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Abstract: Non-destructive acquisition and accurate real-time assessment of nitrogen (N) nutritional
status are crucial for nitrogen management and yield prediction in maize production. The objective
of this study was to develop a method for estimating the nitrogen nutrient index (NNI) of maize
using in situ leaf spectroscopy. Field trials with six nitrogen fertilizer levels (0, 75, 150, 225, 300, and
375 kg N ha−1) were performed using eight summer maize cultivars. The leaf reflectance spectrum
was acquired at different growth stages, with simultaneous measurements of leaf nitrogen content
(LNC) and leaf dry matter (LDW). The competitive adaptive reweighted sampling (CARS) algorithm
was used to screen the raw spectrum’s effective bands related to the NNI during the maize critical
growth period (from the 12th fully expanded leaf stage to the milk ripening stage). Three machine
learning methods—partial least squares (PLS), artificial neural networks (ANN), and support vector
machines (SVM)—were used to validate the NNI estimation model. These methods indicated that
the NNI first increased and then decreased (from the 12th fully expanded leaf stage to the milk
ripening stage) and was positively correlated with nitrogen application. The results showed that
combining effective bands and PLS (CARS-PLS) achieved the best model for NNI estimation, which
yielded the highest coefficient of determination (R2

val), 0.925, and the lowest root mean square
error (RMSEval), 0.068, followed by the CARS-SVM model (R2

val, 0.895; RMSEval, 0.081), and the
CARS-ANN model (R2

val, 0.814; RMSEval, 0.108), which performed the worst. The CARS-PLS model
was used to successfully predict the variation in the NNI among cultivars and different growth
stages. The estimated R2 of eight cultivars by the NNI was between 0.86 and 0.97; the estimated R2

of the NNI at different growth stages was between 0.92 and 0.94. The overall results indicated that
the CARS-PLS allows for rapid, accurate, and non-destructive estimation of the NNI during maize
growth, providing an efficient tool for accurately monitoring nitrogen nutrition.

Keywords: summer maize; nitrogen nutrient index; leaf spectral reflection; effective band;
machine learning

1. Introduction

Nitrogen, as one of the most important nutrients in crops, greatly influences crops’
growth and development, quality, and yield formation and is the main element that affects
crop development in agricultural production [1,2]. Insufficient nitrogen results in smaller
crop leaves, lower chlorophyll and protein content, reduced dry matter accumulation,
and reduced grain yield and quality [3]. To ensure crop yields, growers often apply
excess nitrogen fertilizer in the field [4]. However, excessive fertilizer application can
cause environmental and ecological problems, such as increased greenhouse gas emissions,
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groundwater pollution, and surface water eutrophication [5]. Therefore, an accurate
and timely understanding of the nitrogen nutritional status of crops and optimization of
nitrogen fertilizer management measures can improve crops’ nitrogen use efficiency and
the ecological benefits of crop production [6].

The nitrogen nutrient index (NNI), which is the ratio of the plant’s actual nitrogen
concentration (PNC) to the plant’s critical nitrogen concentration (Nc), is an effective
indicator for evaluating crop nitrogen levels [7]. Critical nitrogen concentration is defined
as the minimum nitrogen concentration required to achieve maximum growth [8]. It is
well known that nitrogen concentration in most crops decreases as biomass increases. This
decrease in nitrogen can be described by the negative power of the dilution curve. Such a
critical Nc dilution curve can be used to analyze the nitrogen nutrient status of crops at
different growth stages, from which the NNI can be calculated [9]. With the deepening
of research, further developments and applications at the organ scale have been carried
out using the traditional Nc dilution curve. For example, in crops such as rice [10], winter
wheat [11], and rape [12], the Nc dilution curve based on leaf dry matter (LDW) has been
used as an effective indicator for the evaluation of nitrogen nutritional status. Using the
relationship between dry matter and nitrogen concentrations in different parts of the crop,
rather than using plant dry matter (PDM) alone, will be more conducive to improving
nitrogen use efficiency and optimizing nitrogen management to achieve maximum crop
yield goals [13]. As the main organ of metabolism and photosynthesis during crop growth,
leaves play a decisive role in crop growth and yield [14]. The latest research on rice by
Ata-Ul-Karim et al. [12] shows that leaves have the highest nitrogen use efficiency during
the whole growth of rice, and the leaf-based dilution curve can better assess the nitrogen
nutritional status of crops. At the same time, in terms of quantitative diagnosis of crop
nitrogen nutrition, the NNI is more representative than a single indicator (e.g., leaf area,
biomass, nitrogen content) because the NNI includes two crop group indicators (dry matter
weight and nitrogen concentration) simultaneously [15,16]. However, using traditional
methods to calculate the NNI is time-consuming, labor-intensive, and destructive, impeding
the rapid calculation of the crop NNI [17]. The traditional method first requires destructive
sampling in the field and then sending the sample to a laboratory for measurement of
the nitrogen content of the crop through chemical analysis methods (such as the Kjeldahl
method), before finally calculating the NNI through the formula. Although the results of
this method are more accurate and reliable, the whole process is not only complex and time-
consuming, but also consumes more resources and labor, which cannot effectively meet
the requirements of rapid diagnosis of crop nitrogen nutritional status [2]. In contrast, the
new hyperspectral method can provide a non-destructive, efficient, and rapid estimation of
plant growth nutritional status [18], from which the plant NNI can be calculated.

