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Abstract: To solve the problem of non-destructive crop water content of detection under outdoor
conditions, we propose a method to predict lettuce canopy water content by collecting outdoor
hyperspectral images of potted lettuce plants and combining spectral analysis techniques and model
training methods. Firstly, background noise was removed by correlation segmentation, proposed
in this paper, whereby light intensity correction is performed on the segmented lettuce canopy
images. We then chose the first derivative combined with mean centering (MC) to preprocess the raw
spectral data. Hereafter, feature bands were screened by a combination of Monte Carlo uninformative
variable elimination (MCUVE) and competitive adaptive reweighting sampling (CARS) to eliminate
redundant information. Finally, a lettuce canopy moisture prediction model was constructed by
combining partial least squares (PLS). The correlation coefficient between model predicted and
measured values was used as the main model performance evaluation index, and the modeling set
correlation coefficient RC was 82.71%, while the prediction set correlation coefficient RP was 84.67%.
The water content of each lettuce canopy pixel was calculated by the constructed model, and the
visualized lettuce water distribution map was generated by pseudo-color image processing, which
finally revealed a visualization of the water content of the lettuce canopy leaves under outdoor
conditions. This study extends the hyperspectral image prediction possibilities of lettuce canopy
water content under outdoor conditions.

Keywords: hyperspectral imaging; outdoor conditions; preprocessing; feature selection; water
content prediction; lettuce

1. Introduction

Lettuce is a typical leafy vegetable that requires a large amount of water during
its growing period, and water can directly affect lettuce growth, quality, and yield [1].
Therefore, rapid and accurate lettuce water content determination is crucial for the real-
time monitoring of lettuce plant growth. The hyperspectral analysis technique is widely
used as an indirect analysis method for the quantitative detection of crop physiological
information, and is nondestructive and rapid, thereby compensating for the shortcomings
of traditional methods which destroy samples [2,3]. These advantages have led to its
widespread adoption in agriculture [4–7].

Scholars across the globe have increasingly used hyperspectral imaging techniques
to detect physiological crop information. Cheng et al. [8] formed a mask by thresholding
the grayscale image at 672.37 nm, thereby creating a hyperspectral oilseed rape segmen-
tation image, and a cadmium content prediction model of oilseed rape leaves was con-
structed using neural networks. Tung et al. [9] extracted laboratory hyperspectral images
of Fengjing pak choi after water stress treatment; they preprocessed the raw spectra using
smoothing and derivatives, and developed a crop water potential prediction model using
modified partial least squares regression (MPLSR) with a model prediction correlation
coefficient of 0.826. Sun et al. [10] extracted hyperspectral images of potato leaves using
a dedicated indoor hyperspectral test frame; they screened leaf water content-sensitive
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wavelengths using competitive adaptive reweighting sampling (CARS) on the raw spectral
data, and constructed a water content model by partial least squares regression (PLSR)
with a CARS–PLSR modeling calibration accuracy of 0.9878 and a validation accuracy of
0.9366. In Zhang et al. [11], the optimal feature subset was selected by GA–PLS from the
grayscale information of lettuce leaves extracted from hyperspectral images with crop
texture features, and a water content prediction model was established with a correlation
coefficient R of 0.902 between the model predicted and measured values. In Sun Jun
et al. [12], lettuce leaf hyperspectral information was collected under indoor conditions,
and lettuce leaf moisture prediction models were developed by three modeling methods,
MLR, PLS–ANN, and BP–ANN, respectively. Among them, the PLS–ANN model had the
lowest average relative error in prediction, with 9.4515% for rosette stage and 9.1245% for
nodule stage. Li Hong et al. [13] used the MCUVE–LASSO–SPA algorithm to filter charac-
teristic wavelengths, thereby eliminating redundant information within the full spectrum,
and finally selected 14 characteristic wavelengths to build a PLS lettuce canopy moisture
content prediction model. The RC and RMSECV values were 0.8827 and 1.0662 for the
prediction set; the RP and RMSEP were 0.9015 and 0.9287, respectively. Although the above
studies used hyperspectral image technology to detect crop parameters, they had strict
requirements for spectral data collection conditions [14,15], which limit the application
scenarios of hyperspectral nondestructive monitoring technology. Additionally, the spectral
image segmentation method was single, and failed to effectively segment the hyperspectral
images of crops extracted under complex lighting conditions. The data preprocessing
lacked pertinence, and the resistance to light intensity interference was poor. It was difficult
to apply to practical outdoor applications. Therefore, studying the prediction method
of crop canopy parameters based on hyperspectral imaging technology under outdoor
conditions is of great significance.

