5.
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3.3. Multi-Sensor Fusion Subsystem
3.3.1. Sensor Selection

For our platform, lightweight and high time resolution should be the primary criteria
for sensor selection. The instruments of the micro-oscillation balance method and the β-ray
method used in the traditional monitoring station are too large and are not suitable for our
platform. In recent years, manufacturers have come forth with cost-effective sensors for
measuring ambient and indoor particulate matter concentration [27,28]. Especially with
the development of light scattering particle detection technology, more portable sensors are
constantly appearing.

After investigation, we selected 4 common particulate matter sensors and compared
them in terms of measurement objects, communication methods, product sizes, etc. The
details of the comparison are shown in Table 2.
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Table 2. Major specifications of four common PM sensors.

Parameter SDS011 SDS198 PMS5003 GP2Y1014AU0F

Principle Light scattering Light scattering Light scattering Light scattering
Voltage 5.0 V 5.0 V 5.0 V 5.0 V

Communication Digital signal Digital signal Digital signal Analog signal
Particle diameter PM2.5, PM10 TSP (PM100) PM1.0, PM2.5, PM10 PM2.5
Measuring range 0~2000 µg/m3 0~20,000 µg/m3 0~1000 µg/m3 0~500 µg/m3

Size (L ×W × H) 71 × 70 × 23 mm 71 × 70 × 23 mm 50 × 38 × 21 mm 46 × 30 × 17 mm
Weight 53 g 49 g 32 g 15 g

Considering the measurement requirements of particle diameter and concentration
in agri-environments, we chose SDS011 and SDS198 by Shandong Nova Fitness Co., Ltd.
(Jinan, China). The combination of this sensor can measure the concentration of particulate
matter with three particle sizes: PM2.5, PM10, and TSP. These two models of particulate
matter sensors have been calibrated at the factory and have been tested for comparison
with the Model 8533 aerosol and dust monitor by TSI Instrument Co., Ltd. (Shoreview,
MN, USA).

The DHT11 is a basic, ultra-low-cost digital temperature and humidity sensor. It
uses a capacitive humidity sensor and a thermistor to measure the surrounding air and
spits out a digital signal on the data pin (no analog input pins needed). The working
voltage of DHT11 is 3.3~5.5 V, the temperature measurement range is −20~+60 ◦C, the
measurement accuracy is ±2 ◦C, the relative humidity measurement range is 5~95%,
and the measurement accuracy is ±5%. At its core, the HC-SR04 Ultrasonic distance
sensor consists of two ultrasonic transducers. The one acts as a transmitter which converts
electrical signal into 40 KHz ultrasonic sound pulses. The receiver listens for the transmitted
pulses. If it receives them, it produces an output pulse whose width can be used to
determine the distance the pulse travelled, which is twice the distance to be measured. The
measured distance d (cm) can be obtained by the following equation:

d =
v× 102 × t

2× 106 = 0.017× t (6)

where t is the output pulse width (us) from the sensor and v is 340 m/s, which is the
speed of sound at 1 standard atmosphere pressure and an air temperature of 15 ◦C. At
1 standard atmosphere pressure, there is a certain relationship between the speed of sound
and temperature, as shown in Equation (6):

vT = 331× (1 +

√
1 +

T
273

) (7)

where T is the temperature in Celsius and vT is the speed of sound at T degrees Cel-
sius. After obtaining the temperature via DHT11 and combining the two equations, the
temperature-corrected distance dc can be expressed by Equation (7):

dc = 0.01655× (1 +

√
1 +

T
273

)× t (8)

Different installation methods can achieve different functions, such as avoiding obsta-
cles, stabilizing height, measuring distance, etc. We chose STM32F103ZET6 as the MCU of
the subsystem and used a 2.8” TFT LCD Display and a 0.96” OLED Display to show system
status and measurement information. In addition, the subsystem also includes some basic
components such as buttons and positioning boards.
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3.3.2. Assembly of MSFS

Each part of the MSFS was mounted on a positioning plate with a size of 150 × 150 mm.
The total MSFS weight is 361 g. We considered the assignment of each component with the
center-of-gravity balance during assembly. The assembled subsystem is shown in Figure 6.
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Figure 6. Assembled MSFS and part assignment.

After the system is powered on, MSFS first needs to set the working mode by press-
ing the button, so that the sensor can be initialized. Then, according to their respective
communication protocols, the MCU sends them a dedicated data request command. The
sensor starts to measure after receiving the command and stores the measured value in
the protocol message or high-level digital signal of a specific length. The MCU analyzes
these messages or signals, obtains measurement values, and transmits them to the remote
wireless communication subsystem at the same time.

