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Abstract: Parthenium weed (Parthenium hysterophorus L. (Asteraceae)), native to the Americas, is in
the top 100 most invasive plant species in the world. In Australia, it is an annual weed (herb/shrub)
of national significance, especially in the state of Queensland where it has infested both agricultural
and conservation lands, including riparian corridors. Effective control strategies for this weed
(pasture management, biological control, and herbicide usage) require populations to be detected and
mapped. However, the mapping is made difficult due to varying nature of the infested landscapes
(e.g., uneven terrain). This paper proposes a novel method to detect and map parthenium populations
in simulated pastoral environments using Red-Green-Blue (RGB) and/or hyperspectral imagery
aided by artificial intelligence. Two datasets were collected in a control environment using a series
of parthenium and naturally co-occurring, non-parthenium (monocot) plants. RGB images were
processed with a YOLOv4 Convolutional Neural Network (CNN) implementation, achieving an
overall accuracy of 95% for detection, and 86% for classification of flowering and non-flowering
stages of the weed. An XGBoost classifier was used for the pixel classification of the hyperspectral
dataset—achieving a classification accuracy of 99% for each parthenium weed growth stage class; all
materials received a discernible colour mask. When parthenium and non-parthenium plants were
artificially combined in various permutations, the pixel classification accuracy was 99% for each
parthenium and non-parthenium class, again with all materials receiving an accurate and discernible
colour mask. Performance metrics indicate that our proposed processing pipeline can be used in the
preliminary design of parthenium weed detection strategies, and can be extended for automated
processing of collected RGB and hyperspectral airborne unmanned aerial vehicle (UAV) data. The
findings also demonstrate the potential for images collected in a controlled, glasshouse environment
to be used in the preliminary design of invasive weed detection strategies in the field.

Keywords: drones; image-processing; machine-learning; spectral-signature; weed-detection

1. Introduction

Biological invasion is a global environmental change phenomenon, often leading to
disruptions of ecosystem goods and services. Biological invasion begins with the intro-
duction of organisms from their native range into a new environment followed by periods
of sequential adjustments of colonisation/extinction/recolonisation, establishment and
naturalisation [1–5]. Where conditions are favourable the exotic species will increase dra-
matically in abundance and geographical distribution to become invaders with significant
impact on nature conservation and agriculture. In Australia, like most regions around the
world ~30,000 species have been introduced of which ~10% have become invaders [2,5].
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One of such invaders, with its origin in the Americas, is the annual plant, (Parthenium
hysterophorus L.) (henceforth referred to as parthenium weed).

In Australia, parthenium weed grows as an annual, herbaceous/shrubby invasive
species plant of national significance [1,2]. Parthenium weed has a deep-penetrating taproot
system and an erect shoot system [1]. Young plants form a rosette of leaves close to the
soil surface. Mature stems are greenish and longitudinally grooved, covered in small stiff
hairs (hirsute), and become much-branched at maturity. The alternately arranged leaves
are simple with stalks (petioles) up to 2 cm long and form a basal rosette during the early
stages of growth. The lower leaves are relatively large (3–30 cm long and 2–12 cm wide)
and are deeply divided (bi-pinnatifid or bi-pinnatisect) [3]. Leaves on the upper branches
decrease in size and are also less divided than the lower leaves. As parthenium weed
matures, the plant develops many branches on its upper half, and may eventually grow up
to two metres. With sufficient rainfall and warm temperature, parthenium weed has the
ability to germinate and establish at any time of the year. Flowering usually commences
4–6 weeks after germination and soil moisture seems to be the major contributing factor
to flowering [3]. Parthenium weed is a prolific seed producer and a fully grown plant can
produce up to 157,000 seeds in its lifetime, though the majority of plants produce less than
4000 seeds [3]. Seeds persist and remain viable in the soil for reasonably long periods. The
prolonged longevity of seeds of parthenium weed in the soil, coupled with allelopathy
effect of varying growth stages of the plant on native plants, efficient dispersal via wa-
ter (especially during flood) contribute to its spread and hence high invasiveness [2,4,5].
Parthenium weed has an economic impact on Australia’s agriculture and landscape of
~A$129 million a year [1]. This includes control costs and production losses to the agri-
cultural sector. Control options such as pasture management, use of biological control
agents, and herbicides exist for managing the weed [6]. However, many of these tactics are
limited by their potential environmental impact and the sheer scale of the infestations [1,7].
Blanket herbicide spraying has been shown to adversely affect non-target plant species,
and can reduce soil fertility; such chemicals also have the potential to migrate into the
surrounding environment, impacting animal species and disrupting food chains [7]. This
method of control is also economically unfeasible. Site-specific weed management (SSWM)
options using Unmanned Aerial Vehicle (UAV) imagery for weed detection and control
have been shown to reduce herbicide use by 14 to 39.2% in Maize fields when compared to
conventional uniform blanket spraying [8]. In this example, an accurate weed map was
necessary for efficient SSWM which highlights the importance of an accurate and robust
detection method. Autonomous detection methods using red, green, blue (RGB), and
hyperspectral imagery (HSI) for weed detection have shown very promising results in both
crop and pastoral environments [9–13].