In this paper, lettuce at the rosette stage was used as the subject of study. Outdoor
lettuce canopy hyperspectral information with different water contents, as well as cor-
responding canopy water content, were obtained. A hyperspectral image segmentation
method based on the correlation difference of spectral reflectance curves is proposed, and
the canopy information in the image is segmented using this method. For complex out-
door light interference, the canopy information was extracted by using the light intensity
correction method and the first derivative processing method to remove noise from the
spectral data. Monte Carlo uninformative variable elimination (MCUVE), competitive
adaptive reweighting sampling (CARS), and successive projections algorithm (SPA) to
extract the characteristic wavelength were used. The characteristic wavelength, combined
with partial least squares (PLS), produced a lettuce canopy water content prediction model,
and selected the optimal model based on the model correlation coefficient and root mean
square error, which was used as a hyperspectral rapid model for the lettuce canopy water
content under outdoor conditions. Detection provides a reference method.

2. Materials and Methods

The experimental materials and treatments used in this article are described.

2.1. Experimental Sample

The experimental samples were selected from Romaine lettuce (Lactuca sativa var.
‘longifolia’), which were cultivated in potted soil culture from 30 September 2021 to 3 Jan-
uary 2022 in the Modern Agricultural Equipment and Technology Laboratory of Jiangsu
University. Three to five seeds were place in each pot, and one seedling was left pot upon
reaching the five leaves one heart period (Figure 1b). Six water-holding gradients were
created, and 25 samples of each gradient were irrigated with drip arrows (Type SLD109
+SLD012, Shunlv Irrigation equipment Co., Ltd, Guangzhou, China). The divisions based
on the water holding gradient were [16,17]: setting the wetting layer to 15 cm; maintaining
the soil water content at 40–50%, 50–60%, 60–70%, 70–80%, 80–90%, and 90–100% of the
field water holding capacity; measuring the soil water content under each treatment daily
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with a soil moisture sensor (Type HM-WSY, Hengmei Technology Electronics Co., Ltd,
Guangzhou, China); and full irrigation until the soil water content reached the upper limit
once the soil water content reached its lower limit. Lettuce was sampled uniformly as it
grew to the rosette stage (Figure 1d).

Figure 1. Each growth period of lettuce. (a) Germination period. (b) Five Leaves One Heart Period.
(c) Seedling period. (d) Rosary period.

2.2. Outdoor Hyperspectral Data Acquisition

A convenient hyperspectral imaging system (Type Gaia Field, Dualix Instruments Co.,
Ltd., Jiangsu, China) was used to collect outdoor lettuce canopy hyperspectral information.
The system consisted mainly of a hyperspectral imager (Gaia Field Pro-V10E), an imaging
lens (HSIA-OLE23), a calibration whiteboard (HSIA-CT-250*280), a professional outdoor
tripod (EI-740A) and data acquisition software (Spec View; Figure 2). The spectral range
of the imager was 391.65~1018 nm precisely, with a spectral resolution of 2.8 nm and
176 spectral channels.

Figure 2. Outdoor hyperspectral imaging system. 1. Monitor. 2. Lettuce sample. 3. Sensor probe.
4. Hyperspectral imager. 5. Outdoor test stand.

To reduce the influence of weather factors on the experiment, all hyperspectral data
acquisition was carried out in windless days with clear skies, and the acquisition time
was consistently between 10:00–14:00 Beijing time; experimenters were also dressed in
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dark clothing. For data acquisition, the hyperspectral imager sensor lens faced vertically
downward, about 1 m from the vertical height of the canopy [18], and the exposure time
was set to 9 ms. To avoid errors from temporal variation in outdoor light intensity, ten
spectral data points were used as one sampling interval, and each interval consisted of nine
lettuce canopy hyperspectral data with one standard whiteboard hyperspectral data W.
After the sample was collected, the CCD camera lens was covered, and the hyperspectral
image data point B of the blackboard was acquired. To eliminate the effects of light intensity
and in-camera dark current noise on spectral image quality, the spectral data at each interval
were calibrated separately in black and white, and a raw image correction equation [19]
was applied, namely

R =
I − B

W − B
(1)

where I is the raw lettuce canopy spectral data; R is the corrected lettuce canopy spectral
data.

Spectral images were corrected, and spectral data analyzed, using Matlab R2018b
(Jack Little, Natick, MA, USA).

2.3. Canopy Water Content Determination

Water content was determined using the desiccation method [20], and lettuce leaf
fresh mass m1 was measured by removing the roots. Firstly, plants were oven dried at a
constant temperature of 105 ◦C for 30 min, where after it was adjusted to 80 ◦C and plants
were dried to a constant mass to determine dry mass m2. The dry basis water content w [21]
of the canopy samples was calculated as

w =
m1 − m2

m2
(2)

2.4. Lettuce Canopy Image Extraction

The outdoor canopy layer image contains various background noise, for example
ground, flower pot, and soil, and these background noises affect the lettuce canopy wa-
ter content prediction accuracy. It is thus necessary to segment the lettuce canopy and
background area. In Figure 3a, leaf, shaded leaf, and background pixels were selected,
select each part of the area as shown in Figure 3b, and their reflectance curves are shown in
Figure 3c. Since the background curve is more complex, and since there is overlap between
the background curve and the lettuce sample curve in each band, the common method of
setting a reflectance difference threshold to remove the background is not applicable for
outdoor canopy layer image segmentation. In this paper, the correlation between wave-
length reflectance curves for each pixel point was used as the basis for image segmentation.
Although the blade and shadow blade reflectance differed greatly beyond 700 nm, their
overall wavelength reflectance curve was highly correlated (Figure 3c).