3.4. Long-Distance Wireless Communication Subsystem

According to the requirements of the monitoring system for the real-time measurement
data, combined with the agricultural environment, we designed three data communication
modes, namely 4G-CLOUD mode, AP-TCP mode, and AP-UDP mode. These three modes
can ensure stable and reliable data transmission under different operating environments
and transmission distances. We completed all functions of data transmission through
the cloud server and two modules, ESP8266 and ATK-M750. Figure 7 depicts the LWCS
connection architecture.
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3.4.1. The 4G-CLOUD Mode

The 4G-CLOUD mode is the most frequently used mode, because it is not limited by
transmission distance and obstacles. Where there is a 4G network, data can be transmitted
to the cloud server through the ATK-M750 module and a 4G sim card. The working process
of 4G-CLOUD mode is as follows. First, the MCU sends AT commands through the serial
port to perform self-check and initial configuration of the ATK-M750 module, and then
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connects to the cloud server through the HTTP protocol (or MQTT) for authentication.
When all preparations are completed, continuous data transfer can be achieved.

3.4.2. AP-TCP and AP-UDP Mode

Some remote agricultural areas may have no 4G network, so we designed another
2 modes for data communication. Both AP-TCP and AP-UDP modes are implemented
through the ESP8266 module. AP-TCP establishes a TCP connection through a hotspot
and forms a dedicated data transmission channel through the “handshake protocol” for
continuous data transmission. AP-UDP mode does not need to establish a dedicated data
transmission channel. It sends encapsulated and ordered data packets through hotspots,
and the receiver receives these data packets and reorganizes them in order. The work-
ing process of these two communication modes is as follows. First, the MCU sends the
corresponding AT command to the ESP8266 module through the serial port to enable
the Wi-Fi hotspot and set the relevant parameters; secondly, the mobile terminal device
connects to the Wi-Fi hotspot, obtains the IP address through the DHCP protocol, and
establishes a TCP/UDP server; thirdly, the MCU sends the corresponding AT command
to the ESP8266 module through the serial port and connects to the TCP server to realize
continuous data transmission.

The M750 and ESP8266 modules are very light, meeting the lightweight requirements
of our mobile platform. At the same time, compared with the existing schemes, they have
lower costs, and do not need to set up a separate gateway.

3.5. Ground Real-Time Monitoring Subsystem

In order to receive the measurement values of the monitoring system in real time, we
designed a variety of ground receiving schemes based on PC and Android mobile devices.
We developed an APP based on the Android platform to receive measurement data in
4G-CLOUD mode, and also used the WEB browser on the PC side to access data in B/S
mode. We also used the LAN communication software commonly used on the Android
platform to receive data in AP-TCP and AP-UDP mode. Figure 8 shows the data receiving
interface of these ground devices.
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Figure 8. The monitoring interface of measurement data: (a) receiving data through browser
in CLOUD mode; (b) developed app on Android platform for CLOUD mode; (c) TCP mode;
(d) UPD mode.

3.6. Integration and Assembly

To reduce downwash effects from the propellers, we installed the multi-sensor fu-
sion subsystem and the long-distance wireless transmission subsystem on the upper part
of the flight power and control subsystem. The continuous working time of the drone
measurement system is mainly determined by the power battery of FPCS, and the flight
measurement can last about 30 min. We set up separate 11.1 V, 2200 mAh lithium batteries
for MSFS and LWCS, which can maintain stable measurement and data transmission for at
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least 15 h when fully charged. Figure 9 depicts the final assembled monitoring system with
a total weight of 3240 g and a height of 470 mm.
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Figure 9. Assembled monitoring system.

3.7. Calibration and Application Experiment
3.7.1. Sensor Calibration

As mentioned above, both SDS011 and SDS198 have completed data calibration at the
factory. However, after the sensor has been used for a period of time, due to the possible
contamination of the darkroom and light sensing elements, it is necessary to recalibrate the
sensor in addition to necessary cleaning and maintenance. We used two SDS011 (Sensor-
A~B) for the calibration experiment of PM2.5 and PM10 and SDS198 (Sensor-C~D) for TSP,
where A and C are sensors to be calibrated, and B and D are brand new and reference
sensors. To test the sensitivity of the sensor, we adjusted the time resolution to 1 s.

