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Abstract: In the current study, the effects of steam blanching, saline immersion, and ultrasound
pretreatment on the drying time, three-dimensional (3D) appearance, quality characteristics, and
microstructure of potato slices were investigated. All the pretreatment methods enhanced the drying
kinetics relative to the untreated potato slices. The 3D appearance was evaluated by reconstructed
3D images, shrinkage, and curling degree. The reconstructed images could well reproduce the
appearance changes in the potato slices during drying. All the three pretreatment methods reduced
the shrinkage during the drying process relative to the untreated potatoes. The curling degree was
evaluated by the height standard deviation (HSD) of the material surface. The results showed that
saline immersion inhibited the curling of the potato slices during the drying process, while ultrasound
aggravated the curling of the potato slices. The potatoes treated by blanching obtained a lower total
color difference (∆E), higher total polyphenol content, and antioxidant capacity compared with
the samples treated with saline immersion and ultrasound pretreatments. The observation of the
microstructure by scanning electron microscope (SEM) verified the effects of the pretreatments on
the drying time and appearance deformation. Therefore, it is of great significance to regulate the
3D appearance and quality characteristics of agricultural products during the drying process by an
appropriate pretreatment.

Keywords: potato; pretreatment; drying; three-dimensional appearance; quality; microstructure

1. Introduction

Potato (Solanum tuberosum L.) is known as one of the world’s five major crops along
with corn, rice, wheat, and sorghum [1]. Potato is rich in nutrition, including starch,
protein, vitamins, polyphenols, and trace elements, so it is used as a favorite composition
of functional food [2,3]. Therefore, potato is getting higher and higher in the position of
agricultural and sideline products, and the demand is also growing. However, potato, like
other vegetables, has a high moisture content, so it is easy for it to rot and sprout during
storage [4]. This has a great effect on the quality of potatoes [5]. Drying is an effective way
to prolong the shelf life of fruits and vegetables.

There are many drying methods used in the processing of fruits and vegetables,
including hot-air drying, infrared drying, freeze drying, microwave drying, and hybrid
drying technology [6,7]. Each drying technique has its own advantages and disadvantages.
However, the most commonly used drying method in potatoes is still hot-air drying [8].
Drying can effectively prevent the growth of microorganisms, reduce enzyme activity,
and slow down some water-mediated chemical reactions [9,10]. However, the drying
process always consumes a lot of energy and will have a significant impact on the shape,
color, flavor, and nutrition of dried products [10]. Therefore, it is necessary to develop
operations to minimize the adverse effects of the drying process, reduce the time and energy
requirements, and maximize the retention of the original characteristics of the product [11].

Fruits and vegetables are usually subjected to physical or chemical pretreatment
before drying to shorten the drying time, reduce the energy consumption, and preserve
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the quality of products [12]. It was found that blanching pretreatment can damage the
structure of cell membranes and thus shorten the drying time [13]. Mehta et al. [14]
reported that dried vegetables coupled with blanching as a pretreatment showed less
degradation in terms of polyphenols and flavonoids. Liu et al. [15] observed that blanching
pretreatment could not only shorten the drying time but also inhibit browning and maintain
the anthocyanin level in purple-flesh sweet potato drying. It has also been reported that
vacuum-dried potato chips pretreated with blanching have a better texture and a lower
glycemic index [16]. Osmotic solution immersion pretreatment, such as sucrose or salt
solution, has been widely used in drying pretreatments because of its ability to ensure the
quality of dried products [17]. Zou et al. [18] reported that sucrose solution immersion
pretreatment can improve the color and sensory quality of dried products. It was reported
that osmotic solution pretreatment shortens the drying time and reduces the specific energy
consumption in potato drying [19]. Moreover, Chinenye et al. [20] found that the volume
of potato chips treated by saline immersion was higher by 6% than non-treated samples.

Ultrasound as a pretreatment method has attracted considerable interest in drying
processes, since it can form microscopic channels in the tissue due to cavitation and sponge
effects, which can promote the migration of water and accelerate the drying process [21,22].
For potato slices drying processes, it has been reported that ultrasound pretreatment
can effectively shorten the drying time and reduce the specific energy consumption [23].
Zhang et al. found that ultrasound pretreatment can increased hardness of potato chips
and reduce the destruction of the cellular structure [24]. The results of Xu et al. [25] showed
that ultrasound pretreatment could improve the content of flavonoids and polyphenols in
dried products. Rashid et al. [26] also reported that appropriate ultrasound pretreatment
can well maintain phytochemical compounds. Generally speaking, suitable pretreatment
before a drying process can improve the drying efficiency and enhance the product quality,
but few people have paid attention to the influence of pretreatment on the appearance
changes in dried products.