Attaining significant accuracy in automated weed recognition is challenging, but is
gaining wide currency [9–12]. Some work has been done and reported on automated
parthenium weed identification and mapping in natural and agricultural settings. In
South Africa, at the landscape level, the spatial and temporal distribution of parthenium
weed in response to rainfall using multi-year SPOT (Satellite Pour l’Observation de la
Terre) data and random forest classification algorithm (one of several machine learning
approaches) was explored with the general finding that the satellite images should be
combined with UAV to provide higher spatial resolution data for improved detection
accuracy [10]. The use and importance of TPOT (Tree-Based Pipeline Optimization Tool)
and other Convolutional Neural Network (CNN) as effective machine learning tools for
selecting and fine-tuning algorithms for parthenium weed discrimination and monitoring
in pastoral field has also been demonstrated [9]. Similarly, the use of hyperspectral data
for identification of optimal wavelength that are sensitive to discrimination of parthenium
weed have been explored [9,10]. In most of the above cited cases, overall identification
and classification accuracies varied between 68–86%, implying that approaches that may
yield higher classification accuracies are still necessary [see also 9] for parthenium weed.
In addition, there are no reported studies that have attempted to use machine learning to



Agriculture 2022, 12, 1838 3 of 23

identify and classify the discernable growth stages (seedling, rosette, and reproductive
adults) of parthenium weed.

RGB imagery, captured using a digital camera, imitates the way the human eye
perceives colour [14]. A typical digital single-lens reflex (DSLR) camera is equipped with
a Bayer filter system consisting of a mosaic of red, green, and blue filters embedded on
the image sensor [15]. Spatial resolution is another important factor for RGB imagery,
particularly for object identification, and refers to the area where individual measurements
can be made [11]. This is measured by ground sampling distance (GSD) which is the area
in the real reference plane that is covered by a single pixel in the image. By combining an
image sensor with a high number of pixels and a small scene size (often in millimeters),
several features of interest can be easily discerned [16].

Object detection is the procedure of determining the instance of the class to which
the object belongs and estimating the location of the object by outputting the bounding
box around the object [17]. This means an object detector needs to distinguish objects of
certain target classes from backgrounds in the image with precise localization and correct
categorical label prediction to each object instance [18]. Convolutional Neural Networks
(CNNs) have the capacity to learn very complex functions from data with minimal domain
knowledge. Combined with large-scale labeled data and graphic processing units (GPUs)
with high computational capacity, CNNs have been particularly successful for object
detection [19].

Hyperspectral imaging is an analytical technique based on the study of the chemical
and physical behaviour of the reflected or scattered light coming from a specific surface [20].
This type of imaging goes beyond the conventional image processing and spectroscopy
because of its capability to obtain spatially resolved spectra from an object [21].

The objective of image classification is to recognize and characterize the classes, as
a unique colour or gray level, which represents some features. These dissimilar colour
classes can also be used to show the spectral characteristics of every unique pixel within
the class [22]. This analysis obtains a colour map that distinguishes materials with different
spectral profiles.

In this study, deep-learning algorithms and decision-tree-based protocols are applied
to the challenges of automated detection and growth stage classification of invasive alien
plants, in our case, to parthenium weed. In this context, we explore the viability of RGB and
HSI data of parthenium weed captured in a control environment to aid in its field mapping
procedure. Thus, our aim is to provide a platform for more efficient and accurate detection
and mapping of parthenium weed using its captured images (in various growth stages:
seedlings, rosettes, and reproductive adults) and subjected them to artificial intelligence
(AI) algorithms. If the trial is successful, it will lead potentially to the optimisation of
management protocols as the weed control cost can be minimised and efficacy improved
simultaneously. The findings also have application potential in more complicated pasture
and cropping environments where parthenium weed (and other invasive alien plants) are
causing significant problems.

2. Materials and Methods
2.1. Preamble

It is hypothesized that deep-learning algorithm of Yolov4 (You Only Look Once
version 4) and decision-tree machine learning of XGBoost (Extreme Gradient Boosting ver-
sion 1.3.3) protocols when applied to their respective data types (RBG and HIS, respectively)
will allow for highly accurate detection and growth stage classification of parthenium weed
in a controlled environment, and that if successful each technique has the potential to
extend to farm-scale and landscape scenarios. In this context, parthenium weed of different
growth stages and non-parthenium plants (grasses) were imaged using RGB and HSI
cameras. Non-parthenium plants that occur naturally with the weed in the field, includ-
ing mature kangaroo grass (Themeda triandra Forssk.), and desert bluegrass (Bothriochloa
ewartiana (Domin) C.E. Hubb.) were either interspersed with weed and photographed



Agriculture 2022, 12, 1838 4 of 23

(RGB case) or photographed individually and interspersed digitally (HSI case). Plants
were interspersed in this way to simulate how these images would look if captured in
the field. There were 665 unique RGB images captured in this process, and these images
were labeled with a class (a unique designation for a group of objects) for parthenium
plants and a class for parthenium flowers. The combined HSI image was generated and
digitally combined to create a combined image, and this was labeled with six classes (so as
to separate unique materials)—three for the parthenium weed growth stages of seedling,
rosette, and flowering adult, one for the non-parthenium plants (grasses), and two classes
for the soil in the pots and concrete ground the pots sat on. Respective datasets were then
used to train a Yolov4 detector and an XGBoost classifier (a decision-tree-based ensemble
machine learning algorithm that uses a gradient boosting framework). The procedures for
the capture and analysis of the RBG and HSI datasets are given below.

2.2. RGB Dataset Preparation

The RGB dataset was created with the aim of simulating what is obtainable in a pas-
toral environment as closely as possible. Plants were grown from seeds inside a secure
temperature-controlled (27/22 ± 2 ◦C, day/night) glasshouse at the Ecosciences Precinct,
Dutton Park (ESP), Brisbane, Australia by Biosecurity Queensland (BQ) staff of the Queens-
land Department of Agriculture and Fisheries. The plants included parthenium weed
at three distinct growth stages, and control plants consisting of several growth stages
of kangaroo grass (Themeda triandra), and desert bluegrass (Bothriochloa ewartiana). The
parthenium weed growth stages used were seedling (<1-month-old), rosette (1–2 months
old), and flowering (2–4 months old; see Figure 1). Seedlings are parthenium weed plants
that had not developed the rosette structure, rosette included established parthenium
weeds without flowers, and flowering plants included established reproductive parthe-
nium weeds with flowers and/or seeds. In total 8 seedling plants, 6 rosette plants, and
12 flowering plants made up the dataset as well as the 12 individual plants of the grass
species mentioned above.