As an alternative tool, spectroscopic equipment can assess many spectral wavelengths
in the electromagnetic spectrum range, allowing the adequate selection of the effective
wavelength and sensitive spectral index of different crop variables [19,20]. Studies have
shown that spectroscopic techniques can be used to effectively estimate the crop NNI. For
example, Mistele et al. [21] demonstrated that the correlation between the wheat NNI and
canopy reflection intensity was stronger than that between the wheat NNI and nitrogen
content or dry matter. Zhao et al. [22] used the newly developed two-band vegetation index
to estimate the NNI of summer maize and demonstrated that the direct method is more
effective than the indirect method. Thus, it is very important to use the correct method to
extract useful information from the spectral reflectance to determine the nitrogen nutritional
status of crops [23]. However, owing to the high similarity between adjacent bands in
the raw hyperspectral data, there are considerable amounts of redundant information
and irrelevant variables in the raw data, resulting in inaccurate prediction results and
excessive calculation. Therefore, appropriate methods are generally adopted to screen the
effective bands before further analysis and modeling. There are many methods used to
select wavelengths for reflection spectra. The main methods include principal component



Agriculture 2022, 12, 1839 3 of 18

analysis, random leapfrog, the continuous projection algorithm, and competitive adaptive
reweighted sampling (CARS) [24].

In this context, machine learning (ML) has developed rapidly as a branch of artifi-
cial intelligence (AI). ML can obtain useful information from a large amount of spectral
data through self-learning to enable effective classification and self-prediction [25–27].
Shu et al. [24] achieved an accurate estimation of four traits (aboveground biomass, total
leaf area, leaf chlorophyll content, and thousand kernel weight) in maize inbred lines
using UAV hyperspectral images combined with two machine learning methods: partial
least squares and random forest. Additionally, Li et al. [28] showed that the evaluation
performance of a method based on machine learning, in particular the artificial neural
network (ANN), was significantly better than that of traditional multiple linear regression.
Fu et al. [29] analyzed existing studies and showed that support vector machine (SVM)
regression, a kernel-based machine learning algorithm, has become an alternative to ANN
in the evaluation of crop nitrogen nutrition status.

Maize, one of China’s most important food crops, is also the main forage for animal
husbandry [30]. Excessive nitrogen input in maize production reduces agricultural pro-
duction efficiency and exacerbates ecological problems [31,32]. Therefore, a timely and
accurate grasp of the nitrogen nutritional status during crop production is critical to the
sustainable development of agriculture and achieving on-demand and precise nitrogen
application [6]. To optimize the precise nitrogen management of field crops, increase crop
yield, and improve the ecological environment, it is necessary to develop a fast and reliable
method to determine the nitrogen nutritional status of maize crops. Until now, most crop
NNI assessment methods have focused on the canopy level, and few studies have used
in situ spectroscopy to estimate leaf nitrogen nutrition. Because crops are affected by
environmental factors and canopy structure complexity, existing canopy-scale methods
for crop nitrogen nutrition diagnosis suffer from low estimation accuracy and poor model
migration, which indicates that further research is needed to improve the accuracy and
universality of nitrogen nutrition monitoring. Using in situ leaf spectral methods to ob-
tain leaf reflection data could effectively avoid the interference of canopy structure and
environmental factors [2], improve the accuracy and effectiveness of leaf spectral reflection
data, and provide an effective means for crop nitrogen nutrition assessment and field
nitrogen management.

In this context, the present study presents a method for estimating the NNI of maize
by combining different cultivars and nitrogen fertilizer treatments to accurately estimate
maize nitrogen nutrition status. The main objectives were as follows: (1) to construct the
best model combination of maize growth stages from the 12th fully expanded leaf stage
to the milk ripening stage (V12–R3) by comprehensively analyzing the in situ reflectance
spectra of leaves from visible light to near-infrared; (2) to compare the regression models of
three regression methods—partial least squares (PLS), artificial neural network (ANN), and
support vector machine (SVM)—on the raw hyperspectral bands and the effective bands;
(3) to evaluate the performance of the combination of different methods and establish the
most suitable maize NNI estimation model. The results of this study provide a technical
basis for the application of hyperspectral technology in nitrogen nutrition monitoring and
precise nitrogen application in maize production.