Appearance (especially for 3D appearance) is one of the most important indicators for
people when evaluating dried products, and it has a great impact on subsequent further
processing, packaging, and transportation [27]. For consumers, products with a uniform
and regular appearance generally have a better degree of acceptability. At present, the main
method for studying the appearance changes in dried samples is through two-dimensional
images. For example, Khazaei et al. [28] applied an analog camera collect images to monitor
shrinkage during dehydration in grape drying. However, a single camera can only obtain
the data of a projected area of a sample’s surface, and the thickness change in the material
cannot be measured effectively. Therefore, Sampson et al. [29] used top and side cameras to
obtain the thickness and projected area of materials so as to measure the volume changes
in apple slices during the drying process. However, a side camera cannot fully reflect the
thickness change during the drying process of the material. In addition, a two-dimensional
image cannot perfectly simulate the morphological change in the drying process that occurs
in a 3D space. Therefore, it is necessary to use 3D image technology to evaluate the shape
change in materials during drying. Cai et al. [30] used a Kinect V2 sensor to build an image
acquisition platform, and the morphological changes in potato slices under different drying
temperatures were studied. However, the detection accuracy of a Kinect sensor is relatively
low [31], which makes the quantification and analysis of 3D information rough. Therefore,
there has been less information about the 3D appearance changes in fruits and vegetables
during drying by pretreatment methods.

The objective of this study was to investigate the effects of blanching, saline immersion,
and ultrasound pretreatments on the drying time, internal quality, and external quality
characteristics of dried potato slices, including the 3D appearance, color, total polyphenol
content, antioxidant properties, and microstructure.
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2. Materials and Methods
2.1. Material

Fresh potatoes of the same variety “Holland fifteen” were purchased from a supermar-
ket near Jiangsu University (Zhenjiang, China). All the potato samples were transported to
the laboratory and stored at room temperature (about 20 ◦C) before experimentation. The
average initial moisture content of potatoes was 84.23 ± 2.36% (wet basis). Before drying,
the potatoes were washed, peeled, and sliced to a thickness of 2 mm using an electric slicer
(MS-305C, Foshan Komle Electric Appliance Co., Ltd., Foshan, China). Then, the samples
were subjected to pretreatment.

2.2. Pretreatment Methods

In this study, potato slices were subjected to three kinds of pretreatments. (1) For
steam-blanching pretreatment, potato slices were processed by steam cooker (total volume
4 L) at atmospheric pressure. The power of the steam cooker was 1000 W to ensure the
continuous boiling of the water. The blanching times were 30, 60, and 90 s, respectively.
(2) Saline immersion pretreatment was referred to as the method of Chinenye et al. [20]
with some modifications. Potato slices were soaked in a salt solution for 60 min. The
concentrations of the salt solutions were 5%, 10%, and 20%, respectively. (3) For ultrasound
pretreatment, the potato slices were immersed in distilled water and then subjected to an
ultrasound bath. The parameters set to 240 W and 40 ◦C according to the relevant studies.
The treatment times were 10 min, 30 min, and 60 min, respectively.

2.3. Hot-Air Drying Experiment

The potato slice samples were dried in hot-air drier, which was described in previous
study [30]. The drying process was carried out at 65 ◦C with an air velocity of 3 m/s
and a relative humidity of 10% (RH). A quantity of 100 ± 5 g samples was used for all
drying runs in the experiment. The weight loss was periodically recorded by taking out
the rotating glass and weighing it on an electronic balance within an accuracy of ±0.01 g
during drying. Drying was stopped when the moisture content of the samples reached
the desired final moisture content of 6.00% (wet basis). All the drying experiments were
conducted in triplicate.

2.4. Moisture Ratio (MR)

The moisture ratio was calculated using Equations (1) and (2).