Figure 1. Aerial photos of the three parthenium weed growth stages of (a) seedling, (b) rosette,
(c) flowering adult plant, and co-occurring monocot plants of (d) desert bluegrass (Bothriochloa
ewartiana) and (e) kangaroo grass (Themeda triandra).

On 4 March 2021, a 1.5 m × 2.25 m area was set up with direct sun exposure outside
the glass-house area of ESP, Dutton Park, Brisbane, Australia. Images were captured using
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a Nikon D2 with a 24–70 mm lens and a focal length of 70 mm. Seedling and rosette plants
were imaged first, beginning with no plants in the arrangement and gradually increasing
up to five plants per growth stage for imaging. This step was then repeated, first with
two non-parthenium or control plants (grasses) up to five control plants. This process
was then repeated for flowering plants and finally for a combination of seedlings, rosettes,
and flowering plants of the parthenium weed. After these structured arrangements were
captured, more complicated arrangements with higher numbers of parthenium weeds of
each growth stage and higher numbers of non-parthenium plants were imaged. These
complicated arrangements also included high plant occlusion to mimic overlapping which
is common in pastoral environments. The resulting dataset contained 665 unique images
with parthenium weed and non-parthenium plants in unique arrangements. On 18 March
the same process as above was used again to capture another RGB dataset that is completely
unique to the training and validation dataset. This resulted in a unique test dataset of
94 images.

2.3. RGB Image Processing

Processing of the RGB images first required the images to be accurately labeled.
Labeling was applied to only parthenium weeds with control plants remaining unlabeled.
The label convention used was one that grouped flowering and non-flowering parthenium
weeds into a single class and a second class for individual flowers. Plants of each growth
stage were combined in this way due to their visually similar characteristics while the
flower class was used to detect the presence of flowers which was then used to classify
flowering and non-flowering plants. Parthenium seedlings remained unlabeled due to
their visually indistinct features and very small size (see Figure 1).

Once labeled, the images were tiled or broken up into smaller images of 1024 × 1024 pixels
so they could be used to train a Yolov4 detection network. This size was chosen to reduce
the effect of down-sampling done by the detection network whilst ensuring the largest
objects could still be represented in a single image, as shown in Figure 2. Consecutive rows
and columns, seen below (Figure 2b), also have a 50% overlap. This was done so that each
plant would be more likely to fall towards the center of the tile and so entire plants could
be represented with a single bounding box. This also allowed for the removal of bounding
boxes that fall on small fractions of a plant as a result of the tiling process.

After tiling each image, all tiles were checked to remove any inaccurate labels created
during the tiling process. Augmentation- a technique of alternating the existing data to
create more, unique data for the model training process- was implemented as it provides
two benefits in the training stage: (1) it reduces overfitting probabilities by increasing
the variability of the features used to make detections; and (2) it increases the size of
the training dataset and hence the number of unique objects labeled. Geometric and
radiometric augmentations (techniques that can be used to artificially expand the size of
a training dataset by creating modified versions of images in the dataset) were applied
randomly within predetermined bounds so that all augmented images do not misrepresent
how the parthenium weed plants naturally occurs. The augmentation parameters and
examples can be seen in Table 1 and Figure 3, respectively. The tiling process resulted
in a dataset of 27,230 images. This set of images was randomly split using a ratio of 8:2
resulting in a training set of 21,784 images and a validation set of 5446 images. The training
set of 21,784 images was then augmented which doubled the size of the training set to
43,568 images. This gives a training to validation ratio of 0.875:0.125, respectively. The
second set of independent RBG images taken two weeks after the initial image capture (see
above, i.e., RBG data preparation section) served as the test dataset (a total of 4230 once the
images were tiled) and were used to benchmark the performance of the trained detector
using images the detector has never seen before.
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Figure 2. Example of a raw image captured (a), and the resulting 1024 × 1024 tiles with 50% overlap
between consecutive rows and columns (b).

Table 1. A list of image augmentations applied to the dataset and their descriptions.

Augmentation Description

Brightness Changes in how reflective each pixel appears.
Contrast Changes in brightness between pixels.

Saturation Changes in intensity and purity of a pixel.
Hue Changes in the actual colour of a pixel.

Rotation Changes in the angle of the image.

Reflection Reflection of one half of the image to the other half about the horizontal or
vertical axis.

Scale Changes in image size.
Shear Slants the shape of the image either in the x or y direction

Translation Moves the image in the x and/or y direction.

2.4. Yolov4 Modelling

To test the performance of current state-of-the-art (SOTA) detectors, several benchmark
datasets have been created. Of these, the Microsoft common objects in context (MS COCO)
dataset was designed for the detection and segmentation of objects occurring in their
natural context [23]. Yolov4 is a single-stage detector that boasts a mean average precision
(mAP) of 65.7% at a detection speed of ~65 frames per second (FPS) when benchmarked on
the MS COCO dataset [24]. Yolov4 is one of the few high-performing detectors capable of
real-time object detection which is above 20fps and hence was used in this study [18].

YOLOv4 is a one-stage detector consisting of a CSPDarknet53 backbone, SPP addi-
tional block, and PANet path-aggregation neck with YOLOv3 dense predictor for the head
as its architecture [24]. The structure of Yolov4 can be seen below in Figure 4.
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Figure 3. Examples of augmented images with all augmentation types applied randomly within
preset bounds.

Figure 4. Yolov4 structure (adapted from [24]: Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-J.M. YOLOv4
Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934, with permission from
Cornell University).