2. Materials and Methods
2.1. Experimental Site and Experimental Design

The experimental site was located at the Beijing Academy of Agriculture and Forestry
Sciences facility in Tongzhou (116◦41′2′′ E, 39◦41′50′′ N) (Figure 1b), Beijing, China. This
area has a typical warm temperate semi-humid continental monsoon climate. The soil type
of the experimental field is sandy. Before maize planting, soil samples of 0–20 cm were
collected to measure soil organic matter, total nitrogen, Olsen phosphorus, and available
potassium. The soil properties are summarized in Table 1.
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Figure 1. Location of the study site (a,b), field plot conditions (c), and leaf spectral reflectance
measurements (d).

Table 1. Experimental design and main soil chemical properties.

Cultivar N Application
(Kg N ha−1) Sowing/Harvesting Date Sampling

Stage Soil Characteristics

Jingke999 (JK999)
Xianyu335 (XY335)

MC121
Jingnongke728 (JNK728)

Liangyu99 (LY99)
MC812

Jingnongke828 (JNK828)
Zhengdan958 (ZD958)

0(N0)
75(N1)

150(N2)
225(N3)
300(N4)
375(N5)

1 June
30 September

V6
V12
R1
R3
R5
R6

Type: brown sandy
Organic matter: 17.03 g kg−1

Total N: 1.08 g kg−1

Olsen-P: 0.067 g kg−1

Available-K: 0.241 g kg−1

This study adopted a split-plot experimental design: the nitrogen treatment was the
main plot factor, and the cultivars were randomly distributed in each nitrogen treatment
and repeated three times. Five field experiments were conducted to obtain maize leaf
samples at the following growth stages: the 6th fully expanded leaf stage (V6), the 12th
fully expanded leaf stage (V12), the silking stage (R1), the milk ripening stage (R3), the
dent stage (R5), and physiological maturity (R6). This experiment included eight maize
cultivars and six nitrogen application treatments (Table 1). Before sowing, 50% nitrogen
fertilizer was applied as the base fertilizer, and a second application was carried out at the
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jointing stage. Moreover, before sowing, all experimental treatments were given a one-time
application of 90 kg ha−1 superphosphate (P2O5) and 120 kg ha−1 potassium oxide (K2O).
A total of 48 plots (30 m2 each, 3 m × 10 m) were planted using the equidistant method
with 60 cm row spacing, and the density was 60,000 plants ha−1. In addition, the artificial
sowing method was adopted, and the seedlings were thinned. The field was thereafter
managed according to local practices.

2.2. Data Collection
2.2.1. Leaf Hyperspectral Data Measurement

Spectral data of fully expanded leaves at the top of the maize shoot and leaves at the
ear position were obtained from growth stages V12, R1, and R3, respectively (Figure 1d).
Leaf reflectance data were measured using a leaf spectrometer CI-700s (CID Bio-Science,
Camas, WA, USA), with a spectral range of 360–1100 nm, sampling speed of 3.8 ms to
10 s, light deviations of <0.05% at 600 nm and 0.10% at 435 nm, resolution of 0.55–0.7 nm,
and full width at half maximum (FWHM) of 2.4 nm. The spectral reflectance results of
leaves have low signal-to-noise ratios in the spectral ranges of 400 nm to 460 nm and
1000 nm to 1100 nm, so these bands were excluded from this experiment. Additionally,
460 nm to 1005 nm was used as the raw hyperspectral band for subsequent analyses. To
ensure the use of the same parameters in different growth stages of maize and reduce the
influence of environmental factors and the instrument itself, ten maize plants were selected
from each plot and five parts of each leaf were selected for measurement and average
value calculation. Sampling was conducted from 10:00 a.m. to 12:00 p.m. Beijing time,
with calibrations every 5 min (100% reflectance was calibrated using the integrated BaSO4
white standard, 0% reflectance was calibrated using the black standard), and ten spectra
were selected per measurement. The average of ten spectral results was selected for each
measurement for further study.

2.2.2. Crop Biophysical and Biochemical Variable Measurement

Five maize plants were obtained at six growth stages to determine the leaf biomass
(LDM) and leaf nitrogen content (LNC) in each plot, among which five maize plants
were obtained from the V12–R3 stages, totaling three stages of leaf spectrum collection.
The sampling period is shown in Table 1, and the aboveground maize was divided into
different organs (stem, leaf, and ear portions) at each sampling period. The leaf samples
were dried at 105 ◦C for 30 min to inactivate the enzymes and dried at 80 ◦C to a constant
dry weight, and the LDM (t ha−1) was then measured. Dried samples were ground, passed
through a 1 mm sieve, and stored in paper bags for chemical analysis. All dried and
ground samples were digested with H2SO4-H2O2 according to the method proposed by
Thomas et al. [33], and then maize leaf nitrogen concentrations were determined using a
flow injection autoanalyzer (AA3, Bran and Luebbe, Norderstedt, Germany).