MR =
Mt − Me

M0 − Me
(1)

where M0 is the initial dry basis moisture content; Mt is the dry basis moisture content at
the drying time t; MR is the moisture ratio; and Me is the equilibrium moisture content. The
equilibrium moisture content, Me, was much smaller than M0 and Mt and could generally
be ignored [32]. Therefore, the calculation of MR can be simplified as:

MR =
Mt

M0
(2)

2.5. Three-Dimensional Appearance Evaluation Index

The 3D image acquisition platform used in this experiment was independently built
by the team [33]. Using binocular snapshot sensor (Gocator3210, LMI technologies Inc.,
Vancouver, BC, Canada), the measurement range was −50~50 mm in the horizontal di-
rection, −77~77 mm in the vertical direction, −55~55 mm in the depth direction, and the
detection accuracy was ±0.035 mm. The 3D point cloud images were periodically collected
at an interval of 10 min during drying. The collected images were processed by the software
Cloud Compare (version 2.1), including background removal, noise removal, point cloud
filtering, and surface reconstruction.
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The time-varying appearance images of one potato slice during drying is shown in
Figure 1. The three images from top to bottom in each column represent a color physical
image, 3D reconstructed image and height distributed image, respectively. The 3D recon-
structed image obtained from the point cloud data was fairly close to the physical image
of the potato slice, which benefitted from good measurement accuracy due to laser scan-
ning [34,35]. Therefore, the reconstructed 3D images could well reproduce the appearance
changes in the potato slices during drying. The height distribution of the potato slice in
Figure 1 is represented by pseudo-color images, and the color from blue to red indicates
that the height value of the pixels on the material changed from small to large. It was found
that potato slice obviously curled with the process of drying, especially after a drying time
of 40 min.
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Figure 1. Time-varying appearance images of one potato slice during drying. (a–h) represent potato
slices dried at 65 ◦C, 10% RH, 3 m/s for 0, 10, 20, 30, 40, 50, 60, and 70 min, respectively. The three
images from top to bottom in each column represent color physical image, 3D reconstructed image,
and height distributed image, respectively.

2.5.1. Shrinkage

The surface model was composed of tens of thousands of triangles. First, the distance
between two points was calculated by Euclid’s formula, and the three side lengths of
each triangle could be obtained. For example, the distance between points p1 (x1, y1, z1)
and p2 (x2, y2, z2) can be calculated by Equation (3). Then, the area of each triangle was
calculated through Helen’s formula, as in Equation (4), and the sum of the area of all
triangles was calculated, which was the surface area. The shrinkage of the potato slices
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during drying could be calculated by the change in the surface area at different drying time
points (Equation (5)). The specific equations are as follows:

dp1p2
=

√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 (3)

SABC =
√

p(p − dAB)(p − dAC)(p − dBC) (4)

Shrinkage =
S0 − St

S0
(5)

where dp1p2
is the distance between the two points of p1 and p2; SABC is the area of the

triangle ABC; and p is half of the circumference of the triangle ABC. S0 is the surface area
of the sample before drying, and St is the surface area of the sample during drying.

2.5.2. Height Standard Deviation

The appearance of the material changed from flat to curled during drying, which
caused a change in the surface height value. The HSD could reflect the degree of dispersion
of the surface height among individuals in a group. Therefore, the HSD was used to
characterize the degree of curling of the material. The larger the value, the more uneven the
surface of the material and the more severe the curling. The height value of the processed
point cloud was extracted by the software, and the standard deviation of the height was
calculated by Equation (6).

Height standard deviation =

√
∑n

i=1(hi − hav)
2

n − 1
(6)

Among them, n is the number of point clouds; hi is the height of the i-th point, mm;
and hav is the average height of n points, mm.

2.6. Color Measurement

The color of fresh and dried potato slices was determined using colorimeter (SC-10;
Shenzhen 3nh technology Co., Ltd., Shenzhen, China). The color was represented by
coordinates L* (lightness), a* (redness/greenness), and b* (yellowness/blueness). For
each condition, the collection of color parameters was repeated 9 times and averaged. In
addition, the total color difference (∆E) was calculated by Equation (7).

∆E =

√
(L0

∗ − L∗)2 + (a0∗ − a∗)2 + (b0
∗ − b∗)2 (7)

where, L0
∗, a0

∗, and b0
∗ are the color parameters of the untreated dried potato slices, and

L∗, a∗, and b∗ are the color parameters of the pretreated dried potato slices.

2.7. Determination of Total Polyphenol Content (TPC)

Polyphenol extract was prepared by the following method: A total of 1 g of potato
slice powder was extracted with 70% ethanol solvent. The potato powder and 50 mL
solvent were mixed evenly at room temperature and then treated by ultrasound for 1 h at
40 ◦C, followed by centrifugation at 4000 rpm for 20 min to obtain the supernatant. The
supernatant was the final polyphenol extract, and it was stored at 4 ◦C for further analysis.