The CSPDarknet53 backbone involves applying a cross-stage partial network of
Wang et al. on the Darknet-53 network developed by Redmon & Farhadi [25,26]. Darknet-
53 performed on par or even better in terms of accuracy, took fewer floating-point operations
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to train, and performed faster when compared to ResNet-101 and ResNet-153. CSPNet
reduced computations by up to 20% with equivalent or higher accuracies when applied to
backbones such as ResNet, ResNeXt, and DenseNet.

For the neck, the spatial pyramid pooling (SPP) additional block developed by
He et al. eliminates the need for a fixed-size input image [27]. It does this by comput-
ing feature maps from entire images once and generating fixed-length representations
for training. SPP has been shown to improve the accuracy of detection networks such as
R-CNN and vastly improve processing speed when generating detections. The other part
of the Yolov4 neck is PANet path-aggregation developed by Liu et al. [28]. This works by
shortening the information path between lower layers and topmost feature levels. It does
this by linking feature grids and all feature levels to make useful information in each level
propagate directly to following proposal subnetworks. PANet path-aggregation boasts
higher mean average precisions than Mask R-CNN on COCO datasets and ResNet-50 on
the MVD dataset.

Finally, the head or dense predictor uses Yolov3 to produce bounding boxes based on
dimension clusters as anchor boxes and thus predicts four coordinates for each box [26].
These predicted bounding boxes are compared to the ground truth bounding boxes and
the sum of the squared error loss is used to determine the gradient for regression. Using
logistic regression, the predicted bounding box that overlaps with the ground truth the
most is chosen. Classes are then predicted using independent logistic classifiers and binary
cross-entropy loss. This allows for more accurate class predictions when objects of different
classes overlap. Three different scales are used when predicting bounding boxes so that
features at different scales can be extracted and combined for a robust feature map. This
approach allows for more meaningful semantic information from unsampled features
and finer-grained information from earlier feature maps. Lastly, Darknet-53, consisting
of 53 convolutional layers is used for the feature extractor. The convolutional layers are
successive 3 × 3 and 1 × 1 layers with shortcut connections.

2.5. HSI Dataset Preparation

For the present study, a Headwall Nano-Hyperspec visible and near-infrared (VNIR)
image sensor which is a type of push-broom or line scanner, optimized for UAVs, was
used. With this scanner, the hyperspectral information is obtained from contiguous lines
of the sample by relative movement between the sample and the scanner [21]. From
this, hyperspectral reflectance information is obtained and can be used to determine the
structural and biochemical properties of the sample [29]. The scanner machine was set up
inside the ESP glasshouse with some filtering of ultraviolet light (UV) and a bright light
source on one side of the scanner to increase the light available to the scanner. The same
parthenium weed and non-parthenium plants (grasses) from the RGB dataset were used
to create this hyperspectral dataset as well as another monocot (Navua sedge—Cyperus
aromaticus (Ridley) Mattf. & Kukenth) that was not included in the RGB dataset. One or two
parthenium weed plants of the same growth stage were scanned at a time until all individual
parthenium weed of each growth stage had been scanned (Figure 5). Each control plant
(bluegrass [B. ewartiana], kangaroo grass [T. triandra] or Navua sedge [C. aromaticus]) was
also scanned individually.

2.6. HSI Image Processing

The hypercubes generated from the line scanner include 274 spectral bands from 395.794 nm
to 1002.02 nm. The first processing step was to convert the raw pixel radiance values to
reflectance. This is necessary to account for variations in available/reflective/impinging/
absorbed light when capturing the hyperspectral image [30]. This is done by includ-
ing a material with a known reflectance in the hypercube and using this to generate a ratio
between the illuminating light power and the reflected light power (Figure 5). This can
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then be applied to the spectral measurements of each pixel in the hypercube following
the equation.

R(x, λ) =
Pr(x, λ)

Pi(x, λ)
(1)

where R(x, λ) is the reflectance at wavelength λ for the location x, Pr(x, λ) is the reflected
light power from the object, and Pi(x, λ) is the illuminating light power.

Figure 5. Hypercubes of the three parthenium weed growth stages (a) seedling (b) rosette
(c) flowering adult.

Upon inspection, there were some bands that included significant noise, so it was
necessary to remove these bands to ensure these bands did not degrade the analysis of
the hypercube. These bands included 395.794–426.883 nm and 999.798–1002.02 nm. The
hypercubes were then reduced to their regions of interest (ROI) which correspond with
the plants in those images. This adjustment procedure eliminates unnecessary pixels that
do not include plant samples, reducing the size of the hypercube file and unnecessary
complexity. Filtering was performed to remove unwanted noise and generate a more
accurate spectral measurement. Filtering methods include Savitzky-Golay spectral filtering
with a window length of 25, a polynomial order of 9, and Gaussian filtering with a kernel
size of 61. Spectral measurements are represented in the OKLAB colour space. Some
examples of the filtered ROIs of parthenium weed plants are seen in Figure 6.

Using custom python code developed by one of the authors (Juan Sandino), the
filtered and reduced hypercubes of parthenium weed plants and non-parthenium plants
were combined into a larger image in a similar way that the RGB images were manually
combined. Non-parthenium plants made up the background of these combined images
and the parthenium weeds were superimposed on top. This means that there is no natural
plant occlusion which impacts how closely these images mimic a real field. A combined
image can be seen in Figure 7.

RGB representations of the combined hypercubes were then generated so that label
masks could be made. These masks provided the classifier with training and validation
data so that it could generate a trained model. This process involved creating an individual
colour mask for each material in the hypercube. Six distinct colour masks were created
consisting of flowering (red), rosette (cyan), seedling (magenta), background grass (yellow),
concrete (blue), and soil (grey). Effort was made to label as little as possible whilst achieving
accurate pixel classifications so that significant test pixels were available to demonstrate
classifier performance. The labeled counterpart of Figure 7 can be seen in Figure 8. At this
point, the XGBoost classifier could be trained and evaluated.
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Figure 6. Filtered regions of interest (ROI) of the three parthenium growth stages: (a) seedling,
(b) rosette, and (c) flowering adult.