The full-wavelength reflectance IC of pixel points in the canopy region of any lettuce
plant in the hyperspectral image was selected as a reference and correlated with the full-
wavelength reflectance IY of the remaining pixel points. After calculation, the correlation
coefficient matrix XR was obtained, and a correlation factor of R = 0.93 was used as the
segmentation threshold to segment matrix XR binarization—an image is given by Figure 3d.
This binarized image was used to mask the lettuce canopy layer hyperspectral image to
remove background noise.
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Figure 3. Cont.
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Figure 3. Lettuce canopy outdoor image processing. (a) Outdoor canopy images. (b) Selected areas
for each section. (c) Hyperspectral reflectance of different regions. (d) Binarized image.

2.5. Abnormal Sample Rejection

In order to avoid abnormal samples generated by individual plant growth differences,
instrument differences, changes in the measurement environment, and operational errors
from affecting the spectral analysis results, abnormal samples need to be detected and
retained or rejected according to the actual situation. In this paper, we determine whether
to exclude samples based on the Mahalanobis distance between the spectral curves of each
sample [22].

After converting the spectral image of lettuce into a data matrix, it will become a
matrix A of n × k.

Calculate the average spectrum of n samples:

A =
n

∑
i=1

Aij/n (3)

where Aij is sample spectral matrix element; n is the number of samples; j is the wavelength
serial number; A is the average value of the sample spectrum.

Au = A − A (4)

where Au represents the spectral matrix after centralization; A represents the raw spectral
matrix; A represents the average coordination matrix of spectrum.

The covariance array of the original standard spectral data set is then calculated.

M = AT
u Au/(n − 1) (5)

where M is the covariance array of the standard spectral data set; AT
u represents the trans-

pose of the spectral matrix after the centralization process; Au represents the centralized
spectral array; and n represents the number of samples.

The Mahalanobis distance between the calibration set sample data and the average
spectral data was calculated from both.

D2 =
(

Ai − A
)

M−1(Ai − A
)T (6)

where M−1 is the inverse matrix of M.
Out of a total of 143 samples, after calculating the Mahalanobis distance between the

spectra of each sample and the average spectrum, the Mahalanobis distance of each sample
is shown in Figure 4. Four samples have a significantly higher Mahalanobis distance than
the other samples, so they are judged as abnormal samples and are eliminated, leaving
139 samples.
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Figure 4. Mahalanobis distance for each sample.

2.6. Spectral Preprocessing

A large amount of stray light under outdoor conditions and baseline drift, caused
by changes in sunlight angle, can be included in the raw outdoor hyperspectral data
(Figure 5), and these interfering factors can affect model accuracy. Therefore, spectral
preprocessing is required before building a multivariate calibration model [23]. In this
paper, three preprocessing methods, namely the Savitzky–Golay convolutional smoothing
(S–G), standard normal variables transformation (SNV), and 1st derivative were used to
preprocess the raw hyperspectral data, compare the modeling effects with each other, and
select the data with the best modeling effect for subsequent analyses.

Figure 5. Outdoor hyperspectral raw data.

Savitzky–Golay convolutional smoothing (S–G) [24] is applied to eliminate irregular
random noise and emphasizes the fundamental role of the centroid. The S–G convolution
smoothing value of the wavelength point is:

Xk,smooth = xk =
1
H ∑+w

i=−wxk+ihi (7)

The formula for calculating H is:

H = ∑+w
i=−whi (8)
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where H is the normalization factor; and hi is the smoothing factor. Multiplying the
measured values by the smoothing factor hi minimizes the effect of smoothing on useful
information; S–G convolutional smoothing hyperspectral data are shown in Figure 6.

Figure 6. Savitzky-Golay convolutional smooth data.

The standard normal variables transformation (SNV) [25] is mainly used to eliminate
the effects of sample particle size, surface scattered light, and optical range shift on the
spectrum. The calculation formula is:

xSNV =
x − x√

∑m
k=1 (xk−x)2

m−1

(9)

x = (∑m
k=1xk)/m (10)

where m is the number of wavelength points; k = 1, 2, ···, m. The data after SNV are shown
by Figure 7.

Figure 7. SNV data.

The main role of the derivative [26] is to eliminate baseline and other background
interference, and it is a common method used for diffuse reflectance spectra. The 1st
derivative of the differential width g of the spectrum XK at wavelength k is:
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xk,1st =
xk+g − xk−g

g
(11)

The spectral data after the 1st derivative processing are shown by Figure 8.