2.3. NNI Calculation

Maize leaf Nc was determined using Equation (1) [8]. In Equations (1) and (2), W
is the LDW, Nc is the leaf critical nitrogen concentration, and Na is the actual leaf LNC.
Moreover, a represents the leaf nitrogen concentration at an LDM of 1 t ha−1 and b is the
curve’s dilution factor. Therefore, the NNI can directly reflect the nitrogen nutrient status
of plants. If the NNI > 1, the plant has excess nitrogen nutrition; if the NNI = 1, the plant’s
nutritional status is optimal; if the NNI < 1, the plant is deficient in nitrogen [34].

Nc = aW−b (1)

NNI =
Na
Nc

(2)
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2.4. Effective Band Selection

In this study, the CARS algorithm was used to screen the spectral data of maize
leaves. CARS is a recently proposed variable selection method [35]. It combines Monte
Carlo sampling (MC) and the regression coefficient of the PLS model. In addition, it
uses a variable selection method according to the “survival of the fittest” principle based
on Darwin’s theory of evolution by nature and selects variables with a larger absolute
coefficient in the multiple linear regression model. Finally, a cross-validation method is
used to retain the subset with the smallest cross-validation root mean square error, which
is the combination of the effective wavelengths. Such an application of hyperspectral data
has proven to be very effective, as it can avoid overfitting when selecting variables for
modeling and thereby improve a model’s predictive ability [36,37].

After obtaining maize leaf hyperspectral data and ground data with a leaf hyperspec-
trometer, the effective band of the raw spectral bands was filtered using CARS. Then, the
reflectivity of the effective band was used as an input variable. Next, PLS, ANN, and
SVM were used to estimate the maize leaf NNI and compare the performance of the three
models. Finally, three machine learning regression procedures were run using Matlab2020b
(Math-Works, Natick, MA, USA).

2.5. Model
2.5.1. Partial Least Squares Regression

Partial least squares regression (PLS) is a commonly used spectral data modeling
method. It is suitable for analyzing multicollinear spectral datasets and high-dimensional
data and can effectively solve the problem of the number of independent variables exceed-
ing the number of samples [38]. At the same time, PLS regression has been demonstrated
to be a general multivariate statistical regression method for modeling crop biochemical
components using spectral data [2]. It successfully combines multiple linear regression,
principal component, and correlation analyses. It can better solve the multicollinearity
problem between variables [39].

2.5.2. Artificial Neural Network Algorithm

Artificial neural networks (ANN) are an important advance in artificial intelligence.
After years of research and development, methods based on ANN have played an important
role in remote sensing, image recognition, and information retrieval. ANN regression is a
nonparametric linear model that uses neural network layered propagation to simulate the
reception and information processing of the human brain. Neural network regression is a
gradient-based learning method that includes input, hidden, and output layers and network
initialization [40]. The final weights are obtained by continuously updating the error values
and weights. Previous studies have shown that ANNs are suitable for regression modeling
data types with large sample sizes [41]. However, ANNs are susceptible to overlearning
owing to the network structure and sample complexity, which reduces generalizability.
Thus, neurons are an important parameter in neural network regression models. The more
neurons, the higher the accuracy of the model and the weaker its generalizability.

2.5.3. Support Vector Machine Algorithm

Support vector machine (SVM) methods are a machine learning technique [42], and
support vector regression (SVR) is an important SVM application. Its principle is to find
an optimal hyperplane that minimizes the total deviation of all sample points from the
hyperplane and then fits all the data through the optimal hyperplane. In SVR, there are
four kernels: linear, polynomial, Gaussian, and sigmoid [43]. In this study, the linear kernel
was used, and its model performance is affected by the kernel parameter (gamma) and
adjustment parameter (C).
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2.6. Data Analysis
2.6.1. Training and Validation Datasets

A total of 144 samples were collected during the 2021 growing season, including three
measurement periods (V12, R1, and R3, with 48 samples each) and six nitrogen fertilizer
treatments (N0, N1, N2, N3, N4, N5). The entire sample dataset (144) was randomly divided
into a training set (96) and a validation set (48) according to a 2:1 ratio.

2.6.2. Statistical Analysis

In this experiment, the coefficient of determination (R2) and the root mean square error
(RMSE) were used to quantify the amount of variance explained between the established
relationships and the model’s accuracy. In general, the stability of the model is assessed
by comparing the difference in R2 and RMSE. R2 represents the fit between the predicted
value and the measured value. The higher the R2 value, the higher the accuracy of the
model prediction. RMSE represents the degree of deviation between the predicted value
and the measured value. The smaller the RMSE value, the higher the predictive accuracy
of the model. The calculation formulas are as follows:

R2 = 1− ∑n
i=1(yi − Pi)

2

∑n
i=1(yi − y)2 (3)

RMSE =

√
∑n

i=1(yi − Pi)
2

n
(4)

Here, Pi represents the predicted value of the regression model, y represents the
average value of the measured value, yi represents the measured value, and n represents
the sample size.