Figure 7. Combined hypercube with seedling, rosette, and flowering parthenium weed plants over
non-parthenium plants.



Agriculture 2022, 12, 1838 11 of 23

Figure 8. Combined hypercube with label mask.

2.7. XGBoost Modelling

Many different classification methods have been applied to hyperspectral image (HSI)
classification with very good results, e.g., [31–33]. XGBoost (version 1.3.3), developed by
Chen & Guestrin, is a scalable tree boosting system that boasts impressive performance in
many machine learning benchmarking competitions [34]. Based on tree boosting, which
has been shown to give state of the art (SOTA) results on many classification benchmarks,
XGBoost’s scalability allows it to be applied to large datasets without significant computer
hardware [35].

This is made possible by XGBoost’s unified approach to gradient tree boosting, ex-
ploiting several well-developed and novel systems to fit a variety of problem types. These
include a novel tree learning algorithm for handling sparse data, a weighted quantile
sketch procedure for handling instance weights in approximate tree learning, parallel and
distributed computing, enabling quicker model exploration and out-of-core computation
allowing hundreds of millions of examples to be processed efficiently [35].

2.8. Performance Metrics

The metrics used to evaluate the performance of the Yolov4 algorithm include true
positives (TP), false positives (FP), true negative (TN), false negatives (FN), precision, recall,
F1-score, and accuracy. True negatives are excluded as a performance metric for parthenium
weed detection as they are not relevant in object detection problems; however, they are
relevant for the classification of the flowering/non-flowering and so have been included in
the latter. As for the XGBoost classifier, precision, recall and F1-score are the metrics used.

True positives are simply the number of correct detections; similarly, false positives
are incorrect detections. False negatives are the number of objects not detected; however
true negatives are unique. True negatives apply when an object, for example, a detected
parthenium weed can either be one class or another; in this case flowering or not flowering.
True negatives do not apply to object detection as this includes location information and
so becomes infinite. They do apply to classification which is the case when determining
flowering and non-flowering status as the location of the parthenium weed plants has
already been determined. In this case, a true negative is a plant correctly identified as
non-flowering, or having no flowers detected, and a true positive is a flowering plant with
detected flowers.
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“Precision” describes the proportion of positive identifications that are correct. A
high precision value says that of the detections made, very few of them are wrong. If
all detections made were correct the precision score would be 1.0. “Recall” describes the
proportion of actual objects, in this case parthenium weed plants, that were identified. A
high recall value suggests that of the detectable parthenium weed plants in the data, almost
all of them were identified. If all parthenium weed plants in the dataset were detected, the
recall score would be 1.0. “F-1 score” is the harmonic mean of precision and recall; it is a
good measure of accuracy as it describes the relationship between precision and recall. If
one is high and the other is low, the F-1 score will be negatively impacted. A high F-1 score
implies high precision and recall scores, which suggest there are high TP and TN and low
FP and FN. Lastly, accuracy represents the number of correctly classified or detected objects
over the total number of correct and incorrect detections/classifications. The equations for
each of these metrics can be seen in Table 2.

Table 2. A list of performance metrics used to evaluate the Yolov4 and XGBoost algorithm perfor-
mance with as well as the equations to calculate each.

Performance Metric Equation

Precision TP
TP+FP

Recall TP
TP+FN

F1-score 2 ∗ Precision∗Recall
Precision+Recall

Accuracy (object detection) TP
TP+FP+FN

Accuracy (classification) TP+TN
TP+FP+TN+FN

2.9. Ordination

Another method of analysis used specifically for the hyperspectral data is ordination [36–38].
The primary purpose of this technique is the reduction of a high number of variables (in
this case, the spectra bands) that could differentiate parthenium weed from co-occurring
plant species; these reduced but unique set of variables represent as many characteristics as
possible of the phenomenon analysed in some latent variables [38]. This occurs through a
linear transformation of the variables that projects the original ones into a new Cartesian
system in which the variables are sorted in decreasing order of variance: therefore, the
variable with the greatest variance is projected on the first axis, the second greatest variance
on the second axis, and so on. The reduction of complexity occurs by limiting itself to
analysing the main (by variance) new variables. Unlike other (linear) transformations of
variables practiced in the field of statistics, in this ordination technique it is the same data
that determine the transformation vectors [36].

We normalised that spectra data and used common parametric analyses (ANOVA
and generalised linear modelling) and multivariate ordination technique of metric multidi-
mensional scaling (MDS) to detect differences in individual and mean spectra signature
of each of the three parthenium weed growth stages and non-parthenium (control) plant
species (Navua sedge, kangaroo grass and desert bluegrass). For mean spectral signatures,
data were grouped into bands of blue (400–500 nm), green (501–600 nm), red (601–700 nm),
near infra-red (700–900 nm) and infrared (>900 nm) bands. All ordination analyses were
performed on PRIMER version 7.0. software (PRIMER-E Ltd., Plymouth, UK).