We intercepted 900 consecutive detection points and included the process of artificially
adding particle disturbance to these detection points in order to test whether the responses
of multiple sensors to the same disturbance are consistent. We calculated the correlation
coefficient (r) of the two sets of data, carried out linear regression on them, and calculated
the coefficient of determination (R2), regression equation, and root mean square error
(RMSE) after regression. The regression equation is applied to the sensor calibration of the
monitoring system when there is a certain deviation after the sensors have worked for a
period of time. The equations of correlation coefficient (r), coefficient of determination (R2),
and root mean square error (RMSE) can be described by Equations (9)–(11):

r =

n
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where Xi is the data from the sensors that need to be calibrated, Yi the data from the refer-
ence sensors, and Ŷi is the expected value of the measurement, which can be represented
by the regression function f (X):

Ŷi = f (Xi) (12)

3.7.2. Communication Performance Test

To verify the communication performance of the monitoring system, we conduct 4G
and Wi-Fi communication performance experiments. The evaluation indicators of the
experiment are mainly communication distance, signal strength, communication accuracy,
stable communication time, and so on. The receiving device is a mobile phone(Redmi
Note 10 Pro, Beijing, China). Its 4G network signal has 5 gradients from 20 to 100%, and
the Wi-Fi signal has 4 gradients from 25 to 100%. We conducted experiments at four
distances, 120 m, 150 m, 180 m, and 1500 m. Experiments were conducted in Wenhua Road
Campus (37◦47′10′′ N, 113◦39′17′′ E) and College of Mechanical and Electrical Engineering
(34◦47′43′′ N, 113◦38′56′′ E) of Henan Agricultural University, Zhengzhou City, China, as
shown in Figure 10.
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(b) 1500 m. 
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(b) 1500 m.

3.7.3. Flight Measurement

In order to test the performance of the monitoring system and compare the mea-
surement results with the data from the national air quality monitoring stations, we con-
ducted a flight measurement experiment in Wenhua Road Campus from 13:00 to 14:00 on
2 April 2022, as shown in Figure 11.
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Figure 11. Locations of the experimental site for flight measurement. Monitoring stations A, B, and C
are the three national monitoring stations closest to the site in different directions.

The ambient temperature is 19.2 ◦C, the relative humidity is 35%, and the average
wind velocity is 1.5–2.2 m/s (SSE). We measured the concentration of particulate matter
at three altitudes (5 m, 10 m, and 15 m) at 13:15, 13:30, and 13:45 repeatedly, because the
range of 5 to 15 m is the commonly used installation height of the measurement device
of the national air quality monitoring stations. The drone monitoring system measured
PM concentrations at different altitudes with 1 min hovering. The drone should adopt the
bottom-up flight measurement method to obtain the spatial distribution data of particle
concentration, because this method can avoid the damage of particle distribution in the
area to be measured by the propeller downwash flow. Data were collected every 1 s and
averaged over the 1 min of hovering to obtain PM concentrations at each height. The flight
measurement experiment is shown in the Figure 12.
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Figure 12. Flight measurements at different altitudes: (a) 5 m; (b) 10 m; (c) 15 m.

3.7.4. Agri-Environment Measurement

We conducted agri-environmental measurement experiments during wheat harvest in
Muzhai Village (34◦50′38′′ N, 113◦22′07′′ E), Zhengzhou, China. The experimental site of
agri-environment measurement and its surroundings are shown in Figure 13.
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The experiment was conducted from 8:30 a.m. to 11:30 a.m. on 5 June 2022. The
ambient temperature was 27.8–31.1 ◦C, the relative humidity was 48–39%, and the average
wind velocity was 2.4–1.7 m/s (W). During the experiment, a wheat harvester performed
reciprocating harvesting operations in a rectangular area of 200 m by 150 m. We set the
measurement point in the downwind direction 30 m away from the main activity area of
the wheat harvester and measured the PM concentration before and after the harvester
started working on that day. The drone monitoring system measured PM concentrations
at different altitudes from 0 to 80 m, with 30 s hovering and 10 m vertical rise at each
height level. The drone should adopt the bottom-up flight measurement method to obtain
the spatial distribution data of particle concentration, because this method can avoid the
damage of particle distribution in the area to be measured by the propeller downwash flow.
The average value within 30 s of hovering was taken, which is the particle concentration at
this height. The power motor of the drone monitoring system was set to the off state at 0 m,
and it needed to hover for 1 min at 10 m before measurement. The setting of measurement
point and the measurement site are shown in Figure 14.
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Figure 14. Agri-environmental measurement experimental site: (a) setting of measurement point;
(b) the drone performing flight measurement work.
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4. Results and Discussion
4.1. Sensor Consistency and Calibration

When SDS011 reads the PM2.5 and PM10 measurement values, one decimal place is
reserved by default. This section retains this setting for the sake of test accuracy. However,
in the final monitoring system, in order to be consistent with the reading method of
SDS198 that does not retain decimals, we used integers to read the concentrations. The
measurement and processing results of sensors at 900 time points are shown in Figure 15.
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It can be seen from Figure 15a,c that the although there is some deviation in the
measurement value between the Sensor-A that has been used for a period of time and the
new Sensor-B, the responses of the two sensors to the artificial disturbance of particulate
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matter are very consistent. A similar relationship exists between Sensor-C and -D in
Figure 15e. The correlation of PM concentration between sensors is very high, and the
correlation coefficients of PM2.5, PM10, and TSP reach 0.957, 0.981, and 0.979, respectively.