3. Results
3.1. Construction of Critical Nitrogen Concentration Dilution Curve Based on Maize LDM

This study selected eight summer maize cultivars to determine the Nc dilution curve
based on maize LDM. The LDM and LNC value ranges were 0.16–2.78 t ha−1 and 0.77–4%,
respectively (Figure 2). The data were used to calculate the leaf Nc value at each growth
stage. According to the three-step method proposed by Justes et al. [44], the LDM Nc
dilution curves were constructed for every cultivar. The values of the LDM Nc dilution
curves a (2.24–3.13%) and b (0.2–0.41%) and the R2 (0.699–0.861) for the eight studied
cultivars are shown in Table 2. The LDM dilution curves of the eight maize cultivars fit well
and are representative. At the same time, the difference in a and b values between different
curves is small. To further study the comprehensive evaluation model suitable for nitrogen
nutritional status among multiple agricultural populations, the data from all cultivars were
combined and a unified Nc dilution curve was fitted according to the following equation
(Figure 3):

Nc = 2.748LDM−0.296 (5)

Table 2. Dilution curve of the leaf dry matter (LDM) critical nitrogen concentration in maize between
different cultivars.

Cultivar a (%) b R2

JK999 2.83 0.34 0.705
XY335 2.62 0.41 0.802
MC121 2.94 0.29 0.702
JNK728 2.78 0.36 0.820

LY99 2.97 0.20 0.804
MC812 3.13 0.21 0.699
JK828 2.68 0.38 0.857
ZD958 2.24 0.35 0.861

Note: a is the Nc concentration for leaf dry matter (LDM) equal to 1t ha−1 and b is the decline in Nc concentration
with crop growth. R2 is the fitting accuracy of the curve.
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Figure 3. Summarized data from eight cultivars used to define the Nc dilution curve. Different
symbols denote Nc data points for different cultivars. The solid line represents the Nc dilution curve
(Nc = 2.75 LDW−0.3, R2 = 0.62), expressing the relationship between leaf nitrogen content (LNC) and
leaf dry matter (LDM).
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3.2. Leaf NNI
3.2.1. Statistical Results of Maize Leaf NNI Dataset

The NNI determination results are summarized in Table 3. The maximum and min-
imum values of the NNI in the training set and validation set were similar and had
similar ranges, indicating that the division of the dataset was reasonable. The training
set NNI ranged from 0.369 to 1.395, with a mean of 1.110 and a standard deviation of
0.228. The validation set range, mean, and standard deviation were 0.479–1.400, 1.123, and
0.226, respectively.

Table 3. Statistical overview of the maize leaf NNI dataset.

Sample Datasets Number of Samples Mean Max a Min b SD c

Entire dataset 144 1.110 1.400 0.369 0.228
Training dataset 96 1.103 1.395 0.369 0.228

Validation dataset 48 1.123 1.400 0.479 0.226
a Max: maximum; b Min: minimum; c SD: standard deviation.

3.2.2. Dynamic Changes of Maize NNI under Different Nitrogen Application Conditions

During V12–R3, the NNI value of maize leaves increased with nitrogen application
(N0–N5) (Figure 4). Moreover, the leaf NNI value showed a dynamic change: a parabolic
trend across the three key growth periods. The maximum for the six nitrogen fertilizer
treatments was reached at the R1 stage. The leaf NNI values of the V12, R1, and R3
stages were 0.498–1.380, 0.616–1.400, and 0.369–1.316, respectively. The average leaf NNI
of all cultivars was lower than 1 in the three growth stages without nitrogen application
(N0), indicating that maize growth without nitrogen application was affected by stress
(Figure 4). The NNI gradually increased with nitrogen concentration, reaching its maximum
under the N5 treatment. At the same time, owing to differences among cultivars, the NNI
values of individual cultivars under N1 and N2 treatments were less than 1, indicating
that different cultivars have different levels of nitrogen use efficiency and low nitrogen
tolerance. However, the overall trend was the same.
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3.3. Dynamic Changes in Maize Leaf Spectrum under Different Nitrogen Application Conditions

The spectral reflectance of leaves under different nitrogen fertilization treatments
significantly differed. However, there were similar trends in different growth stages (V12,
R1, and R3) (Figure 5). In the visible light band, the spectral reflectance of the N0 treatment
was higher than that of the nitrogen application, but there was no significant difference
among the different nitrogen application levels (N1–N5). In the near-infrared band, the
spectral reflectance increased with the increase in nitrogen application rate, and the spectral
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reflectance difference between different nitrogen application rates was greater in the near-
infrared band than in the visible light band. Compared with the visible light band, the
spectral reflectance in the near-infrared band was more sensitive to the nitrogen application
rate. These results aid in establishing the quantitative relationship between the leaf NNI
and leaf spectral reflectance features.
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3.4. NNI Estimation
3.4.1. Maize NNI Estimation Model Based on Full-Band Reflectance