3. Results
3.1. RGB—Yolov4

Parthenium weed detection accuracy was determined by the number of parthenium
weed plants with and without a parthenium weed class bounding box on any part of the
plant. Additionally, considered was the number of parthenium weed class bounding boxes
with no parthenium weed plants inside. A parthenium weed with at least one parthenium
weed class bounding box on any part of the plant was considered a true positive. Similarly,
a parthenium weed with no bounding box on any part of the plant was considered a false
negative. Finally, a parthenium weed class box with no part of a parthenium weed inside
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was considered a false positive. Growth stage classification was determined using a flower
class detector. It was decided that this would be a classification problem as the goal was
not to detect all flowers but to detect any flowers on a given flowering plant. If a flowering
plant had at least one or more of its flowers detected, it was considered a true positive.
If in that same group of correctly detected flowers, there were objects miss-classified as
flowers this was still considered a true positive as the miss-classifications will not add any
confusion in determining the flower status of that plant. Similarly, a non-flowering plant
with no flower detections on or near the plant that could not be associated with a flowering
plant was considered a true negative. If a flowering plant had none of its flowers detected it
was considered a false negative. If a non-flowering plant had flower detections on or near
it that could not be associated with a flowering plant, it was considered a false positive.
Some flower detections were made on non-flower objects, but they were sufficiently far
away from any plants to not cause any confusion when determining flower status and so
were ignored. Examples of the detections made can be seen in Figure 9.

Figure 9. Examples of a simulated orthorectified image with parthenium weed detections in red and
flower detections in blue.

The performance of the Yolov4 detector can be seen in Figures 10 and 11. The Yolov4
detector included a class for parthenium weed plants and a class for individual flowers
with the parthenium weed class being an object detection problem and the flowering class
being a classification problem. The Yolov4 detector achieved a detection accuracy of 94% for
parthenium weed plants and a classification accuracy of 86% for flowering or non-flowering
plants. All these detections were made on images unique to both the training and validation
sets using the same plants. These plants had undergone two weeks of growth before being
imaged for the test set and so were effectively unique to the plants used in the training and
validation sets.
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Figure 10. Confusion matrix depicting predicted parthenium weed/background class numbers vs.
true parthenium weed/background class numbers. The background includes control plants and no
plants. The resulting performance metrics are indicated in Table 3.

Figure 11. Confusion matrix depicting predicted flowering/non-flowering class numbers vs. true
flowering/non-flowering class numbers. The resulting performance metrics are indicated in Table 3.

Table 3. Performance metrics of the Yolov4 algorithm as a parthenium weed detector and as a
classifier of the weed into flowering vs. non-flowering status.

Metric

Detection Task Precision Recall F1-Score TP FP TN FN Accuracy

Object detection
Parthenium weed 0.95 0.99 0.97 549 27 N/A 3 0.95
Object classification
Parthenium Flower vs.
Non-flower 0.83 0.77 0.8 151 32 315 45 0.86

3.2. Hyperspectral—XGBoost

To evaluate the performance of the XGBoost classifier, a combined hypercube was
made with four parthenium flowering plants, six rosettes, and four seedlings as well as all
non-parthenium hypercubes included in it. The pixel classification performance can be seen
in Table 4. The associated labels can be seen again in Figure 8, and the predicted pixels of
the combined hypercube can be seen in Figure 12. For the hypercube, the classifier achieved
a performance of 99–100% on the validation subset of labeled training data, represented
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by the colour masks. This translated to a significant amount of all labeled and unlabeled
pixels in each hypercube receiving a correct classification. In the combined hypercube, all
parthenium weed plants across the three growth stages can be easily identified.

Table 4. Performance metrics of the XGBoost as a hyperspectral pixel classifier.

Object Class Precision Recall F1-Score No. of
Labeled Pixels

Parthenium weed-Flowering 1.00 1.00 1.00 5556
Parthenium weed- Rosette 0.99 0.99 0.99 1806
Parthenium weed-Seedling 1.00 1.00 1.00 4580
Grass 1.00 1.00 1.00 3510
Concrete 0.99 0.99 0.99 3916
Soil 0.99 0.98 0.99 911

3.3. Parthenium Weed Hyperspectral Signatures

In order for the XGBoost algorithm to differentiate each growth stage of parthenium
weed from each other and from the control plants (grasses and a sedge), the spectral
signatures of the parthenium weed and non-parthenium (control) plants were captured.
Figure 13 shows all of the parthenium weed spectral signatures across the three growth
stages. While the signatures are certainly quite similar, which is expected of plants of the
same species, there are subtle differences between the growth stages that are enough to
differentiate them from each other using the XGBoost algorithm.

Figure 12. Output of combined hypercube with predicted colour masks.
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Figure 13. Spectral signature of all parthenium weed plants used in this investigation grouped in
their respective growth stages.

Figure 14 shows the spectral signatures of the parthenium weed seedlings compared
to the control plants that commonly co-occur with the weed in a grazing (pasture) land-
scape. Spectra differences are much more pronounced than that depicted in Figure 13,
and clearly show differences in the spectral signatures of parthenium weed seedlings and
non-parthenium plants. These differences exist across the spectral signatures from 400 nm
to 1000 nm.

Figure 14. Spectral signature of the seedling stage of parthenium weed compared to the non-
parthenium/control plants (Plant 1–Plant 5).

Figure 15 shows the spectral signatures of the parthenium weed rosettes compared
to the control plants. Similar to the seedlings, there are obvious differences between
parthenium weed rosettes and the spectral signatures of the control plants. While the
signatures are similar between 700 nm and 900 nm, between 400 nm and 700 nm and
between 900 nm and 1000 nm, the differences are obvious.
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Figure 15. Spectral signature of the rosette stage of parthenium weed compared to the non-
parthenium/control plants (Plant 1–Plant 5).

Finally, Figure 16 shows the spectral signatures of the flowering parthenium weed
plants compared to the control plants. The differences between flowering parthenium
weed and control plants are less pronounced than that depicted in Figure 15 above
(i.e., parthenium weed rosette and control plants), however there are significant differ-
ences, particularly between 900 nm and 1000 nm.

Figure 16. Spectral signature of the flowering adult stage of parthenium weed compared to the
non-parthenium/control plants (Plant 1–Plant 5).