Figure 8. 1st derivative data.

2.7. Characteristic Wavelength Screening

After preprocessing and optimizing the outdoor hyperspectral data, problems remain,
such as a large number of data variables and overlapping spectral information. Such
redundant data must be removed to reduce the number of data dimensions and to sim-
plify algorithm complexity. In this paper, we used Monte Carlo uninformative variable
elimination (MCUVE) to eliminate irrelevant variables and combined competitive adap-
tive reweighting sampling (CARS) and successive projections algorithm (SPA) to screen
wavelengths.

2.7.1. Monte Carlo Uninformative Variable Elimination

The Monte Carlo uninformative variable elimination method [27] is based on the
Monte Carlo multiple resampling modeling. The regression coefficient stability value
measures wavelength importance by making full use of the internal correlation between
samples, and wavelengths with a stability below the specified threshold value are screened
out by setting a threshold.

2.7.2. Competitive Adaptive Reweighting Sampling

The competitive adaptive reweighting sampling (CARS) [28] uses MCUVE or random
sampling to select a portion of the calibration set samples for PLS modeling. The adaptive
reweighted sampling method is used for screening, and wavelengths with large absolute
PLS regression coefficients are retained to obtain a series of wavelength variable subsets.
Cross-validation is then used to model each wavelength variable subsets, and the optimal
wavelength variable subset is selected by the model minimum root mean square error of
cross-validation (RMSECV).

2.7.3. Successive Projections Algorithm

The successive projections algorithm (SPA) [29] is a forward variable cyclic selection
method. It uses a vector projection analysis to find the set of variables containing the
minimum redundant information required to minimize the covariance between vectors,
reduce model complexity, and improve modeling speed and efficiency.
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3. Results and Analysis

The results obtained by each method are described in tables and pictures, and the
obtained results are analyzed to determine the final pre-processing method and feature
selection method based on the merits of the results.

3.1. Lettuce Canopy Dry Base Water Content Statistics

Due to errors in the sampling of the spectral data, four abnormal samples were
excluded, and the remaining 139 samples represented the total sample. Sample dry basis
moisture content ranged between 9.6353 and 16.500, with a mean of 12.5583 and a standard
deviation of 1.3386. The samples were divided in a 3:1 ratio into modeling and prediction
sets according to the content gradient method [30]; 109 samples were thus used for the
modeling set and the remaining 30 samples were used for the prediction set (Table 1). This
division method ensures that prediction water content samples are within the modeling
set sample water content range, and the sample water content is therefore more uniformly
distributed.

Table 1. Dry basis moisture content of sample and results of sample sets partition.

Dataset Sample Size Maximum
Value

Minimum
Value

Average
Value

Standard
Deviation

Total Sample 139 16.5000 9.6353 12.5583 1.3386
Modeling set 109 15.5106 9.6774 12.4624 1.2551
Prediction set 30 16.5000 9.6353 12.9348 1.5778

3.2. Lettuce Canopy Image Extraction Accuracy

Evaluation of the segmentation effect of reflectance threshold method and correlation
difference method by AOM and ME.

3.2.1. Segmentation Accuracy

To evaluate lettuce canopy segmentation accuracy, the original lettuce images were
manually segmented and compared using the reflectance thresholding method and the
correlation difference segmentation results as described in Section 2.4, respectively; the area
overlap measure (AOM) [31] and misclassified error (ME) [32] were used as evaluation
indices to measure segmentation performance. AOM is specifically used to analyze the
deviation between the resultant area of the segmentation algorithm and the manual segmen-
tation area. Larger AOM values indicate better segmentation effects, with an AOM value
of 1, representing the best segmentation effect. ME represents the ratio of the number of
mis-segmented pixels to the total number of manually segmented pixels, where the number
of mis-segmented pixels is the sum of the under and over-segmented regions. Smaller ME
values indicates better segmentation effects, with an ME value of 0 representing the best
segmentation effect.

3.2.2. Analysis of Segmentation Results

Five of the 109 modeling set hyperspectral images were randomly selected as samples
for segmentation accuracy analysis, as shown in Figure 9a, while Figure 9b shows the
segmentation results using reflectance thresholding, and Figure 9c shows the segmentation
results using correlation differences. By comparing Figure 9a with Figure 9b, it is clear that
the correlation difference segmentation leads to a higher accuracy, fewer mis-segmented
pixels, and better performance in segmenting the shaded leaf parts, as well as clearer pixel
segmentation at the canopy edges.
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Figure 9. Comparison diagram of sample segmentation results. (a) Sample raw RGB image. (b) Seg-
mentation results of reflectance threshold segmentation method. (c) Correlation difference method
segmentation results.