The total polyphenol content (TPC) of the potato slices was determined by an improved
Folin–Ciocalteu method [36]. Five hundred microliters of polyphenol extract were mixed
with 1 mL Folin–Ciocalteu’s reagent. After 2 min incubation at room temperature, 2 mL
Na2CO3 (7.5%, w/v) was added and then fixed to 10 mL with distilled water. The resulting
mixture was incubated for 60 min at room temperature. At the end of the incubation, the
absorbance was measured at 775 nm using a UV–Vis spectrophotometer (754, Shanghai
Jinghua Technology Instrument Co., Ltd., Shanghai, China). The results of the TPC were
expressed as mg gallic acid equivalents (GAE) per gram of dried potato slices.
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2.8. Determination of DPPH Radical Scavenging Assay

The DPPH radical scavenging assay was analyzed according to the method of Zhu et al. [37]
and modified appropriately. DPPH solution (2 mL) solution was mixed with a certain
volume of sample polyphenol extracts and then fixed to 5 mL with 70% ethanol solution.
The reaction mixture was shaken well by a vortex blender (VORTEX-2, Shanghai Hutong
Industrial Co., Ltd., Shanghai, China) and left standing for 30 min in a dark environment
at room temperature. In the control group, 70% ethanol solution was used to replace the
extract, and the preparation method was similar to that of the experimental group. The
absorbance of the experimental group and the control group at 517 nm was measured
by UV–Vis spectrophotometer (754, Shanghai Jinghua Technology Instrument Co., Ltd.,
Shanghai, China). The results were presented as percentage of DPPH radical scavenging
activity utilizing the Equation (8).

DPPH scavenging activity (%) =
A0 − A

A0
× 100% (8)

where A0 is the absorbance of the control group, and A is the absorbance of the sample group.

2.9. Microstructure

Microstructure images of the dried potato slices were obtained using a scanning
electron microscope (SEM) (S-3400 N, Hitachi Ltd., Tokyo, Japan) according to the method
described by Chu et al. [38]. Dried potato slices were cut into 5 mm × 5 mm with a blade
and coated with gold in an ion sputter. The samples were observed in the high vacuum
mode at an accelerating voltage of 15.0 kV. Samples were observed at a magnification of
100× and 500×.

2.10. Statistical Analysis

All statistical analyses were performed using three sets of parallel experimental data,
and the experimental results were expressed as mean ± SD. Statistical analysis was per-
formed using SPSS software (version 25.0, SPSS Inc., Chicago, IL, USA). The one-way
analysis of variance and Duncan’s test (p < 0.05) were used to determine whether there
were significant differences between the groups.

3. Results and Discussion
3.1. Moisture Ratio (MR)

Figure 2 shows the MR curves and drying time of the potato slices under different pre-
treatments during hot-air drying. Compared with the untreated potato samples, blanching,
saline immersion, and ultrasound pretreatment had obvious effects on the drying curves
and drying time. The drying curve of the potato slices under different blanching times is
shown in Figure 2I. The drying time was decreased by about 14.29% when the blanching
time increased to 90 s. This phenomenon may be due to the fact that blanching can expel
the intercellular air retention in sample tissues and weaken the resistance of cell membranes
and cell walls to water diffusion through structure softening [39]. Similar results were
found in studies on the drying process of apricots [40] and carrots [41].

For the saline immersion pretreatment in Figure 2II, when the salt solution concen-
tration increased to 20%, the drying time of the potato slices decreased by about 35.71%
compared with the untreated samples. The reason for this result may be that saline im-
mersion can remove part of the free water in the material [18], which obviously led to a
reduction in the drying time. In addition, it was reported that accumulation of solute (su-
crose or salt) occurred in the space between the wall and plasmalemma, which plasmolyzed
the cytoplasm and the vacuoles [42].
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Figure 2. Drying curves and drying time of potato slices under different pretreatment conditions
such as (I) blanching, (II) saline immersion, and (III) ultrasound pretreatment. (IV) The drying time
for (A) untreated potato samples, (B–D) with blanching pretreatment for 30, 60, and 90 s, (E–G) with
saline immersion under solution concentration of 5%, 10%, and 20%, and (H–J) with ultrasound
pretreatment for 10, 30, and 60 min. Means denoted by a different lowercase letter indicate significant
difference between treatments (p < 0.05).