Table 4 summarizes the results of the NNI regression model of maize leaves con-
structed based on full-band reflectance. Three machine learning methods (PLS, ANN, and
SVM) were used to construct NNI and full-band reflectance regression models of maize
leaves. Then, the validation dataset was used to estimate the leaf NNI quantitatively.
For the training dataset, the R2

train and RMSEtrain of the three regression models built by
machine learning were quite different, and the ranges of R2

train and RMSE values were
0.649–0.903 and 0.071–0.135, respectively. Thus, the three regression methods have certain
differences in the estimation of the maize leaf NNI, and thus, the more appropriate method
should be selected. As shown in Figure 6, the ANN regression method produced a relatively
high R2

train (0.903) and a low RMSEtrain (0.071). The SVM regression method achieved the
second-best results (R2

train = 0.887, RMSEtrain = 0.077). Nevertheless, based on the results
in the validation dataset, the SVM regression method (ALL-SVM) achieved a high R2

val
(0.689) and a low RMSEval (0.126). In contrast, the ANN regression method (ALL-ANN)
performed the worst (R2

val = 0.622, RMSEval = 0.138), indicating that the model constructed
by this method has low stability in estimating the leaf NNI. Based on a comprehensive
analysis, the ALL-SVM method has the highest estimation accuracy and was the most
stable model among the three machine learning methods. Compared with the other two
methods, it is an ideal method for NNI estimation.

Table 4. Leaf NNI estimation results based on different band combinations and different regression
methods (PLS, ANN, and SVM).

Bands Numbers Method
Training Set Validation Set

R2 RMSE R2 RMSE

All bands 933
PLS 0.649 0.135 0.627 0.138

ANN 0.903 0.071 0.622 0.138
SVM 0.887 0.077 0.689 0.126

CARS 67
PLS 0.946 0.050 0.925 0.068

ANN 0.857 0.082 0.814 0.108
SVM 0.947 0.050 0.895 0.081
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3.4.2. Maize NNI Estimation Model Based on Effective Bands Reflectance

To further study the influence of different wavelength combinations on the estimation
of the NNI of maize leaves, this study used the CARS algorithm to perform effective band
screening on the full band of the raw spectrum. A total of 67 effective bands were selected
from 933 raw spectral full bands (see Supplementary Material, Table S1). Table 4 lists
the results of NNI models constructed with the PLS, ANN, and SVM methods. Figure 7
shows a scatter plot of the estimated NNI and actual NNI. NNI estimation accuracy and
stability using effective bands are significantly improved compared to full-band modeling.
It eliminates a large amount of invalid information and redundancy in the raw spectral
data, greatly reduces the model calculation time, and significantly improves the model
efficiency. The R2 values of the training sets for the PLS, ANN, and SVM methods are
0.946, 0.857, and 0.947, respectively; the corresponding RMSE values were 0.050, 0.082, and
0.050, respectively. Among them, the R2 values of the CARS-PLS and CARS-SVM methods
were higher than 0.9. At the same time, the validation dataset based on the CARS-PLS
method also obtained a relatively stable effect (R2

val = 0.925, RMSEval = 0.068), while the
CARS-SVM method was slightly less effective (R2

val = 0.895, RMSEval = 0.081). Thus, the
comprehensive analysis showed that CARS-PLS was the best method to estimate the NNI
of maize leaves. Detailed parameter settings in the three models based on the full band
and effective band are shown in Supplementary Material, Table S2.
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3.5. Model Accuracy for Different Cultivars, Growth Stages, and Nitrogen Treatments

The constructed NNI estimation model (CARS-PLS) was used to predict different
cultivars, growth stages, and nitrogen treatments separately and further verify the efficacy
of the model in NNI prediction of multiple cultivars and different treatments at different
growth stages. The results are summarized in Figure 8. The datasets were treated according
to nitrogen treatment (Figure 8a–f), cultivar (Figure 8g–n), and growth stage (Figure 8o–q)
division. In this analysis, only the performance of the CARS-PLS method was evaluated,
and the coefficient of determination (R2) was used to evaluate the model. For N4 (R2 = 0.53,
Figure 8e) and N5 (R2 = 0.58, Figure 8f), as the nitrogen application rate increased, the
NNI was more concentrated in the region greater than 1, resulting in insufficient prediction
ability of the model. However, under the low nitrogen treatment, the model was relatively
stable (Figure 8a–d). At the same time, the model developed in this study has a good
predictive ability for NNI prediction among cultivars (Figure 8g–n) and growth stages
(Figure 8o–q). The range of R2 among cultivars was 0.86–0.97, and the range of R2 in
the growth stages was 0.92–0.94. The NNI prediction model constructed using machine
learning combined with spectral band selection method based on multi-growth stages data
could realize NNI prediction among maize cultivars and multi-growth periods, but the
performance was insufficiently stable for different nitrogen treatments.
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under each of the different conditions.