After segmentation using the reflectance threshold method, sample AOM values
differed greatly, with a maximum AOM value of 0.7095, a minimum AOM value of 0.4192,
and a variance of 0.1235 (Table 2). The sample AOM data show that the reflectance
threshold segmentation method is influenced by disturbance factors such as lettuce canopy
growth and outdoor light angle during segmentation, which causes large fluctuations
in the segmentation results. The AOM mean sampling value was low at 0.5640. After
segmentation using the correlation segmentation, the AOM mean sampling value was
0.9252, with a variance of 0.0275, and the AOM mean value was high and the segmentation
results stable for each sample. The mean ME segmentation value for the reflectance
threshold method was 0.2326, with a variance of 0.0869, and the mean ME segmentation
value for the correlation segmentation was 0.0292 with a variance of 0.0143. After comparing
the data, the accuracy and stability of the correlation segmentation results improved compared
to the reflectance threshold method, indicating that the correlation segmentation is more
effective for segmenting lettuce canopy leaves under complex outdoor lighting conditions.
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Table 2. Image segmentation performance evaluation.

Sample
Area Overlap Measure (AOM) Misclassified Error (ME)

Reflectance
Threshold

Correlation
Difference

Reflectance
Threshold

Correlation
Difference

1 0.6726 0.9571 0.2036 0.0109
2 0.7095 0.9457 0.1021 0.0308
3 0.5326 0.9047 0.2453 0.0189
4 0.4192 0.8911 0.3328 0.0441
5 0.4859 0.9274 0.2791 0.0414

Average 0.5640 0.9252 0.2326 0.0292
Variance 0.1235 0.0275 0.0869 0.0143

3.3. Light Intensity Correction

Under outdoor natural lighting conditions, due to uneven lighting and different lettuce
leaf angles, some overexposed and shadow leaves are produced, which affect prediction
accuracy. In this paper, the light intensity correction method [33] was used to study
the segmented lettuce canopy region, and the average pixel point reflectance Im in each
waveband was calculated as:

Im(λ) =
1
N

N

∑
i=1

I(λ, i) (12)

in the formula, N—Total pixel points within the lettuce canopy after splitting. I (λ, i)—Reflectance
at wavelength λ for the i-th pixel point in the lettuce canopy region.

The pixel points are spectrally normalized to ensure that the data are in the same
range, where after the spectral reflectance of each pixel point is corrected, and calculated as:

IC(x, y, λ) =
I(x, y, λ)

maxλ(I(x, y, λ))
max(Im(λ)) (13)

in the formula, I(x, y, λ)− (x, y)—Reflectance of pixel dots at wavelength λ IC(x, y, λ)—Spectral
reflectance after light intensity correction.

Figure 10b shows the RGB image of the lettuce hyperspectral curve after correction,
comparison with Figure 10a shows that the brighter part has reduced brightness, while
darker part has an increased brightness, the uneven light intensity problem of the lettuce
canopy image was therefore improved by this method.

Figure 10. Light intensity correction comparison image. (a) Canopy images. (b) Light intensity
corrected canopy images.
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3.4. Performance Comparison of Different Pretreatment Methods

The lettuce canopy spectral data were processed by Savitzky–Golay convolutional
smoothing (S–G), standard normal variables transformation (SNV), and 1st derivative
methods. The preprocessed data and lettuce canopy water content were used as input
values, and the water content prediction model was established using PLS. Furthermore,
the modeling set correlation coefficient (RC), root mean square error of cross-validation
(RMSECV), prediction set correlation coefficient (RP), and root mean square error of predic-
tion set (RMSEP) of the modeling set were all used as model evaluation criteria (see Table 3
for results).

Table 3. Modeling effects of each pretreatment method.

Preprocessing
Methods Master Score

Modeling Set Prediction Set

RC RMSECV RP RMSEP

Raw data 11 76.28% 0.8012 79.34% 0.9677
S-G 17 81.14% 0.7327 77.38% 1.0101

1st derivative 11 82.21% 0.7213 81.25% 0.9103
SNV 12 80.14% 0.7484 75.41% 1.0262

Compared with the untreated data, the correlation coefficient and cross-validation
error of the S–G smoothed and SNV-treated data models were optimized (Table 3). In
contrast, the correlation coefficient of the prediction set decreased and the root mean square
error increased, while the modeling set RC, RMSECV, prediction set, RP, and RMSEP were
all optimized after the 1st derivative preprocessing. The 1st derivative preprocessing
method is therefore more advantageous for outdoor hyperspectral canopy data.

The 1st derivative processed spectral data were mean centered (Figure 11) after pro-
cessing the spectral matrix column mean to zero. By correlating spectral variation with the
variation of the measured attribute, the spectral variation information can be improved,
which simplifies the regression model calculation during the following step.

Figure 11. 1st derivative-mean centered dispose.