The effect of ultrasound time on the drying time is shown in Figure 2III. It was found
that the drying times were about 65, 60, and 50 min for the potato samples treated for 10,
30, and 60 min, respectively. This may be due to cell disruption and microscopic channels
being formed after ultrasound pretreatment, which led to a reduction in the resistance
against moisture migration [43].

Figure 2IV shows the drying time and variance analysis results of the potato slices
under different pretreatment conditions. All three pretreatments enhanced the drying ki-
netics relative to the untreated samples The saline immersion pretreatment had the greatest
influence on the drying time, followed by the ultrasound and blanching pretreatments. In
general, the different pretreatments had different effects on the structure of the materials
and further affected the process of heat and mass transfer during the drying.

3.2. Three-Dimensional Appearance Characterization

The 3D appearance images of the dried potato slices under different pretreatments
are shown in Figure 3. The three images from top to bottom in each column represent
the physical, 3D reconstruction, and height distribution diagrams of the potato slices. It
was found that the appearance of the potato slices had significant curling, shrinkage, and
browning after the drying process. Moreover, the appearance of the dried potato slices
varied greatly with different pretreatments.
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Figure 3. Three-dimensional appearance images of dried potato slices under different pretreatments.
(a) Untreated potato samples. (b–d) Blanching pretreatment for 30, 60, and 90 s. (e–g) Saline
immersion under solution concentration of 5%, 10%, and 20%. (h–j) Ultrasound pretreatment for
10, 30, and 60 min. The three images from top to bottom in each column represent the physical,
three-dimensional reconstruction, and height distribution diagrams of the potato slices.

Figure 3b–d shows the appearance of the potato slices after pretreatment by blanching
for 30, 60, and 90 s, respectively. When the blanching time was 30 s, the dried potato slices
curled obviously. However, when the blanching time was extended to 60 s or 90 s, the
potato slices became relatively flat. It has been reported that blanching can destroy the
cellular structure and alter the moisture distribution of materials, which leads to a more
uniform moisture distribution in materials [44]. The uniform distribution of moisture in
the material could have reduced the stress caused by shrinkage in the drying process.

The appearance of the potato slices after pretreatment by saline immersion under
solution concentrations of 5%, 10%, and 20% is shown in Figure 3e–g. It can be seen from
the figures that, as the salt solution concentration increased to 10% and 20%, the saline
immersion pretreatment obviously inhibited the shrinkage and curling of the potato slices
during drying. The reason for this phenomenon may be that salt particles could fill the
spaces reduced by moisture removal during the drying process. In contrast, for the samples
pretreated by ultrasound pretreatment, especially for a long time (60 min), the appearance
of the material was seriously curled. This may be attributed to the destruction of the
material structure by the “cavitation effect” of ultrasound.

In summary, saline immersion and blanching pretreatment could effectively inhibit
the shrinkage and curling of the potato slices, while ultrasound pretreatment aggravated
the deformation during the drying process.

3.3. Shrinkage

The shrinkage curves of potato slices under different pretreatment conditions during
drying process are shown in Figure 4I–III, and the results of the analysis of variance of
the dried potato slices are shown in Figure 4IV. It can be seen that the shrinkage of the
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potato slices mainly took place at the early drying stage, and gradually slowed down in the
later drying stage. It has been reported that the shrinkage at the initial stage of drying is
approximately equal to the volume of moisture lost, while in the middle and late drying
stages, with the fixation of the “skeleton”, the shrinkage becomes slow [45].
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As shown in Figure 4I, the blanching time had a great influence on the shrinkage of
the potato slices. The shrinkage of the dried potato slices at 30, 60, and 90 s were 53.97%,
44.67%, and 42.27%, respectively, which decreased by 2.83%, 19.57%, and 23.89% compared
with the untreated samples (55.54%). This was because the blanching caused the cell walls
to collapse [46], which reduced the effect of surface stress. Mahiuddin et al. [47] also
reported that the destruction of the cell structure has an effect on the shrinkage properties
of materials.