3.4. Hyperspectral Ordination

Results from ordination are shown in Figure 17. Two axes were enough to capture
the majority (90.5%) of the variation in the dataset (Axis I—60.8%, Axis II–29.7%). Like
Figures 13, 15 and 16, wavelengths responsible for major differentiation of parthenium
weed plants from control plants (grasses and sedges) are mainly in the blue (400–500 nm)
and the infrared (>900 nm) ranges (F-ratio between plant species = 14.21, 3.67, 3.90, 1.71
and 10.35 for blue, green, red, near infra-red and infra-red bands, respectively; all with p
< 0.05, except NIR (700–900 nm)) which was non-significant). However, note that while
Axis I indeed captured the majority of the variation in the dataset, the distribution along
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this axis of the three parthenium weed growth stages was wide (i.e., scattered) rather than
concentrated, especially for flowering parthenium weed and the seedlings.

Figure 17. Results of ordination performed on the spectral signatures of each plant, showing separate
groupings of each plant species (circled). Within the parthenium grouping, plants in the rosette
stage are highly aggregated (asterisks), while those of flowering plants appeared in two subgroups
(open triangles).

4. Discussion

The findings from the current study suggest that machine learning techniques can
be applied effectively and efficiently to invasive weed detection in managed and pastoral
environments. We have used hyperspectral and RGB imaging techniques to create two
distinct datasets with the same sample plants, and hence estimate the effectiveness of
two machine learning algorithms. Object detection using Yolov4 was applied to the RGB
dataset, while pixel classification using XGBoost was applied to the hyperspectral dataset.
Yolov4 achieved a detection accuracy for the invasive parthenium weed of 95% and was
able to classify flowering and non-flowering growth stages of the weed with an accuracy of
86%. XGBoost achieved a pixel classification accuracy of 99% with 100% of the seedling,
rosette, and flowering plants being identified with a colour mask over the body of the plant.

As well as a detection accuracy of 95%, seen in Table 3, the precision and recall for
parthenium weed detection is 95% and 99%, respectively. While both scores are high, a very
high recall suggests that there are very few false negatives which is the case with only three
false negatives in the test dataset. In this case, a high recall is very desirable as false nega-
tives mean undetected and potentially uncontrolled plants that may remain in an affected
area targeted for local eradication, reach reproductive maturity and continue to add to the
parthenium weed seed bank [1,39]. Low numbers of false positives, whilst also desirable,
are comparatively less so. False positives (4.7% in this study) may trigger parthenium weed
control methods to be applied when in reality, it is not necessary, though this may be a
reasonable compromise when eradication of the weed is the goal (see Regan et al. (2011)
and Panetta (2015). for in-depth analysis of this treatise [40,41]).

The precision and recall for flowering/non-flowering classification (83%) are lower
than the actual parthenium weed detection (95%), but this is also a more difficult problem.
The approach taken for this classification is centered around object detection with the
objects being parthenium weed flowers. A single flower detection on a parthenium weed is
enough to classify that parthenium weed as a flowering plant. Thus, the problem is one of
both classification and object detection. Because flowers still need to be detected by the
Yolov4 algorithm they need to be treated as a unique class like the parthenium weed class.
However, the flowers are much smaller and so have much less information from which
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the algorithm can extract relationships. An accuracy score of 86% reported in this work is
not insignificant but does not achieve the goal of a very accurate flowering/non-flowering
differentiation. The results do suggest that this higher accuracy is achievable, and this will
likely be done with data of a lower GSD, affording this class much more detail from which
to extract relationships. This would also improve the parthenium weed detection ability.

Precision and recall scores achieved by XGBoost for classes in the hyperspectral dataset
are all between 98% and 100% (Table 4). These are for pixel classification, not for object
detection; however, if all the pixels of an object are classified in the correct class, then the
object is effectively detected. The colour masks achieved by XGBoost for each object are also
more useful than a bounding box as it gives the true size and structure of the plant. What
XGBoost does particularly well is to differentiate all three growth stages of parthenium
weed- seedling, rosette, and flowering plants. Growth stages were differentiated in the
RGB dataset using the presence of flowers. However, Yolov4 could not determine enough
of a difference when flowering, rosette, and seedling plants were split into unique classes;
there just wasn’t enough unique relationships in the RGB data. XGBoost on the other
hand looks at the spectral signatures of each growth stage and has reliably determined
unique relationships between each stage. It was interesting to note that using metric MDS
ordination, though Axis I captured the majority of the variation in the spectra dataset,
however the distribution along this axis of the three parthenium weed growth stages was
wide (i.e., scattered) rather than concentrated, especially for flowering parthenium weed
plants and the seedlings. While we lack enough replicates for the seedlings (only two
individuals were scanned), and as such it is safe to remove/discount this growth stage
from our analyses for lack of power, the display of two discrete groups seen for the flow-
ering (adult) plant stage might not be unexpected. Flowering parthenium weed plants
(adults) that we used are probably in different phenological stages of reproduction and/or
leaf retention/shedding, and this might have led to the variation in spectral signature
captured and seen. Hyperspectral reflectance curves are often affected by plant pheno-
logical stage [42,43]. We are left with the rosette growth stage having consistent spectral
signature, suggesting that this growth stage might have the greatest utility in terms of
differentiation (i.e., maximum separability) from other plants (be it native or other weeds)
under field conditions.

In sum, the comparatively better results using hyperspectral data were not unexpected,
but our findings will suggest this method is preferred to achieve the best accuracy. Note
however that the XGBoost method is limited by the much more expensive equipment neces-
sary to capture this kind of data, thus likely putting it out of reach of the average consumer.