3.5. Dimensionality Reduction of Canopy Hyperspectral Data

By dimensionality reduction of hyperspectral data, the complexity of the prediction
model can be reduced and the accuracy of the prediction model can be improved.
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3.5.1. Eliminating Irrelevant Variables Based on MCUVE

Superfluous information was removed from the 176 spectral variables using MCUVE,
which is based on 1000 Monte Carlo samples, and 109 samples were randomly selected
from 139 samples each time to build the PLS model. The stability indices of the correlation
coefficients corresponding to each wavelength variable are shown in Figure 12a. The
absolute values of the variable stability indices were sorted from largest to smallest, and
109 samples were used to build the PLS forward additive model, while 30 samples were
used as the prediction set. RMSEP prediction set changes are shown in Figure 12b: the
lowest prediction set root mean square error of 0.9812 was obtained when the number of
variables was 50, and this set of 50 variables was used as the characteristic variables.

Figure 12. MCUVE wavelength screening process. (a) Stability of correlation coefficient for each
wavelength. (b) Variation with number of variables prediction set RMSEP.

3.5.2. Feature Wavelength Extraction Based on MCUVE–CARS

The competitive adaptive reweighting sampling (CARS) method was used to screen
the 50 spectral variables after MCUVE selection, whereafter 28 spectral variables were
obtained. The number of CARS samples was set to 200, and a 10-fold cross-validation
method was used (see Figure 13a for the variable selection process). From Figure 13b, a
minimum RMSECV of 0.7353 was obtained when the number of iterations was 41, and 28
variables were finally selected as the wavelength variables (395.00, 398.40, 412.10, 415.50,
418.90, 425.80, 432.60, 446.30, 449.80, 487.70, 592.40, 596.00, 599.50, 606.50, 610.10, 638.40,
641.90, 742.10, 745.70, 778.20, 789.10, 829.10, 854.80, 858.40, 880.50, 935.90, 947.00, and
984.30 nm).

Figure 13. MCUVE–CARS screening process. (a) Variable selection process. (b) RMSECV trends.
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3.5.3. Feature Wavelength Extraction Based on MCUVE–SPA and MCUVE–CARS–SPA

The SPA was used to further filter the 50 spectral variables after MCUVE selection
to eliminate overlapping bands of information present in the remaining variables. The
maximum number of selected variables was set to 20, and Figure 14a shows that the root
mean square error gradually decreased with an increasing number of added bands until
16 variables were selected. The smallest root mean square error (RMSEP:0.8837) was finally
obtained when the 16th variable was added, after which the error value slowly increased.
The final 16 wavelength variables were selected from 50 variables (Figure 14b); these were:
398.40, 415.50, 429.20, 432.60, 487.70, 596.00, 656.10, 778.20, 789.10, 832.80, 854.80, 858.40,
865.80, 935.90, 943.30, and 1014.30 nm.

Figure 14. MCUVE–SPA screening the optimal combination wavelength results. (a) Trend of RMSEP
value with the number of wavelengths. (b) Corresponding characteristic wavelength.

Based on the density of the variable distribution in the latter part of the MCUVE–CARS
algorithm screening, some covariance existed, and the SPA algorithm was used to compress
the wavelength variables again for model simplification. The RMSEP variation trend was
similar to the MCUVE–SPA algorithm in Figure 15a, and the number of variables screened
out was similar. The variables were added to 13 to obtain the minimum root mean square
error (RMSEP: 0.8717). The characteristic wavelengths screened (Figure 15b) were: 398.40,
415.50, 432.60, 449.80, 596.00, 610.10, 745.70, 829.10, 854.80, 858.40, 935.90, 947.00, and
984.30 nm.

Figure 15. MCUVE–CARS–SPA screening the optimal combination wavelength results. (a) Trend of
RMSEP value with the number of wavelengths. (b) Corresponding characteristic wavelength.
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3.6. Modeling Results and Analysis

Lettuce canopy spectral data and water content were used as input values, and PLS
was used to model the feature variables selected by different methods. The optimal
principal component fraction was selected separately to build a water content prediction
model. The modeling set correlation coefficient (RC), root mean square error of cross-
validation (RMSECV), prediction set correlation coefficient (RP), and root mean square
error of prediction set (RMSEP) were all used as evaluation criteria (see Table 4 for results).

Table 4. PLS modeling results based on different combinations of wavelength selection methods.