After statistics, the average concentration values of PM2.5, PM10, and TSP measured
by Sensor-A and -C, which have been used for a period of time, are 0.26%, 13.79%, and
3.30% higher than those of the new Sensor-B and -D, respectively. This may be due
to long-term exposure to particulate matter, resulting in contamination of the optical
sensor. Figure 15b,d,f show the results of calibration of the sensor, and the coefficient
of determination of the three kinds of particle concentrations reach 0.917, 0.962, and
0.958 respectively.

4.2. Communication Suitability

The results of the communication performance test are shown in Table 3.

Table 3. Performance test results of three communication modes.

Parameter Distance Signal Strength Communication
Accuracy Max Duration

4G-CLOUD
180 m 100% 99.38% >40 min

1500 m 100% 99.63% >40 min

AP-TCP
120 m 75% 100% >40 min
150 m 50% 100% 23.7 min

AP-UDP
150 m 50% 97.13% >40 min
180 m 25% 93.88% >40 min

The test results demonstrated that the signal strength, communication accuracy, and
stable connection duration of the 4G-CLOUD mode are not limited by the communication
distance and have excellent communication performance, which should be used as the pre-
ferred communication mode. The 4G-CLOUD mode uses a 4G network for communication,
so it is not restricted by obstacles and can realize ultra-long-distance communication. Since
it transfers data through a cloud server, multiple devices can receive data at the same time,
but it will fail in areas without 4G network signals.

If there is no 4G network signal, when the distance is less than 120 m, the AP-TCP
mode can provide very stable and reliable continuous data transmission. When the dis-
tance is between 120 and 180 m, the connection interruption will occur in the AP-TCP
mode. It is more suitable to use the AP-UDP mode at this time, while its communication
accuracy will decrease as the distance increases. When the distance exceeds 180 m, the
Wi-Fi communication method is no longer reliable. The AP-TCP mode needs to keep
the connection smooth at all times. When the signal is poor, there will be transmission
congestion or connection interruption. It needs to wait or reconnect to transmit data. When
the signal is strong, this mode has higher reliability and real-time performance, which is
mainly used for close-range and barrier-free data communication. Packet loss may occur
when transmitting data in AP-UDP mode, but this mode does not require reconnection,
and subsequent packet transmission will not be affected after packet loss. When the trans-
mission distance is moderate and the signal strength cannot be fully guaranteed, there will
be certain advantages.

4.3. Flight Measurement and Comparison

The results of the flight measurement experiment on 2 April 2022 and the PM concen-
tration measurement data of the three national monitoring stations at the same time are
shown in Table 4.
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Table 4. Flight measurement data at three altitudes and data from national monitoring stations.

Parameter 5 m 10 m 15 m AVG Station A Station B Station C

PM2.5 (µg/m3) 38 39 42 39.7 36 38 39

PM10 (µg/m3) 67 73 72 70.7 61 73 71

As TSP is not the monitoring object of the national monitoring stations, there are no
relevant data about TSP. Therefore, only the mass concentrations of PM2.5 and PM10 are
listed in the table. In order to compare with the data of the national monitoring station,
we used the inverse distance weight (IDW) interpolation method to calculate the spatial
interpolation of particle concentration in the experimental site according to the data from
stations A, B, and C. The solution of inverse distance weight interpolation can be described
by the following equation:

wi =

1
di

n
∑

i=1

1
di

(13)

ĈE =
n

∑
i=1

wiCi (14)

where wi is the weight of station i when calculating spatial interpolation, which is related
to the reciprocal of the distance di from station i to the experimental site. ĈE is the spatial
interpolation of the PM concentration at the experimental site, and Ci is the monitoring
value at station i. The calculation results are shown in Figure 16.
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Figure 16. Comparison of spatial interpolation of PM concentration with flight measurement:
(a) PM2.5; (b) PM10.