Figure 4II indicates the shrinkage of the potato slices by saline immersion under
different solution concentrations. It can be seen that the saline immersion pretreatment
had a great influence on the shrinkage of the dried potato slices. The shrinkage of the
potato slices decreased with the increase in the salt solution concentration. The potato slices
had minimal shrinkage when the salt solution concentration reached 20%, which caused
a decrease of 42.69% compared to the untreated sample. Fante et al. [48] found that an
increase in sucrose solution concentration led to a decrease in the shrinkage of dried plum
slices in the drying process. This may be due to the fact that salt or sucrose particles can fill
the space left by the removal of moisture in the material, which would support the skeleton
structure of the material to a certain extent.
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From Figure 4III, it was found that the ultrasound pretreatment slightly reduced the
shrinkage, but the pretreatment time had no significant effect on the shrinkage of the
dried potato slices. Liu et al. [49] observed large microchannels and pores in ultrasound-
pretreated samples, while the structure of the untreated material was relatively com-
pact. In addition, ultrasound waves may have extended the intercellular spaces by the
cavitation effect [50], which may have partially offset the volume reduction caused by
moisture removal.

3.4. Height Standard Deviation (HSD)

The curling degree was evaluated by the HSD of the material surface. The HSD curves
of the potato slices during drying under different pretreatments are shown in Figure 5. At
the early stage of drying, the HSD of the material changed little or showed a downward
trend, which was mainly due to the softening of the material structure by hot-air heating.
The HSD increased rapidly in the middle and late drying stages, indicating that the material
had an obvious curling phenomenon. The shape changes in the materials in the drying
process may be due to the uneven stress caused by the shrinkage of the cells and pores [51].
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The HSD of the dried potato slices after blanching for 30, 60, and 90 s were 2.64 mm,
2.31 mm, and 2.16 mm, respectively. However, there was no significant difference be-
tween the blanching pretreatment and the untreated samples, indicating that the blanching
pretreatment could not reduce the curling phenomenon during drying. Although the
structure of the material would have been damaged by the blanching process, the starch
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gelatinization caused by the high temperature may have played a certain role in supporting
the structure.

As shown in Figure 5IV, the HSD of the dried potato slices after saline immersion
pretreatment under solution concentrations of 5%, 10%, and 20% were 2.25 mm, 1.06 mm,
and 0.47 mm, respectively, which decreased by 5.88%, 55.46%, and 80.25% compared with
the untreated samples. The results demonstrated that saline immersion could inhibit the
curling of the potato slices in the drying process, showing a relatively flat shape. This
may be because osmotic ions entered the tissue and blocked the transmission of internal
stress [52]. In addition, it also may have been due to the structure of “hard outside and soft
inside” after processing by osmotic dehydration [53].

For the ultrasound pretreatment, the HSD after ultrasound pretreatment for 10, 30, and
60 min were 1.67 mm, 2.41 mm, and 4.30 mm, respectively. It was found that ultrasound
pretreatment for 10 min could reduce the HSD of the potato slices, which indicated that
a shorter time of the ultrasound pretreatment could reduce the curling degree. When the
ultrasound time was extended to 60 min, the HSD (4.30 mm) increased by 80.67% compared
with the untreated samples, which indicated that very serious curling of the slices occurred.
This may be because the short-time ultrasound pretreatment made the potato tissue more
uniform, thereby resulting in a more uniform transfer of internal stress. However, with
the increase in the ultrasound time, the cavitation effect of micro-jets and micro-agitation
at the bubble inter-face led to the destruction of the cell structure and formed cracks and
pores [54]. The non-continuous and non-uniform structure increased the effect of stress
and showed the appearance of curling from a macroscopic perspective.

3.5. Color

Color is a significant quality parameter of dried potato slices, which influences the
customer’s perception and purchasing power [55]. The color values of all the samples are
presented in Table 1. Blanching, saline immersion, ultrasound, and drying had significant
effects on the color parameters of the dried potato slices. As seen in Table 1, the L*, a*, and b*
values of the untreated potato slices were 72.62, 8.24, and 26.13, respectively. It was found
that the untreated samples had the largest value of ∆E, which was due to browning caused
by the drying process [56]. The L* value of the potato slices pretreated with blanching
was lower, which may be related to the gelatinization of starch by blanching pretreatment.
Xiao et al. [57] reported that the clarity of gelatinized starch could reduce the lightness
of starch products. Compared with the untreated samples, the values of a* and b* were
significantly reduced. The value of ∆E of the dried samples after blanching pretreatment
was also significantly lower than that of the untreated samples. In particular, when the
blanching time was 30 s, the color change was the least, and the ∆E value was 3.10. This
indicated that blanching pretreatment could better retain the original color, which may
be because blanching inactivates polyphenol oxidase. It has also been reported that this
phenomenon is due to the leaching of reducing sugars by blanching pretreatment, which
is the substrate of the Maillard reaction [58]. Thus, this minimized the non-enzymatic
browning reaction and reduce the color variation in the slices.