Models Number of
Variables

Modeling Set Prediction Set

RC RMSECV RP RMSEP

PLS 176 82.32% 0.7109 82.38% 0.8911
MCUVE–PLS 50 82.21% 0.7142 82.68% 0.9153

MCUVE–CARS–PLS 28 82.71% 0.7049 84.29% 0.8629
MCUVE–SPA–PLS 16 79.91% 0.7530 83.52% 0.8900

MCUVE–CARS–SPA–PLS 13 78.86% 0.7700 84.67% 0.8487

The PLS model constructed from the full-spectrum data after 1st derivative-mean
centering had relatively good predictive power (Table 4), but the model contained 176 band
variables. An increased number of variables have a greater impact on the subsequent
calculation, as well as calculation stability. After MCUVE screening to remove redundant
information in the full-spectrum wavelength band, the predictive power of the established
MCUVE–PLS model was consistent with that of the full-band PLS prediction model, with
the modeling set correlation coefficient (RC) reduced by 0.1215%, corresponding to an in-
crease in RMSECV by 0.0033; while the prediction set correlation coefficient (RP) increased
by 0.3642%, and RMSEP increased by 0.0242, the wavelength variables were reduced to
50. The prediction results of the MCUVE–CARS–PLS model were better in all aspects
compared to both the full-band PLS and MCUVE–PLS models, and the modeling set
and prediction set correlation coefficients improved to 82.71% and 84.29%, respectively,
while the modeling and prediction errors were reduced to 0.7049 and 0.8629, respectively;
the number of wavelength variables was reduced to 28, while the prediction ability was
enhanced. The MCUVE–SPA–PLS and MCUVE–CARS–SPA models contained similar
numbers of spectral variables, namely 16 and 13, respectively. The number of spectral
variables involved in modeling was significantly reduced, and the prediction performance
of the modeling set decreased significantly, while the predicting power of the prediction
set significantly improved. Because SPA is an unsupervised variable selection method,
the correlation between the selected independent variables is low and a loss of variable
details occurs. This leads to a lowered modeling set predictive performance; however, the
lower number of variables reduces the overfitting phenomenon and also improves model
stability, thereby improving the prediction set. By comparing the four models, it is evident
that the MCUVE method can better eliminate redundant variable information. However,
redundant information is still present and model accuracy does not significantly improve.
The CARS method has a strong screening ability, and improves model performance to a
larger extent, while the SPA compression effect is the strongest, but it suffers from insuffi-
cient useful information for modeling. Overall, although the number of modeling variables
for MCUVE–CARS–PLS was not the smallest among the four models, this model ensured
the greatest prediction accuracy for the modeling and prediction sets, while still reducing
the number of variables significantly, and had the best comprehensive performance and ap-
plication capability. Figure 16 shows the prediction results of the modeling and prediction
sets of the MCUVE–CARS–PLS model.
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Figure 16. MCUVE–CARS–PLS model modeling set and prediction set results.

3.7. Visualization of Water Content Distribution of Lettuce Canopy Dry Base

The MCUVE–CARS–PLS model was used to estimate the water content of each pixel
point in the lettuce canopy region, and the pseudo-color image technique was applied to
generate a water content distribution map, with different colors and shades representing
different water contents, and white areas representing the background (Figure 17). In
Figure 17a, the lettuce canopy, with a dry basis water content of 9.3352 was mainly dark
blue and blue-green, while the dry basis water content was concentrated in the range of
5–15, with a mean value of 9.9256. This differed by 0.5904 from the actual mean value
and was smaller than the model error mean value. In Figure 17b, the lettuce canopy, with
a dry basis water content of 15.15385, was mainly green, and the water content ranged
between 10–25, with a mean value of 15.7662. This differed from the actual water content
by 0.61235. The water content in Figure 17b is higher than in Figure 17a, which is consistent
with the actual measured water content. Whole plant water content distribution can be
more directly visualized by using a visual distribution map of lettuce canopy water content.

Figure 17. Moisture content distribution of lettuce canopy dry base. (a) Dry base water content 9.3352.
(b) Dry base water content 15.15385.



Agriculture 2022, 12, 1796 18 of 21

To verify the reliability of the visualization prediction results, 10 healthy leaves were
selected, which were located at different lettuce canopy positions, and their mean leaf water
content values were compared with the predicted mean values of each pixel point in the
respective leaf area (Table 5). As shown in Table 5, the mean predicted values of leaf water
content and leaf pixel point water content were highly similar, while the root mean square
error of prediction was 0.7248, which was smaller than RMSEP, thus indicating reliable
visualization results.

Table 5. Mean value and comparison results of dry basis moisture in different lettuce leaf parts.

Sample Average Water
Content

Predicted Mean
Value

Prediction Root
Mean Square Error

1 12.5119 11.8726

0.7248

2 13.0226 13.5659
3 13.4793 14.1203
4 10.7640 11.5225
5 11.5929 10.7398
6 10.4118 11.0234
7 15.5106 14.8997
8 14.4628 15.2131
9 12.1731 11.2341
10 12.0544 12.8563

4. Discussion

In this paper, the 1st derivative was used to preprocess the raw data by MCUVE–CARS
to select the characteristic wavelengths and establish a PLS moisture prediction model with
a model prediction set correlation coefficient RP of 0.8492. RP of 0.8492. The research effects
and shortcomings of this paper are discussed by referring to the research results of peers.