Machine learning techniques are increasingly being effectively applied to weed detec-
tion in row-cropping and pastoral environments (e.g., [12,44–48]). This present investiga-
tion further strengthens the latter body of work, especially for Parthenium weed in the field
(see also [49–51]). No doubt natural environments can be protected if weed populations are
reduced through proper weed management options [52]. Often proper weed management
involves significant inputs of herbicides, but its use can be dramatically reduced if herbicide
applications are optimized using SSWM techniques, including the use of aerial imagery to
map weed distribution at varying scales that will assist in management optimization [53].
This paper provides a preliminary indication that the above machine learning methods can
detect parthenium weed to a significant accuracy in pastoral environments and thus can be
used for SSWM. This work reported herein also further strengthens the potential of using
Yolov4 (including its more recent versions of Yolov7) and XGBoost for identification and
classification of weed

Caveats

The data used for this study was developed in a controlled (glasshouse) environment
to model pasture field environments as closely as possible. Thus, the methods have
not been applied to real-world environments and so any generalization to real-world
environments must be tentative and treated with caution. Parthenium weed was the
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only weed investigated in this study and while efficient management of this weed alone
would be of significant benefit, it cannot be said that the same methods could be applied
successfully to other species of weeds (but see [54]). Problems were also encountered when
trying to detect parthenium weed in its seedling stage using RGB images and during object
detection; consequently, it is likely to be difficult to detect weeds of this size in real field
environments. This same problem was somewhat encountered in the hyperspectral data,
albeit to a lesser extent. This may be due, in part to the quality of data capture technology
used, pre- and post-processing methods utilized, and training hardware employed, all of
which could be improved further upon. Yolov4 was the only machine learning method
used for each data type, and while this method answers the question posed for this study,
our investigation does not determine that these methods are the only methods or the best
methods. Several other machine learning algorithms, including Region-based CNN, single-
shot-Detection (SSD), random forest (RF), support vector machine (SVM) and k-nearest
neighbours (KNN), might need to be comparatively tested [55,56].

Data quality is consistently an issue for the task reported in this work. Previous
attempts to train RGB detectors in the field have yielded very limited performance and
detection accuracy (P. Trotter, Osunkoya OO, pers. Observation and Communication).
These attempts involved capturing data in the field using a drone (UAV) and following
pre-processing and training protocols similar to what was done in this investigation. The
main difference between our reported work (in a control environment and which gave high
accuracy (95%) and the previous ones (in pastoral fields, which gave lower accuracy of 35%)
is the quality of the data. Previous attempts involved data with GSDs that are far greater
than what was used herein, amplified and complicated by the fact that the previous work
used data derived from the field which, by nature, is a more heterogeneous environment of
fast changing atmospheric condition (especially solar illumination, cloud, and shadow),
with notable variation in terrain (slope and aspect) and soil quality. Hence, field image
data captured via UAV can be less reliable and more challenging for training [57,58]. This
highlights the importance of data quality, specifically the GSD of the images.

Despite these field challenges, this study provides strong evidence that parthenium
weed can potentially be detected in both RGB and hyperspectral imagery using machine
learning methods in a real pastoral environment. Because the simulated environment
used in this study was developed to imitate natural/human-made landscapes as closely
as possible, our promising findings suggest that with further work and refinements, these
methods might be applicable to field environments. Future work should also expand the
list of target weeds to determine how broad and applicable our techniques and findings are.
There are many more machine learning algorithms that exist other than the ones involved in
this study (e.g., RF, SVN, and KNN), and so increasing the number of AI algorithms should
be encouraged in future research to potentially provide a greater number of solutions and
detection accuracy [55,56]. Lastly, with time better hardware and software technology will
evolve in the AI environment and should be used to improve detection success.

5. Conclusions

The present work adds to the growing literature on machine learning towards optimis-
ing the discrimination, mapping, and monitoring of invasive alien plants [9,10,47,51,54,59].
We have shown that RGB images of Parthenium weed obtained in simulated pastoral
environments can be processed successfully with a YOLOv4-CNN classification protocol-
achieving an overall accuracy of 95% for detection, and 86% for differentiation of flow-
ering and non-flowering stages of the weed. Using an XGBoost classifier for the pixel
classification of the hyperspectral dataset, we achieved a classification accuracy of 99%
for parthenium weed growth stages. Our ordination of the hyperspectral signatures sug-
gested that the wavelengths responsible for major differentiation of parthenium weed from
co-occurring control plants (grasses and sedges) are mainly in the blue (400–500 nm) and
the infrared (>900 nm) ranges- a finding similar to that reported by Ullah et al. (2021) for
the same weed in Pakistan [51]. It is worthwhile noting that ML discrimination of growth
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stages of the focal weed has rarely been reported, but the work reported herein indicates
that it is achievable.

For scalability of our findings to the field, improvements need to be made in use of
UAV and deployment of high specification (e.g., HS/MS) cameras that can achieve low
ground sampling distances (GSDs) while maintaining flight heights; this will allow a more
efficient, high resolution spatial image capture [59]. A detector must also be trained on
data that are captured in the field. The performance of this detector in terms of training
and testing vastly depends on the capability of available computer system; thus, in future
applications, computer systems specifically designed for object detection and AI should be
used. Image and data augmentation techniques for generation of training data could be
optimised as this may also likely improve performance. Better image annotation techniques,
such as Semantic Segmentation [59], should be used because in natural fields, established
Parthenium weed and co-occurring plants present a much more complicated scenarios
that can make bounding box annotations inefficient and limit performance. Lastly, and
overall, with further improvement in image processing (e.g., using Mask/faster R-CNN)
and ML protocols (e.g., transitioning from YOLOv4 [the version available in the course of
this work] to more recent YOLOv7 or even YOLO-R [You Only Learn One Representation]),
the findings reported herein have the potential for extension and application in real-world
pastoral and cropping environments to manage better many more weeds and revolutionize
how people deal with the ever-growing problem of invasive alien species (see [60]).
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