4. Discussion
4.1. Comparison with Other Nc Dilution Curves

The Nc dilution curve is a method for diagnosing the nitrogen nutritional status of
crops based on the fast-growing relationship between crop nitrogen uptake dynamics
and dry matter accumulation [16]. The Nc dilution curve constructed in this study based
on the dry matter of the leaves of summer maize of various cultivars was as follows:
Nc = 2.75(LDM)−0.3. As the maize crop grew, the leaf Nc value began to decrease slowly.
Similar downward trends have been previously published for leaf nitrogen dilution curves
of crops such as rice, canola, winter wheat, and maize [10,11,45,46]. The value of parameter
a (2.75) estimated in the analysis was lower than that estimated by Zhao et al. based
on the dry leaf matter of summer maize (Zhengdan958 and Denghai605) (a = 3.45) [15].
This difference may be associated with variations in experimental materials or different
environmental and climatic conditions at the experiment site. The parameter of b represents
the continuous decrease of LNC with the growth of the crop, and its value determines
the rate of decrease of the curve. The b value of this study (0.3) was lower than the
values estimated by previous studies for whole maize plants (0.37, 0.39, and 0.48) [8,47,48].
This difference shows that the rate of nitrogen dilution in maize leaves is slower than
that in whole plants because leaves are the main site for photosynthesis, respiration, and
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transpiration. Hence, a large amount of nitrogen inside maize is transferred from the stem
to the leaves, resulting in a slow decline in LNC [15,46,49].

In addition, many researchers have developed various nitrogen concentration dilution
curves for maize based on different ecological points and crops [47,48,50,51]. The purpose
is to find a more accurate and reasonable evaluation system of maize nitrogen nutrition
that aligns with the actual production conditions. In this study, the nitrogen dilution curves
constructed using eight different maize cultivars and six nitrogen fertilization treatments
can better reflect the current situation of nitrogen nutrition during maize growth. Therefore,
the nitrogen dilution curve based on LDM provides a reference value for the in-depth
understanding of the nitrogen nutritional status of maize and lays a foundation for future
non-destructive monitoring of the maize NNI.

4.2. Response of NNI to Leaf Spectra

As a diagnostic indicator of crop nitrogen nutrient status, the NNI includes two group
indicators: dry matter weight and nitrogen concentration. Thus, it has been considered
a current and reliable method for diagnosing plant nitrogen status, which provides an
effective way to ensure food production and quality [22,44]. However, the experimental
data of this study covered different nitrogen treatments, growth stages, and cultivars, which
gave the experimental data wide variation. The training set NNI range was 0.369–1.395,
and the validation set NNI range was 0.479–1.400. Thus, there are differences in the datasets
(Table 3). Notwithstanding, this result is similar to those of Kokaly and Marten et al. [52,53],
demonstrating that the wide variation of the present dataset helps to build stable models.

In addition, the reflectance of maize leaves showed a regular change under different
nitrogen application conditions (Figure 5). The spectral reflectance of all nitrogen treatments
had similar response patterns. With the increase in nitrogen application rate, the reflectivity
in the near-infrared region (750–1000 nm) gradually increased. In the visible light region
(460–710 nm), the reflectance of leaves under no nitrogen application was higher than that
under nitrogen application (Figure 5), and there was no significant difference between
nitrogen application treatments. This result is consistent with the findings of Zhao et al. [22].
Barłóg et al. showed that an adequate supply of nitrogen fertilizers promoted crop growth
and increased leaf greenness [54]. The opposite results were shown in the near-infrared
wavelength range, where there was a clear difference between different nitrogen application
rates owing to internal scattering in the leaves, in agreement with the findings of Yao and
Walburg et al. [55,56]. These results provide a theoretical basis and technical route for the
rapid and accurate construction of the quantitative relationship between maize NNI and
leaf reflectance spectra.