4.1. Comparison of Predicted Effects

Reference [13] developed a lettuce moisture PLS prediction model for hyperspectral
samples collected under laboratory ideals with an RP of 0.9015 for the model prediction
set after screening spectral feature wavelengths by MCUVE–LASSO–SPA. In this paper
and Reference [13], both of which target hyperspectral detection of lettuce samples for
water content, similar prediction accuracy was obtained by adding targeted pretreatment
methods with a decrease in correlation coefficient of 0.0586 after modifying the collection
environment to an outdoor area with more interfering conditions in this paper. Although
the accuracy was slightly reduced, the environmental restrictions on the use of spectral
detection techniques were reduced.

In reference [34], hyperspectral data of outdoor potted wheat leaves were collected
and combined with RVI and NDVI to build a wheat LWC model with the best modeling
set R2 = 0.889 and prediction set R2 = 0.891. Also, reference [34] extracted crop spectral
samples outdoors, but only for individual target points of the leaves, and the extracted leaf
area was limited to the central region of the leaves. Although the prediction accuracy of
literature 33 is higher than that of this paper, the single point extraction of hyperspectral
data cannot image the whole canopy area, resulting in the inability to make guidance for
the water distribution of the whole plant. The simple extraction area and small area will
naturally reduce the error and get better model results.

Nondestructive moisture content testing of field crops can also be achieved by using
UAVs with hyperspectral equipment. The authors of reference [35] used UAV spectroscopy
to predict the water content of maize canopies in large fields. The correlation coefficient R
for the prediction of crop water content of the overall field by the drone spectra was 0.93.
Compared with this paper, reference [35] requires model corrections in combination with
other crop growth indices in addition to the water content of the crop itself, collects a wider
variety of data, and can only predict the overall water content of the maize canopy in the
field, with no predictive capability for individual crops.
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Of course, nondestructive testing is not only achieved by one method of hyperspectral
testing. The authors of reference [36] use the relationship between crop electrical properties
and crop water content to establish a prediction model, and the model predicts a coefficient
of determination R2 up to 0.9154, but this method has pressure acting on the crop surface
during testing, and cannot achieve completely nondestructive testing. The experimental
accuracy is also affected by the crop type, temperature, and pressure of the test platen,
which is significantly lacking compared with the hyperspectral nondestructive testing
method.

In summary, the research results of this paper have practical significance in outdoor
hyperspectral detection.

4.2. Improvement Methods

Since this experiment was conducted outdoors, the sampling time span is large and
the light intensity will change with time, which will have an impact on the accuracy of
the model. In references [37,38], after the study, it was found that as the light intensity
changes, the spectral reflectance curve of the crop will also change, and this error is difficult
to eliminate through correction and pre-processing. Subsequent studies will consider the
effect of light intensity changes on the model.

In the reference [39], good segmentation results were achieved by logarithmic pre-
processing and feature selection of the waveband before image segmentation. Image
segmentation in the subsequent research can add image preprocessing and feature band
selection to further improve the image segmentation accuracy.

Reference [40], the problem of burr in the front and back part of the spectral curve,
which is caused by the detection limitation of the spectral camera, is mentioned in the study.
To avoid the influence of the noise band on the model, the noise interval was removed by a
VNIR second-order spectral standard deviation threshold. At present, we also found this
problem with a more obvious noise interval at the tail end of the spectrum, which can be
solved by referring to the method in reference [40] in the subsequent study.

5. Conclusions

(1) By comparing the correlation coefficients of the lettuce canopy with the background
(pot, soil, ground) spectral reflectance curves, correlation coefficients differences were used
to segment the background region. The mean value for the area overlap measure (AOM)
was 0.9254 with a variance of 0.0275, while the mean value of misclassified error (ME) was
0.0292 with a variance of 0.0143. Segmentation accuracy and stability improved compared
to traditional reflectance thresholding segmentation methods for hyperspectral images of
lettuce canopies collected under outdoor conditions.

(2) The 1st derivative method can better suppress stray light and baseline drift in
the spectral data, and is suitable for outdoor hyperspectral data preprocessing. After
preprocessing of the 1st derivatives and then correlating the variability of the spectra
with the variability of the attributes to be measured by mean-centering, the modeling
set RC of the canopy water content model is 82.21% and the prediction set RP is 81.25%.
The modeling set RC and prediction set RP improved by 7.773% and 2.407%, respectively,
compared to the canopy water content model constructed from the original data.

(3) The PLS model constructed with the feature wavelengths selected by MCUVE–
CARS–PLS had the best comprehensive performance, since this model extracted fewer
feature wavelength variables, and had an improved and balanced prediction effect for
both the prediction and the modeling sets. The prediction set model correlation coefficient
RP was 84.29% and the root mean square error RMSEP was 0.8627. The modeling set
correlation coefficient RC was 82.71% and the root mean square error RMSECV was 0.7049.
The MCUVE–CARS–PLS model was used to calculate the dry basis water content of each
pixel point of the lettuce canopy for visual prediction. This study has important practical ap-
plications, such as providing a reference for spectral image processing techniques, specifically
for lettuce canopy water content prediction under complex outdoor lighting conditions.
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