The effect of the saline immersion pretreatment on the color is shown in Table 1. The
values of L*, a*, and b* were all smaller than those of the untreated samples. With the
increase in the salt concentration, the value of the sample color parameters decreased
continuously, which indicated that a high concentration salt solution could achieve a better
retention effect in terms of color. This may be due to the loss of polyphenol oxidase, which
is due to the leakage effect of a high-concentration salt solution.

For the ultrasound pretreatment, the color parameters of the potato slices were slightly
less than those of the untreated samples. With the extension of the ultrasound time, the
∆E value gradually decreased, which indicated that long-time ultrasound pretreatment
was in favor of maintaining the color of the samples. This may be because the ultra-
sound pretreatment reduced the oxygen content of the sample and inhibited the browning
reaction [38,59].
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Table 1. Changes in color, total polyphenol content, and antioxidant capacity of potato slices after
drying under different pretreatments.

Pretreatment Methods L* a* b* ∆E TPC (mg/g)
DPPH Radical

Scavenging
Activity (%)

Untreated - 72.67 ± 0.48 a 8.24 ± 0.09 a 26.13 ± 0.18 a 24.60 ± 0.91 a 0.31 ± 0.02 d,e 34.12 ± 1.51 c

Blanching

30 s 51.35 ± 1.13 e,f 4.44 ± 0.07 f,g 15.83 ± 0.33 e 3.45 ± 0.50 f 0.45 ± 0.05 a 56.45 ± 1.02 a

60 s 50.50 ± 0.69 e,f 5.02 ± 0.36 e,f 17.88 ± 0.63 d 5.54 ± 0.37 e,f 0.42 ± 0.03 a,b 52.01 ± 3.94 a

90 s 49.89 ± 1.01 f 6.10 ± 0.34 c,d 18.20 ± 0.20 d 6.17 ± 0.98 e,f 0.32 ± 0.02 c,d 38.82 ± 3.66 c

Saline
immersion

5% 67.28 ± 1.44 b 7.09 ± 0.67 b 27.01 ± 2.22 a 20.82 ± 2.44 b,c 0.27 ± 0.04 e,f 26.38 ± 0.81 d

10% 63.12 ± 1.26 c 7.10 ± 0.57 b 20.29 ± 0.44 c 13.42 ± 1.41 d 0.28 ± 0.03 d,e 25.08 ± 0.90 d

20% 59.81 ± 0.71 d 5.31 ± 0.43 d,e 17.03 ± 0.63 d,e 8.68 ± 1.32 e 0.22 ± 0.02 g 17.15 ± 1.30 c

Ultrasound

10 min 72.23 ± 0.31 a 6.49 ± 0.22 b,c 26.01 ± 1.10 a 23.97 ± 1.48 a,b 0.40 ± 0.05 b 46.72 ± 3.13 b

30 min 71.92 ± 0.71 a 5.87 ± 0.21 c,d 23.44 ± 1.26 c 22.34 ± 1.79 a,b,c 0.35 ± 0.04c 45.07 ± 2.19 b

60 min 70.86 ± 1.88 a 5.44 ± 0.39 d,e 21.30 ± 0.62 c 20.40 ± 2.08 c 0.22 ± 0.03 f,g 33.65 ± 0.98 c

Note: Data are expressed as the average ± standard deviation for three replicates. Values in the same column
with different letters for each parameter are significantly different (p < 0.05).

3.6. Total Polyphenol Content (TPC)

The effects of the different pretreatment methods on the TPC of the dried potato
slices are shown in Table 1. Compared with the untreated samples, the blanching and
ultrasound pretreatment had a better retention of polyphenols, while the saline immersion
pretreatment was not conducive to the retention of polyphenols.

Compared with the untreated samples, the total polyphenol content in the blanching-
pretreated samples was generally increased. However, with the extension of the blanching
time, the total polyphenol content gradually decreased. This indicated that short-time
blanching pretreatment was beneficial to the retention of polyphenols. This may be due
to the loss of polyphenol oxidase activity by blanching pretreatment, which resulted in
a better retention of more polyphenols [59]. However, a prolonged blanching time made
the cellular structure vulnerable to damage during drying, which led to the oxidation of
polyphenols [40].