From the experimental results, it can be seen that the flight measurements of PM2.5
and PM10 are very close to the calculated spatial interpolation, and the errors are only 5.87%
and 2.91%, respectively. In the three monitoring stations, although station C is the farthest
from the experimental site, the PM concentration is the closest to the flight measurement
value, presumably because station C is in the upwind direction of the experimental site,
and the correlation between them is greater. The experimental results shows that our
environmental monitoring system has high application value.

4.4. Agri-Environment Measurement Experiment Results

We took the particle concentration measured before the harvester started working as
the initial concentration. The difference between the concentration measured at the same
height during the operation of the harvester and the initial concentration can be considered
as the particle emission from the harvester. Figure 17 depicts the measurement results of
PM concentration at different altitudes.
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Figure 17. Comparison of PM concentration at measurement point before and after operation of
harvester started working: (a) PM2.5; (b) PM10; (c) TSP.

From the experimental results, it can be seen that before the harvester started working,
the concentration of three types of PM followed a unimodal pattern, starting from the
minimum concentration at ground level, reaching the maximum at 30 m or 20 m, and
then fluctuating and slowly declining with increasing altitude. The concentration of TSP
decreased faster than the other two kinds of particles [29,30], which may be because the
particles of 10~100 µm settle faster due to their larger mass [31,32]. After the harvester
started working for a period of time, the concentrations of three types of PM all increased
significantly, and their changing trends with increasing altitude were also different from
those before. Although PM2.5 reached the maximum value at 20 m, it was not outstanding
compared with the values at other altitudes. Except that the concentration at the ground
was still the lowest, there was no obvious change trend with increasing altitude. The peak of
PM10 appeared at the altitude of 20 m, which is lower than before. With increasing altitude,
the concentration decreased rapidly between 20–40 m, and then became stable. The peak of
TSP is obvious, which still appeared at the altitude of 20 m, and the concentration decreased
more rapidly between 20–40 m than 40–80 m.

The curve “PM from harvester” in the figure could be understood as the concentration
of particulate matter emitted by the harvester into the surrounding environment during
operation, and the curve had a very obvious peak at the altitude of 10–20 m. This suggested
that particulate emissions from harvesters may be concentrated at this altitude. Due to the
different altitudes of the concentrated emission of particulate matter, the impact on the
surrounding environment is also different. For example, the higher the altitude, the easier
it is for the particulate matter to spread to a farther place under the action of wind. There-
fore, this result is important for the study of particulate matter emissions in agricultural
environments and their effects. At the same time, the altitude of 15 m can be used as the
best measurement altitude for the particle emission of the harvester. This altitude may vary
depending on the location, angle, and wind speed of the harvester’s outlet.

5. Conclusions

We developed a new platform for agri-environment atmospheric monitoring using
a highly maneuverable drone equipped with multi-sensor and long-distance communi-
cation systems. This platform has the characteristics of small size, lightweight, and high
cost-effectiveness, and also high temporal and spatial resolution. We tested the sensor
consistency and proposed a calibration method. The light scattering sensor had a high
consistency for PM2.5, PM10, and TSP measurement even after a period of use, and the
correlation coefficients were all above 0.95. In the area covered by 4G signal, the communi-
cation accuracy of the 4G-CLOUD communication mode reached more than 99% and was
not affected by distance and obstacles, so it could be used as the preferred communication
mode. If there was no 4G signal, the reliable communication distance of the monitoring
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platform was 180 m. The AP-TCP mode could provide stable data transmission in a short
distance, but when the distance exceeded 120 m, AP-UDP was required for communication.
We conducted a flight measurement comparison experiment, and the measured PM2.5 and
PM10 concentrations were very close to the data from the national monitoring station. We
carried out the agri-environment atmospheric measurement experiment and found that the
PM concentrations at the measuring point were significantly different before and after the
harvester started working, and the location of the peak changed, which is very significant
for the selection of measurement altitude in the future related research.

Compared with national monitoring stations, the biggest advantage of our mobile
monitoring system is that it has the ability to measure the concentration of TSP and
the vertical distribution of PM, which is very important for the research of agricultural
environmental particulate matter emission characteristics. Unlike national monitoring
stations that can only measure PM2.5 and PM10, the measurement function of TSP considers
the particularity of the agri-environment, which makes the spatiotemporal distribution
data of the agri-environment atmospheric measurement more substantial.

In future work, we should give more consideration to the distribution patterns of
particles in height under various conditions (such as pressure, wind speed, humidity,
etc.), and use fixed measuring devices at different measuring positions to obtain the
horizontal distribution characteristics of near-ground particulate matter, so as to provide
more agricultural environmental atmospheric data for the relevant research on agricultural
particulate matter emission reduction.
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