4.3. Optimal Model for Maize NNI Estimation

Choosing an appropriate method to estimate the NNI is critical for quantitative moni-
toring and inversion of crop nitrogen nutrient levels [24,57]. Under field conditions, the
changes in leaf structure and physiological and biochemical indicators differed among
growth stages, cultivars, and nitrogen treatments. These differences likely caused differ-
ences in spectral characteristics at the level of crop leaves. The present results show that
the field in situ leaf spectroscopic method developed in this study can be applied to maize
NNI estimation, obtaining relatively ideal results. The best monitoring model for NNI
estimation was constructed using the CARS band selection method (Figure 7). Li et al.
showed that CARS could eliminate invalid information variables or select effective bands,
thereby establishing a model with stable performance and high accuracy [35]. Because
the NNI is determined by both nitrogen content and biomass, the spectral features related
to the NNI are closely related to these two traits [22]. In this study, a total of 67 spec-
tral effective bands were identified by the CARS algorithm to estimate the maize NNI,
and 13 wavelengths were identified in the range of visible light (400–710 nm), which is
closely related to the absorption wavelengths of pigments in crops. There was a strong
correlation between the nitrogen nutritional status of crops and chlorophyll concentration.
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Therefore, the spectral characteristics of crop chlorophyll are directly related to nitrogen
nutrition status [58,59]. The model identified 43 wavelengths in the near-infrared range.
Zhao et al. have demonstrated that there is a sensitive spectral band related to the NNI in
the near-infrared region, and there is a strong linear relationship between the NNI and
the spectral index established by using the wavelength in the sensitive region [22]. At
the same time, a total of 11 wavelengths were identified in the red edge region by this
model. Owing to the strong absorption of chlorophyll at 680 nm and multiple canopy
scattering at 780 nm, the reflectance at the red edge position abruptly increased. Read et al.
found that the correlation between cotton leaf quantity and reflectance was highest in the
red edge (700–710 nm) region [60]. Zhao et al. [61], by studying the relationship between
nitrogen concentration and reflectance in sorghum leaves, showed that the first derivative
of red reflectance centered at 730 or 741 nm obtained the best fitting accuracy, R2 = 0.73.
In summary, the CARS algorithm was used to screen out many invalid spectral variables
and redundant information in the raw band data, and the effective information related to
crop nitrogen nutrition was retained, which not only reduced the impact of invalid spectral
information on the results but also effectively improved the processing efficiency of the
model. Better prediction results are obtained by using meaningful partial bands rather than
continuous bands or combinations of bands. Compared with full-band modeling (ALL-PLS,
ALL-ANN, and ALL-SVM), modeling with effective bands after CARS screening yielded
higher R2 values (0.925, 0.814, and 0.895) and lower RMSE values (0.068, 0.108, and 0.081).

To further verify the stability of the model under different conditions, the experimental
dataset was divided according to variety, growth period, and nitrogen treatment, and then
the stability of the model was tested. The CARS-PLS model had a relatively ideal predictive
ability among different varieties (Figure 8g–n), and the model accuracy R2 value ranged
from 0.86 to 0.97, indicating that the effect of the CARS-PLS model was not easily affected
by variety differences. The validation results of the three independent growth period
datasets also obtained ideal results, with R2 values above 0.9 (Figure 8o–q), which basically
met the needs of nitrogen nutrient level evaluation of field crops. Further tests are needed
to verify whether this model is applicable to the early growth stage (jointing or seedling
stage) of maize. In addition, for different nitrogen application treatments (Figure 8a–f), the
accuracy of the model under N4 and N5 nitrogen application treatments was lower, with
R2 values of 0.53 and 0.58, respectively. This may be owing to the difference in nitrogen use
efficiency among different cultivars, and the optimal nitrogen application rate of different
cultivars differed.

Thus, the field in situ leaf spectroscopy method developed in this study can be applied
to evaluate the nitrogen nutrient status of maize and has achieved good results among
different varieties, during critical growth stages, and under different nitrogen fertilizer
application levels. In actual production, determining the nitrogen nutritional status of
crops accurately and quickly has always been an urgent problem for breeders and pro-
duction managers. The in situ leaf spectroscopy developed in this paper provides a rapid,
economical, and non-destructive method for the analysis of the nitrogen nutrient status of
maize, offering a new technical means for the selection of nitrogen-efficient maize varieties
and for informing nitrogen management in the field.

5. Conclusions

In this study on summer maize, the Nc dilution curve based on the dry matter of
maize leaves was constructed according to the nitrogen dilution theory of crops. Thus, the
maize NNI can be accurately estimated using in situ leaf spectral reflectance in the field.
A total of 67 effective bands were identified by the CARS method. Combining effective
bands and machine learning was found to improve the model’s accuracy and operating
efficiency. Among the three methods studied, the CARS-PLS method yielded higher R2

values (R2
val = 0.925) and lower RMSE values (RMSEval = 0.068) between measured and

estimated NNI compared to CARS-ANN and CARS-SVM values, indicating that CARS-PLS
is the best method for NNI estimation. In addition, the CARS-PLS model also showed a
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strong NNI estimation among cultivars (R2, 0.86–0.97) and growth stages (R2, 0.92–0.94).
Although the model in this study was constructed using data collected from different
cultivars, different growth stages, and different nitrogen application rates, data from only
one growing season were obtained. Future studies should validate the model by applying
it to a wider range of datasets, including different ecological environments, different
growing seasons, and different crops, to further validate the performance and robustness
of the method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture12111839/s1, Table S1: Result of effective band screening based on CARS method.
Table S2: Parameter setting of three regression models (PLS, ANN and SVM) based on different
band combinations.
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