For the samples treated with saline immersion, the content of polyphenols was lower
than that of the untreated samples. When the solution concentration reached 20%, the
polyphenol content was the lowest. This was the loss of polyphenols due to leakage of the
salt solution [60,61].

Similar to the blanching pretreatment, a shorter ultrasound treatment was more
beneficial for polyphenol retention. This may be due to the fact that ultrasound pretreatment
can produce stomata in plant tissues, thus improving the extraction of polyphenols during
the preparation of sample [62]. However, when the ultrasound time was too long, the total
phenol content decreased slightly, which was due to the loss of food ingredients caused by
the enlargement of pores [63]. This was consistent with the study of polyphenol content in
dried onions slices by Ren et al. [64].

3.7. DPPH Radical Scavenging Assay

The DPPH free radical activity values of the dried potato slices under different pretreat-
ments are shown in Table 1. It was observed that the trend of DPPH was similar to that of
TPC retention. The high positive correlation between phenolic compounds and antioxidant
activity was also reported in another study [65]. In this study, the free radical scavenging
activity of the blanched samples was the best, followed by the samples pretreated with
ultrasound and saline immersion. When the blanching time was 30 s, the sample showed
the highest activity (56.45%), which was similar to the results of Feng et al. [66].
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3.8. Microstructure

The scanning electron microscopy (SEM) images of the dried potato slices under
different pretreatments are shown in Figure 6. The microscopic results of the different
pretreated samples and untreated samples differed greatly. As shown in Figure 6a, the
untreated samples had both dense and porous structures, which may be caused by the non-
uniform shrinkage of the material structure. From Figure 6b, we also found intact starch
granules, indicating that the starch did not swell and gelatinize during the drying process.
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The microstructure of the dried samples after blanching pretreatment are shown in
Figure 6c,d. The tissue structure of the blanched dried potato slices was uniform and dense,
and no obvious pore structure was found. This may be caused by the collapse of the cellular
structure after the blanching and drying process. In addition, starch granules were not
found in the micrograph field, indicating that the blanching treatment resulted in starch
breakage and gelatinization [46]. This was similar to the results of a study on sweet potato
bars [57].

The samples from the saline immersion pretreatment had a relatively loose and porous
structure (Figure 6e,f). The cytoskeletal structure became coarse as compared to the un-
treated samples, and starch granules were no longer visible in the samples. This may be due
to the internal modification of the starch particles by the components of osmotic solution
during processing [67]. After the ultrasound pretreatment, the boundaries of the cells were
fuzzy, while the starch granules could be also clearly seen (Figure 6g,h). This was because



Agriculture 2022, 12, 1841 14 of 17

the ultrasound pretreatment caused changes in the cell structure and formed microchan-
nels on the surface of the potato samples, and the microchannels were combined with
the original pore structure, which may be due to the cavitation and sponge effects of the
ultrasound waves [68]. The observation of the microstructure of the material was helpful in
understanding the effects of pretreatment on the drying rate and appearance deformation.

4. Conclusions

The application of blanching, saline immersion, and ultrasound pretreatment had
significant effects on the drying characteristics, 3D appearance, quality characteristics, and
microstructure of the potato slices. The results showed that pretreatment significantly
enhanced the drying process of the potato slices and affected the 3D appearance during
drying. All the pretreatment methods reduced the shrinkage during the drying process
relative to the untreated potatoes. The curling degree was quantitatively characterized
by height standard deviation (HSD). The results showed that the saline immersion and
blanching pretreatments inhibited the curling of the potato slices, while the ultrasound
pretreatment greatly aggravated the curling.

Through the quality analysis of the dried potato slices, it was found that the color
difference value, total polyphenol content, and antioxidant activity of the potato slices
were significantly different under the different pretreatment conditions. The blanching
pretreatment could significantly inhibit color deterioration and maintain a higher total
polyphenol content and antioxidant activity. Although the blanching pretreatment could
significantly improve the nutritional quality and color of the potato slices, it could not
significantly reduce the curling degree. Therefore, blanching pretreatment combined
with saline immersion may be an optimal alternative pretreatment method for potato
slice drying.

The microstructures of the dried potato slices were observed and analyzed by SEM.
The microstructures of the dried potato slices were significantly changed under the different
pretreatments, which was helpful in understanding and verifying the effects of pretreatment
on the drying kinetics and appearance deformation. In addition, the mechanism of the
3D appearance changes caused by pretreatment needs to be further studied. This paper
can provide a certain reference for the 3D appearance change and control of agricultural
products during the drying process.
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